1	Supporting Information for
2	Inflammation response of water-soluble fractions in atmospheric fine
3	particulates: a seasonal observation in 10 large Chinese cities
4	
5	Huimin Ma ^{a,b} , Jun Li ^a , Cong Wan ^{a,c} , Yaohui Liang ^{a,c} , Xiangyun Zhang ^a , Guanghui Dong ^d , Liwen
6	Hu ^d , Boyi Yang ^d , Xiaowen Zeng ^d , Tao Su ^{a,c} , Shaoyou Lu ^e , Shejun Chen ^a , Mahdi Safaei Khorram ^a ,
7	Guoying Sheng ^a , Xinming Wang ^a , Bixian Mai ^a , Zhiqiang Yu ^{a*} , Gan Zhang ^{a*}
8	
9	^a State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of
10	Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
11	Chinese Academy of Sciences, Guangzhou 510640, China
12	^b Lancaster Environmental Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom
13	^c University of Chinese Academy of Sciences, Beijing 100049, China
14	^d Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou
15	510080, China
16	^e Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
17	
18	Corresponding authors:
19	Name: Gan Zhang, E-mail: <u>zhanggan@gig.ac.cn</u>
20	Zhiqiang Yu, E-mail: zhiqiang@gig.ac.cn
21	Address: State Key Laboratory of Organic Geochemistry and Guangdong province
22	Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou
23	Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
24	

25	Tables:
26	Table S1 : The primers used in this study.
27	Table S2: Concentrations of PM _{2.5} samples from 10 large cities in China collected
28	during 1 year.
29	Table S3: Characteristics of HULIS and the NMR groups in the WSFs of $PM_{2.5}$.
30	Table S4: PCA results of the water-soluble inorganic ions, water-soluble elements,
31	PM _{2.5} , and WSOC.
32	
33	Figures:
34	Figure S1. IL-6 response in A549 cells exposed to the dichloromethane (DCM)
35	and WSF of $PM_{2.5}$ samples from the same volume of air.
36	Figure S2. Confirmation of $PM_{2.5}$ induced IL-6 release.
37	Figure S3. Relative IL-6 response in A549 cells exposed to various concentrations
38	of Pb.
39	Figure S4. Relative IL-6 response of humic-like substances (HULIS), non-HULIS,
40	and the WSFs of $PM_{2.5}$ samples.
41	Figure S5. The DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA)
42	enhanced PM _{2.5} -induced IL-6 release in A549 cells.
43	Figure S6. Relative DNA methylation of 22 tumor-related genes in A549 cells
44	exposed to the WSF of Xinxiang Spring (XXSP) PM _{2.5} .
45	

S2

47

48 **Supporting Methods:**

49

50

S1-1: WSF extraction, DCM fraction extraction:

The WSF extraction was performed as follows: each PM2.5 sample was cut into 51 52 the pieces, dissolved in 5 mL of deionized water, and sonicated for 15 min. After 53 treating three times. the suspension was filtered through 0.22-µm 54 polytetrafluoroethylene syringe filters (Millipore, Billerica, MA, USA). Finally, samples were freeze-dried and dissolved in deionized water up to 50,000 PPM for 55 storage liquid and they will be diluted to different concentrations in different 56 experiments. A blank filter was treated using the same method as the method blank. 57

58 Dichloromethane (DCM) fraction of $PM_{2.5}$ extraction: The DCM fraction was

extracted from $PM_{2.5}$ samples collected in GZ in 2013 (GZ W1 and GZ W2). $PM_{2.5}$

samples were collected from the combustion products of core stalks, coal, and vehicle

exhaust. The filters were then extracted with DCM using pressurized liquid extraction

62 (ASE300; Dionex Corp., Sunnyvale, CA, USA) for 2 days. Finally, the extracts were

63 gently evaporated and dried under nitrogen gas and reconstituted with dimethyl

