Supporting information

Decreasing wound edge stress enhances leader cell formation during collective smooth muscle cell migration

Zachary S. Deana,†, Nima Jamilpourb, Marvin J. Slepiana,c, and Pak Kin Wonga,b,d,*

- ^a Department of Biomedical Engineering, The University of Arizona, Tucson AZ 85721, USA.
- ^b Department of Aerospace and Mechanical Engineering, The University of Arizona,
 Tucson AZ 85721, USA.
- c Sarver Heart Center, College of Medicine, The University of Arizona, Tucson AZ 85721, USA.
- d Departments of Biomedical Engineering, Mechanical Engineering and Surgery, The Pennsylvania State University, University Park, PA, 16802, USA

[†] Current address: Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

*Correspondence should be addressed to Pak Kin Wong. Tel: +1-814-863-5267; E-mail: pak@engr.psu.edu

6 Pages, 3 Figures, and 2 Tables

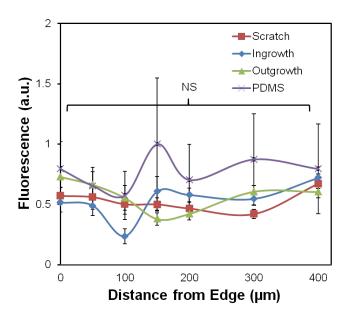


Figure S1. The random probe was transfected into collectively migrating smooth muscle cells. No statistical significance was measured at any point. NS = not significant. One-way ANOVA was performed.

Leader Cells per Millimeter of Wound

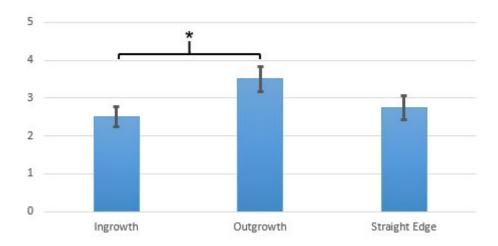


Figure S2. The outgrowth assay increases the density of leader cells. We measured the number of leader cells present over the course of a constant length of 1 mm of starting wound edge in each image. As the outgrowth and ingrowth assays are curved, these measurements took into account the arc length of each assay's circumference when measuring the starting length.

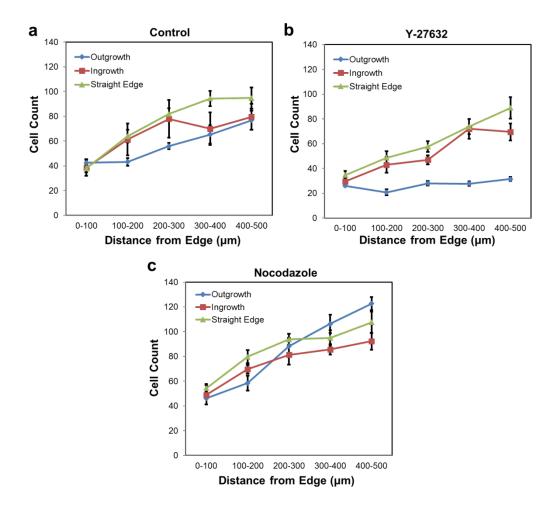


Figure S3. The number of cells versus location in relation to the wound edge was measured. The number of cells was evaluated in (a) control (no drug), (b) Y-27632 addition, and (c) nocodazole. The data is from the same experiments presented in Figure 9. One-way ANOVA analysis with post hoc Tukey's multiple comparison test performed on these data.

