## **Supporting Information**

## Nitrogen-doped NiCo<sub>2</sub>O<sub>4</sub> Microsphere as an Efficient Catalyst for Flexible Rechargeable Zinc-Air Batteries and Self-charging Power System

Juanjuan Bian,<sup>1,2‡</sup> Xiaopeng Cheng,<sup>3‡</sup> Xiaoyi Meng,<sup>1,2</sup> Jian Wang,<sup>4</sup> Jigang Zhou,<sup>4</sup>

Shaoqing Li,<sup>1,2</sup> Yuefei Zhang,<sup>3\*</sup> and Chunwen Sun<sup>1,2,5\*</sup>

<sup>1</sup>CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China

<sup>2</sup>School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

<sup>3</sup>Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, P.R. China

<sup>4</sup>Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada

<sup>5</sup>Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P.R. China

\* Corresponding authors.

Tel.: +86-10-82854648, fax: +86-10-82854648. Email: <u>yfzhang@bjut.edu.cn</u> (Y.F. Zhang),

sunchunwen@binn.cas.cn (C. Sun)

<sup>‡</sup> These authors contributed equally to this work.



Figure S1. (a) SEM image of NiCo<sub>2</sub>O<sub>4</sub>; (b) SEM image of N-doped NiCo<sub>2</sub>O<sub>4</sub>.



**Figure S2.** (a) EDS spectrum of N-doped NiCo<sub>2</sub>O<sub>4</sub>; (b) The corresponding elemental mappings of N, Ni, Co and O of the N-doped NiCo<sub>2</sub>O<sub>4</sub>.

| Component | Contents (wt.%) |  |
|-----------|-----------------|--|
| Ν         | 0.60            |  |
| Ο         | 25.18           |  |
| Со        | 46.95           |  |
| Ni        | 27.27           |  |
| Total     | 100             |  |

Table S1 The contents of N, Ni, Co and O of the N-doped  $NiCo_2O_4$ .



Figure S3. (a) TEM image and (b) HRTEM image of  $NiCo_2O_4$ .



Figure S4. The whole XANES spectra of (a)NiCo<sub>2</sub>O<sub>4</sub> and (b) N-doped NiCo<sub>2</sub>O<sub>4</sub>.



**Figure S5**. XPS spectra of  $NiCo_2O_4$  and  $N-NiCo_2O_4$ : (a) Ni 2p spectra, (b) Co 2p spectra, (c) O 1s spectra, (d) N 1s spectrum.



**Figure S6.** (a) LSV curves of  $NiCo_2O_4$  at different rotating speeds; (b) the corresponding K-L plots at different potentials; (c) LSV curves of N-NiCo<sub>2</sub>O<sub>4</sub> at different rotating speeds; (d) the corresponding K-L plots at different potentials.

Double layer capacitance ( $C_{dl}$ ) of different electrodes was measured to estimate the effective electrochemical active surface area (ECSA) of the catalysts. CVs have been operated from 0.92 to 1.02 V (*vs.* RHE) in 0.1M KOH at different scan rates. The ECSA of the catalysts can be calculated according to the equal: ECSA = $C_{dl}/C_s$  where  $C_s$  is the specific capacitance of the sample. We use general  $C_s = 0.05$  mF cm<sup>-2</sup> in 0.1M KOH.<sup>S1</sup> From Figure S7, it can be calculated that N-doped NiCo<sub>2</sub>O<sub>4</sub> has a bigger electrochemically active surface area of 26.1 cm<sup>2</sup> than that of NiCo<sub>2</sub>O<sub>4</sub> (22 cm<sup>2</sup>).



**Figure S7.** The cyclic voltammetry curves in the non-faradaic region at various scan rates for (a)  $NiCo_2O_4$  and (b) N-doped  $NiCo_2O_4$ ; Current-scan rates of the samples: (c)  $NiCo_2O_4$  and (d) N-doped  $NiCo_2O_4$ .