- 64 sulfoxide to various concentrations.
- 65
- 66

S1-2 : Inorganic chemical analyses

Water-soluble inorganic ions: A Metrosep C4-100 (Metrohm) column and
Metrosep Supp 5 - 150 (Metrohm) column were used to separate the cations and
anions, respectively. Buffer 1 (2 mmol/L H₂SO₄) and buffer 2 (3.2 mmol/L Na₂CO₃
and 1.0 mmol/L NaHCO₃) were used as the elution and balance buffers for the cations

71	and anions, respectively. The detection limits of all ions were 0.01 μ g/mL. Fresh
72	deionized water was injected thrice before each standard (Sigma-Aldrich, St. Louis,
73	MO, USA) and sample injection to minimize cross-contamination.
74	Metal elements : The detection limits for the analyzed metals were as follows: Al
75	(6 μg/L), Ti (6 μg/L), V (0.7 μg/L), Cr (0.9 μg/L), Mn (0.6 μg/L), Fe (9 μg/L), Co (0.3
76	μg/L), Ni (0.7 μg/L), Zn (9 μg/L), Cu (0.9 μg/L), As (0. 9 μg/L), Cd (0.6 μg/L), and Pb
77	(0.7 µg/L) (Naimabadi et al., 2016).
78	
79	
80	S1-3: HULIS fractions analysis:
81	To separate HULIS from the WSF of $PM_{2.5}$, sample solutions were diluted to 20
82	mL and the pH was adjusted to 2. HULIS was separated using a 6-mL Oasis HLB
83	column (Waters, Milford, MA, USA), in which 4 mL of methanol and 5 mL of
84	deionized water $(pH = 2)$ were added to activate the column, followed by the addition
85	of the prepared sample. After adsorption, 2 mL of deionized water was added to the
86	column to remove not absorbed organic and inorganic components therein. The
87	column was freeze dried followed by the addition of 3 mL of 2% (v/v)
88	ammonia/methanol (Sigma-Aldrich) to the column in order to elute the absorbed
89	target compounds. The elution step was repeated once, the eluted solution was dried
90	under a stream of liquid nitrogen and water was added to a constant volume up to 20
91	mL. The carbon content of HULIS was analyzed with a TOC analyzer.
92	
93	S1-4: Cell treatment, DNA methylation and gene expression:
94	The treatment of cells:
95	A549 and Beas-2B cells were purchased from the Cell Bank of Type Culture

S4

Collection of Chinese Academy of Sciences (Shanghai, China). A549 cells were
cultured in RPMI 1640 with 10% FBS (v/v) at 37 °C in a 5% CO₂ atmosphere, and
Beas-2B cells were cultured in high-glucose Dulbecco's modified Eagle's medium
(Hyclone, Logan, UT, USA) supplemented with 10% (v/v) fetal bovine serum (FBS;
Gibco, San Diego, CA, USA). All WSF samples were sonicated for about 20 seconds
before use to expose cells.

102 Concentrations conversion:

In this study, the ability of IL-6 release induced by WSF samples between ten 103 104 cities and four seasons was used to be compared, so WSF samples from same volume air, 10 m³ air, was used to expose cells which make this comparison reasonable. 105 Normally, $PM_{2.5}$ toxicity experiments prefer to use $\mu g/cm^2$ unite to express the exposure 106 concentration in *in vitro* experiments, which is try to simulate human respiratory 107 exposed PM_{2.5}. Because the A549 and Beas-2B were the adherent cells, the area of cells 108 culture plate was recorded for calculate cell exposure concentrations in µg/cm² unite. 109 The mass of PM_{2.5} in 10 m³ air was calculated using PM2.5 data (μ g/m³), then the cell 110 exposure concentrations (μ g/cm²) of each sample was calculated as the rate of mass of 111 $PM_{2.5}$ to cells area. 112

113 DNA methylation PCR array:

114 The DNA methylation PCR array, which included 22 tumor-related genes (*APC*,

115 CADM1 (TSLC1), CDKN1C (p57Kip2), CDKN2A, CDKN2B (p15INK4b), FHIT,

116 CDH1, CDH13, DLC1, OPCML (aOBCAM), FHIT, MLH1, PRDM2 (RIZ1), RASSF1,

117 *RASSF2*, *TCF21*, *CXCL12*, *APBA1*, *MGMT* (*AGT*), *CYP1B1*, *PAX5*, and *MTHFR*)

exhibiting DNA methylation dysregulation, might be associated with various lung

diseases, was used to screen for genes targeted for DNA methylation after exposure to

120 the WSF of $PM_{2.5}$.