Target Gene	Probe Type	Sequence/Fluorophore	Length (nucleotides)	ΔG _{DQ} (kcal/mol)	ΔG _{DT} (kcal/mol)
	Donor (D)	5' / <mark>6-FAM</mark> / <u>T</u> C <u>C</u> A <u>C</u> T <u>G</u> C <u>T</u> A <u>T</u> A <u>T</u> G <u>A</u> G <u>T</u> C <u>T</u> T 3'	20		
β3-integrin	Quencher (Q)	5' <u>T</u> A <u>G</u> C <u>A</u> T <u>T</u> G <u>G</u> A <mark>/lowa Black FQ</mark> / 3'	10	-10.8	-21.6
	Target (T)	5' AAGACTCATATAGCATTGGA 3' 20			
	Donor (D)	5' /6-FAM/ <u>A</u> G <u>G</u> A <u>A</u> G <u>G</u> A <u>A</u> G <u>G</u> C <u>T</u> G <u>G</u> A <u>A</u> G <u>A</u> G3'	20		
β-actin	Quencher (Q) 5' CTTCCTTCCT/lowa Black FQ/ 3'		10	-10.6	-24.9
	Target (T)	Target (T) 5' CTCTTCCAGCCTTCCTT3' 20			
DII4	Donor (D)	5' / <mark>6-FAM</mark> / <u>A</u> A <u>G</u> G <u>G</u> C <u>A</u> G <u>T</u> T <u>G</u> G <u>A</u> G <u>A</u> G <u>G</u> G <u>T</u> T 3'	20	-11.8	-25.9
	Quencher (Q)	5' <u>A</u> A <u>C</u> T <u>G</u> C <u>C</u> C <u>T</u> T/lowa Black FQ/ 3'	10		
	Target (T)	(T) 5' AACCCTCTCCAACTGCCCTT3' 20			
	Donor (D)	5' <u>/6-FAM/T</u> G <u>C</u> G <u>G</u> T <u>C</u> T <u>G</u> T <u>C</u> T <u>G</u> G <u>T</u> T <u>G</u> T <u>G</u> C 3'	20		
Notch1	Quencher (Q)	Quencher (Q) 5' <u>A</u> C <u>A</u> G <u>A</u> C <u>C</u> G <u>C</u> A/lowa Black FQ/ 3'		-12.8	-27.5
	Target (T) 5' GCACAACCAGACAGACCGCA 3'		20		
	Donor (D)	5' <u>/6-FAM/<i>A</i></u> C <u>G</u> C <u>G</u> A <u>C</u> A <u>A</u> G <u>C</u> G <u>C</u> A <u>C</u> C <u>G</u> A <u>T</u> A 3'	20	-12.7	-29.4
Random	Quencher (Q)	5' <u>C</u> T <u>T</u> G <u>T</u> C <u>G</u> C <u>G</u> T/lowa Black FQ/ 3'	10		
	Target (T)	Target (T) 5' TATCGGTGCGCTTGTCGCGT 3'			

Table S1. The dsLNA probe design for detecting β -actin, β 3-integrin, and the random (scrambled) probe. LNA monomers are bolded and underlined, and normal DNA monomers are in regular text. The fluorophore or fluorescence quencher of each probe is bolded and in red.

Outgrowth			Ingrowth			Straight Edge			
Migration straightness			Migration straightness			Migration straightness			
	Peak 1	Peak 2		Peak 1	Peak 2		Peak 1	Peak 2	
λ	0.672	0.328	λ	0.840	0.160	λ	0.757	0.243	
μ	0.485	0.747	μ	0.354	0.745	μ	0.360	0.562	
σ	0.150	0.589	σ	0.172	0.075	σ	0.072	0.034	
Mean migration speed (μm/hr)			Mean migration speed (μm/hr)			Mean migration speed (μm/hr)			
	Peak 1	Peak 2		Peak 1	Peak 2		Peak 1	Peak 2	
λ	0.900	0.100	λ	0.816	0.184	λ	0.791	0.209	
μ	15.956	24.519	μ	12.078	21.228	μ	12.175	21.156	
σ	2.473	1.200	σ	4.885	3.847	σ	2.180	1.880	
β-8	β-actin dsLNA probe signal			β-actin dsLNA probe signal			β-actin dsLNA probe signal		
	Peak 1	Peak 2		Peak 1	Peak 2		Peak 1	Peak 2	
λ	0.564	0.436	λ	0.576	0.424	λ	0.592	0.408	
μ	126.832	415.310	μ	88.059	238.170	μ	74.345	239.229	
σ	58.047	231.705	σ	48.811	118.267	σ	39.670	124.326	
	Random dsLNA probe			Random dsLNA probe			Random dsLNA probe		
signal			signal			signal			
	Peak 1	Peak 2		Peak 1	Peak 2		Peak 1	Peak 2	
λ	0.843	0.157	λ	0.756	0.244	λ	0.432	0.568	
μ	31.064	107.481	μ	16.575	73.482	μ	11.742	50.349	
σ	16.859	34.421	σ	15.002	23.025	σ	6.507	29.476	

Table S2. A table summarizing the bimodal analyses of the distributions. The overlap (λ) , the mean (μ) , and the standard deviation (σ) of the peaks are indicated for each wound scenario.