**Figure S8.** (a) Current densities at 0.5 V (*vs.* RHE) before and after 1000 cycles for  $NiCo_2O_4$  and N-doped  $NiCo_2O_4$ ; (b) Chronoamperometric response at 1.65V (*vs.* RHE) for  $NiCo_2O_4$  and N-doped  $NiCo_2O_4$ .

| Catalyst                                                 | Current density        | Battery performance           | Potential<br>gap<br>(V) | Refs.      |
|----------------------------------------------------------|------------------------|-------------------------------|-------------------------|------------|
| N-doped NiCo <sub>2</sub> O <sub>4</sub>                 | $5 \text{ mA cm}^{-2}$ | Galvanostatic test for 53 h   | 0.75                    | This work  |
| Co <sub>3</sub> O <sub>4</sub> /CC                       | 2 mA cm <sup>-2</sup>  | Galvanostatic test for 10 h   | 0.92                    | S2         |
| Co <sub>3</sub> O <sub>4</sub>                           | no mention             | Galvanostatic test for 35 h   | 0.85                    | S3         |
| NCNF                                                     | 2 mA cm <sup>-2</sup>  | Galvanostatic test for 6 h    | 0.78                    | S4         |
| o-CC-H <sub>2</sub>                                      | 1 mA cm <sup>-2</sup>  | Galvanostatic test for 30 min | 0.97                    | S5         |
| Co <sub>3</sub> O <sub>4</sub> /LaNiO <sub>3</sub> /CNTs | $5 \text{ mA g}^{-1}$  | Galvanostatic test for 10 h   | 0.69                    | <b>S</b> 6 |
| CNT sheets                                               | 1 A g <sup>-1</sup>    | Galvanostatic test for 30 h   | 0.85                    | S7         |
| Co <sub>3</sub> O <sub>4</sub> /N-rGO                    | 3 mA cm <sup>-2</sup>  | Galvanostatic test for 25 h   | 0.80                    | <b>S</b> 8 |

 Table S2 Comparison of the electrochemical performance of flexible zinc-air

 batteries with different catalysts

## References

- (S1) Fu, Y.; Yu, H.; Jiang, C.; Zhang, T.; Zhan, R.; Li, X,W.; Li, J,F.; Tian, J,H.; Yang, R,Z. NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. *Adv. Funct. Mater.* **2018**, 1705094.
- (S2) Chen, X.; Liu, B.; Zhong, C.; Liu, Z.; Liu, J.; Ma, L.; Deng, Y.; Han, X.; Wu, T.; Hu, W.; Lu, J. Ultrathin Co<sub>3</sub>O<sub>4</sub> Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display. *Adv. Energy Mater.* 2017, *7*, 1700779.
- (S3) Fu, J.; Zhang, J.; Song, X.; Zarrin, H.; Tian, X.; Qiao, J.; Rasen, L.; Lib, K.; Chen, Z. A Flexible Solid-State Electrolyte for Wide-Scale Integration of Rechargeable Zinc-Air Batteries. *Energy Environ. Sci.* 2016, *9*, 663-670.
- (S4) Liu, Q.; Wang, Y.; Dai, L.; Yao, J. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries. *Adv. Mater.* 2016, 28, 3000-3006.
- (S5) Wang, H.; Tang, C.; Wang, B.; Li, B.; Cui, X.; Zhang, Q. Defect-Rich Carbon Fiber Electrocatalysts with Porous Graphene Skin for Flexible Solid-State Zinc-Air Batteries. *Energy Storage Mater.* 2018, 15, 124-130.
- (S6) Fu, J.; Lee, D.; Hassan, F.; Yang, L.; Bai, Z.; Park, M.; Chen, Z. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries. *Adv. Mater.* 2015, 27, 5617-5622.
- (S7) Xu, Y.; Zhang, Y.; Guo, Z.; Ren, J.; Wang, Y.; Peng, H. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. *Angew. Chem. Int. Ed.* 2015, *54*, 15390-15394.
- (S8) Li, Y.; Zhong, C.; Liu, J.; Zeng, X.; Qu, S.; Han, X.; Deng, Y.; Hu, W.; Lu, J. Atomically Thin Mesoporous Co<sub>3</sub>O<sub>4</sub> Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc-Air Batteries. *Adv. Mater.* 2018, 30, 1703657.