S5

RASSF2 and CYP1B1 gene methylation:

122	The Sequenom MassARRAY platform (Sequenom) was used to perform the
123	quantitative methylation analysis of the RASSF2 and CYP1B1 genes. The primers
124	were designed using Sequenom software (http://www.epidesigner.com) and described
125	in detail in our previous paper ¹ (Supplemental Table 1). We examined a 568-bp
126	fragment of CYP1B1 (GRch38, Chr2, 38074550–38075117) and a 539-bp fragment of
127	RASSF2 (GRch38, Chr20, 4823013–4823551); these included 65 CpG sites and 58
128	CpG sites, of which 48 and 30 CpG sites were detected, respectively. These two
129	fragments are involved in CpG islands considered to participate in gene expression.
130	The DNA methylation level of each CpG site was expressed as the mean of the
131	methylated sites ratio to the sum of methylated and unmethylated sites, and DNA
132	methylation degree of the two genes was calculated as the average of all sites.
133	LINE-1 and iNOS gene methylation:
134	Genomic DNA was bisulfited using a bisulfite conversion kit (Zymo Research,
135	Orange, CA, USA). The DNA methylation level of iNOS has been reported to be
136	negatively related to gene expression ² . <i>LINE-1</i> gene methylation was expressed as the
137	methylated sites divided by the sum of methylated and unmethylated sites, and the
138	relative DNA methylation was the degree of methylation compared with that of blank
139	samples, which was considered as 100%.
140	Gene expression:

Briefly, total cellular RNA was extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) and 2 μ g of total RNA from each sample was reverse-transcribed into cDNA using a Prime-ScriptTM RT Reagent Kit (TaKaRa, Dalian, China). The levels of the target gene mRNA transcripts relative to control β -actin were characterized by quantitative PCR using the cDNA template, specific primers (Excel Table S1), and

- 146 SYBR® Premix Ex TaqTM (TaKaRa) on an AB 7500 Fast System (Applied Biosystems,
- 147 Foster City, CA, USA). Supplementary Table 1 lists the sequences of the primers used
- in this experiment. The levels of the target mRNA transcripts relative to control β -actin
- 149 were analyzed with the $2^{\Delta\Delta Ct}$ method and expressed as fold changes.

152 Supplemental Tables and Figures:

153

154

Table S1. The primers used in this study.

MassARRAY	Gene Name
	cyp1b1
Forward primer (5'-3')	aggaagagGTTGTTTTATAGTGGTGTTGAATGG
Reverse primer (5'-3')	cagtaatacgactcactatagggagaaggctCAATACCTCAAAAACTTATCCAAAAT
	rassf2
Forward primer (5'-3')	aggaagagGGTTGAAAAAGGTTAAGGGGTT
Reverse primer (5′–3′)	cagtaatacgactcactatagggagaaggctCAATACCTCAAAAACTTATCCAAAAT

Pyrosequencing

	LINE-I
Forward primer (5'-3')	TTTTGAGTTAGGTGTGGGATATA
Sequencing primer (5'-3')	AGTTAGGTGTGGGATATAGT
Reverse primer (5'-3') Sequence	Biotin-AAAATCAAAAAATTCCCTTTC
analyzed	CTCGTGGTGCGCCGTTTTTTAAGCCGTCGGAAAGCGC iNOS
Forward primer (5'-3')	AATGAGAGTTGTTGGGAAGTGTTT
Sequencing primer (5'-3')	TAAAGGTATTTTTGTTTTAA
Reverse primer $(5'-3')$	Biotin-CCACCAAACCCAACCAAACT
Sequence analyzed	C/TGATTTTC/TGGGTTTTTT

Real-time PCR

cyp1b1

Forward primer (5'-3')	TGAGTGCCGTGTGTTTCGG
Reverse primer (5'-3')	GTTGCTGAAGTTGCGGTTGAG

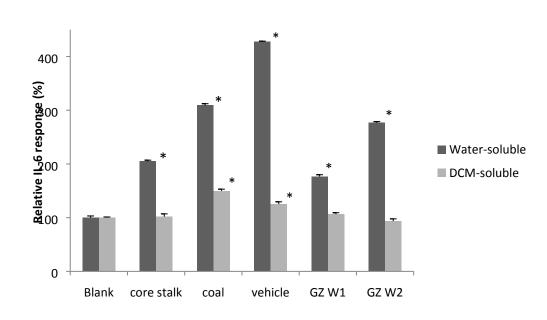
	rassf2
Forward primer (5'-3')	GCACTCTGGCTGTAACCTGG
Reverse primer $(5'-3')$	CACTAGGCGTCCTCACATTGC
F 1 [•]	IL-6
Forward primer (5'-3')	ACTCACCTCTTCAGAACGAATTG
Reverse primer (5′–3′)	CCATCTTTGGAAGGTTCAGGTTG
	IL-8
Forward primer (5'-3')	TTTTGCCAAGGAGTGCTAAAGA
Reverse primer $(5'-3')$	AACCCTCTGCACCCAGTTTTC

157	Table S2. Concentrations of 24h PM _{2.5} from 10 large cities in China collected during 1
158	year.

PM _{2.5} concentration ^a	Median	Mean±SD	*p value
TY	331.70	303.15±34.35	
LZ	249.35	270.92±30.41	
XX	243.60	236.2±47.91	
GY	206.93	206.93±13.9	
BJ	202.56	189.2±22.8	n = 0.002
WH	161.45	187.74±43.58	p = 0.003
CD	138.34	156.81±39.01	
NJ	105.12	99.73±29.33	
SH	82.00	86.39±36.05	
GZ	81.94	80.73±25.03	
Spring	140.37	181.64±57.44	
Summer	128.16	132.8±62.03	n = 0.194
Autumn	156.63	165.2±45.47	p = 0.184
Winter	205.06	229.63±47.11	

- *Kruskal–Wallis test. ^aµg/m³.
 TY, Taiyuan; LZ, Lanzhou; XX, Xinxiang; GY, Guiyang; BJ, Beijing; WH, Wuhan; CD, Chengdu; NJ, Nanjing; SH, Shanghai; GZ, Guangzhou

163164 Table S3. Characteristics of HULIS and the NMR groups in the WSFs of PM_{2.5}.

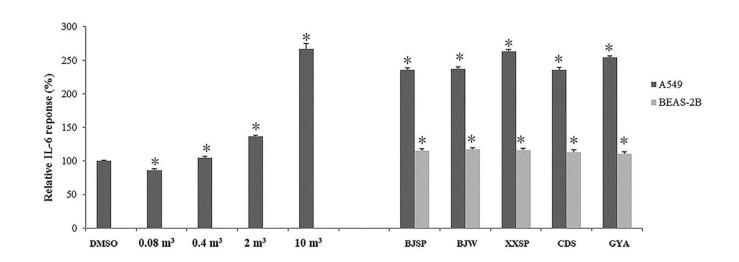

-		Median	Mean±SD	<i>p</i> value among seasons	p value among cities
	HULIS	0.45	1.25 ± 1.56	0.032	0.013
	NMR1	40.450	44.67±19.407	0.003	0.021
	NMR2	29.305	35.594±17.399	0.003	0.025
	NMR3	53.750	60.523±28.273	0.036	0.009
	NMR4	6.910	9.932±8.055	0.001	0.177
168	*µg/m ³ . [#] Kruskal–Wallis test. HULIS, humic-like				

substances; NMR, nuclear magnetic resonance.

Table S4. PCA results of the water-soluble inorganic ions, water-soluble elements, HULIS, non-HULIS, endotoxin, and NMR1-4. Five factors were obtained, which

accounted for 76.28% of the total variance. Values below 0.5 are not shown.

	PCA1	PCA2	PCA3	PCA4	PCA5
Na	.947				
Cl	.945				
NMR1	.887				
NMR2	.869				
K	.812				
NMR3	.795				
Zn	.783				
No ₃ -	.775				
$\mathrm{NH_4^+}$.763		537		
Mg	.760		.558		
Mn	.756				
NMR4	.744				
SO_4^{2-}	.741				
Endotoxin	.719				
Co	.623	.569			
Ti	.600				
Cu	.578	.624			
Cr	.577	.521			
Ca	.518		.517		
As	.513			.545	
Al		.541			
V				559	
Fe		.715			
Ni				676	
Cd				.636	
Pb		.586	.589		
HULIS					676
Non-HULIS					.551


179 180

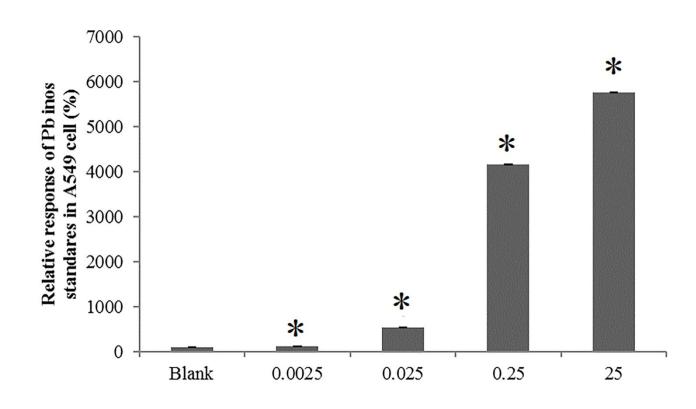
183

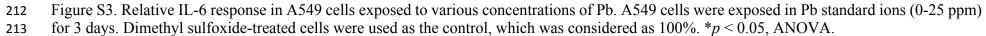
184

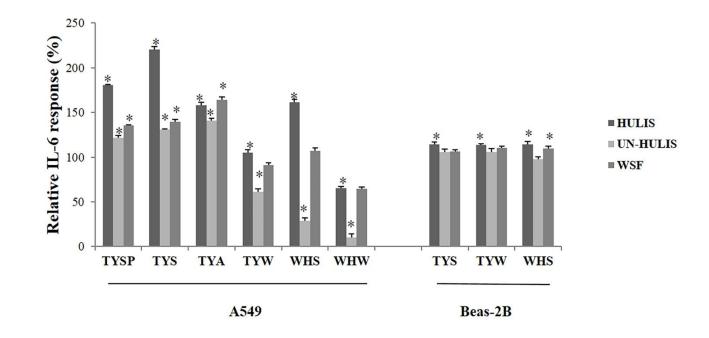
Figure S1. IL-6 response in A549 cells exposed to the dichloromethane (DCM) and WSF of $PM_{2.5}$ samples from the same volume of air. GZ W1 and GZ W2 are the $PM_{2.5}$ from Guangzhou sample 1 and sample 2 in the winter of 2013, respectively; core stalk and coal are $PM_{2.5}$ from the combustion of core stalks and coal, respectively; and vehicle represents $PM_{2.5}$ from vehicle emissions. Cell were exposed in WSF from same volume of 10 m³ air for 3 days. *p < 0.05, ANOVA. Each experimental sample was compared with its respective sample blank, which was considered as 100%.

- 192
- 193

195 196

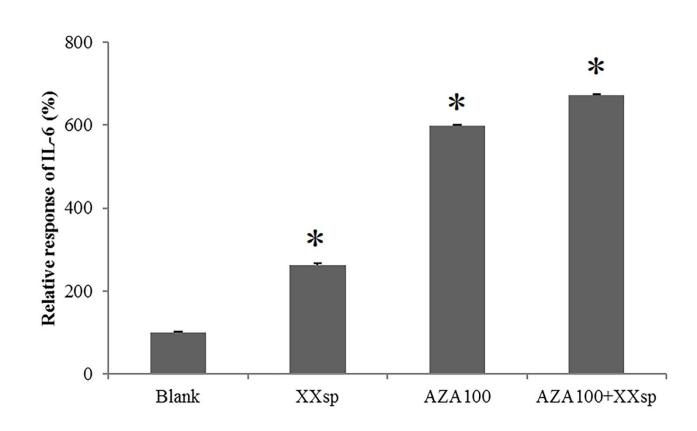

198


199 200


Figure S2. Confirmation of PM_{2.5} induced IL-6 release. Left: Relative IL-6 response at various WSF concentrations of the Xinxiang spring

202 (XXSP) samples. A549 cells were exposed to various WSF concentrations (from $PM_{2.5}$ of 0.08-10 m³ air) of the XXSP $PM_{2.5}$ for 3 days, and IL-203 6 levels were assessed. Right: Relative IL-6 response in Beas-2B and A549 cells exposed for 3 days to the WSFs of five $PM_{2.5}$ samples derived

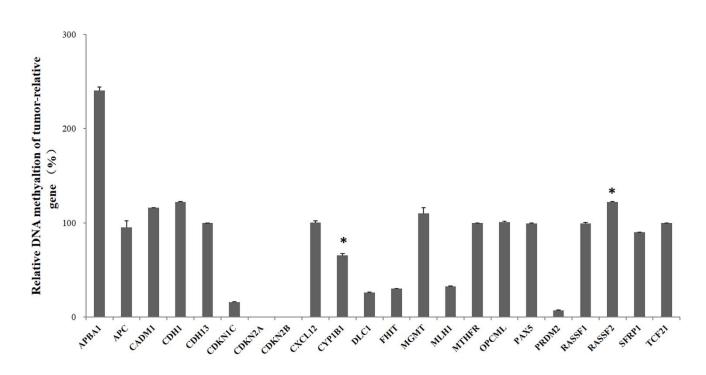
from 10 m³ of air. Blank samples were used as the control, which was considered as 100%. *p < 0.05, ANOVA. The concentration of IL-6 in blank sample is 22.38±0.13 pg/ml in left figure, 43.26±0.56 pg/ml in right figure for A549 cells, and 3.67 ±0.89 ng/ml for Beas-2B cells.



216 217

Figure S4. Relative IL-6 response of humic-like substances (HULIS), non-HULIS, and the WSFs of PM_{2.5} samples. Samples included Taiyuan

- spring (TYSP), Taiyuan summer (TYS), Taiyuan Autumn (TYA), Taiyuan Winter (TYW), Wuhan summer (WHS), and Wuhan winter (WHW)
- PM_{2.5} A549 cells and Beas-2B cells were exposed at concentrations of $3.12 \,\mu\text{g/cm}^2$. Quartz filter sample blanks underwent the same treatment as
- the HULIS, non-HULIS, and WSF extraction methods, and the IL-6 responses of the blanks were considered as 100%. * p < 0.05, ANOVA.
- 223



226

227

228

Figure S5. The DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) enhanced $PM_{2.5}$ -induced IL-6 release in A549 cells. A549 cells were treated with 100 μ M AZA for 3 days and then exposed to the WSF of XXSP $PM_{2.5}$. The IL-6 levels in cells exposed to blank samples treated the same as the $PM_{2.5}$ samples, which were considered as 100%. *p < 0.05, ANOVA.

235

236

Figure S6. Relative DNA methylation of 22 tumor-related genes in A549 cells exposed to the WSF of Xinxiang Spring (XXSP) $PM_{2.5}$. Blank samples were used as the control, which was considered as 100%. *p < 0.05, ANOVA.

240 REFERENCES

- (1) Zeng L.; Ma H.; Pan S.; You J.; Zhang G.; Yu Z.; Sheng G.; Fu J. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2
 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicol. In Vitro. 2016, 34, 35-44.
- 244
- (2) Jiménez-Garza, O.; Guo, L.; Byun, H.M.; Carrieri, M.; Bartolucci, G.B.; Zhong, J.; Baccarelli A.A. Promoter methylation status in genes
 related with inflammation, nitrosative stress and xenobiotic metabolism in low-level benzene exposure: Searching for biomarkers of
 oncogenesis. Food Chem. Toxicol. 2017, 109, 669-676.
- 248
- 249