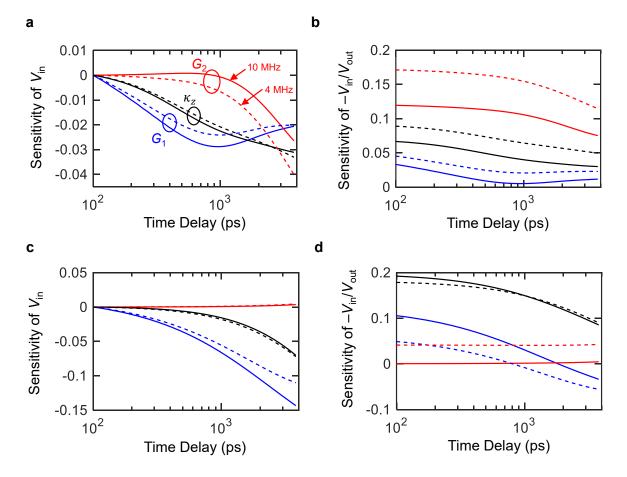
Supporting Information:

Quasi-Ballistic Thermal Transport Across MoS₂ Thin Films

Aditya Sood^{1,2,†,‡,*}, Feng Xiong^{3,‡}, Shunda Chen⁴, Ramez Cheaito², Feifei Lian^{1,¶}, Mehdi Asheghi², Yi Cui^{5,6}, Davide Donadio^{4,7}, Kenneth E. Goodson^{2,5}, Eric Pop^{1,5,8,*}

¹Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA. ²Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA. ³Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA. ⁴Department of Chemistry, University of California, Davis, CA 95616, USA. ⁵Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA. ⁶Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. ⁷Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain. ⁸Precourt Institute for Energy, Stanford University, Stanford, CA 94305, USA. [†]Present address: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. [‡]Equal contribution.


*Corresponding authors: aditsood@alumni.stanford.edu, epop@stanford.edu

1. TDTR sensitivity analysis

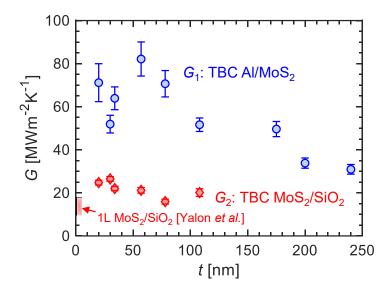
To determine TDTR measurement sensitivity to the different parameters of interest, we calculate the sensitivity coefficients S_{α} as follows:

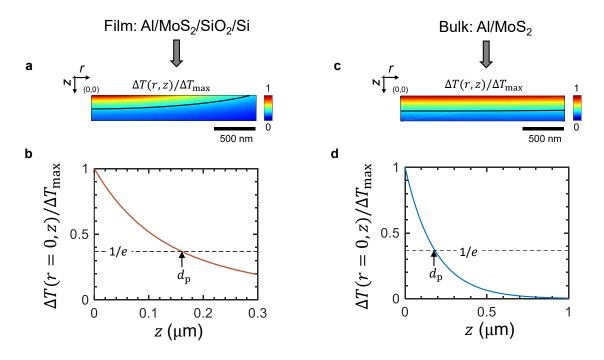
$$S_{\alpha} = \frac{\partial \log(Signal)}{\partial \log(\alpha)}$$

where *signal* could either refer to the normalized *in-phase voltage* (V_{in}) or the *ratio* (= - V_{in}/V_{out}), and the parameter α could be the cross-plane thermal conductivity κ_z , the Al/MoS₂ thermal boundary conductance (TBC) G_1 , or the MoS₂/SiO₂ TBC G_2 . These are plotted in Figure S1 for a 20 nm thick film (a, b), and a 200 nm thick film (c, d).

Figure S1. Sensitivity coefficients plotted for (a),(b): t = 20 nm, $G_1 = 70 \text{ MWm}^{-2}\text{K}^{-1}$, $G_2 = 25 \text{ MWm}^{-2}\text{K}^{-1}$, $\kappa_z = 0.9 \text{ Wm}^{-1}\text{K}^{-1}$, and (c),(d): t = 200 nm, $G_1 = 34 \text{ MWm}^{-2}\text{K}^{-1}$, $G_2 = 21 \text{ MWm}^{-2}\text{K}^{-1}$, $\kappa_z = 2 \text{ Wm}^{-1}\text{K}^{-1}$. Legend: black (κ_z), blue (G_1), red (G_2). Solid lines (10 MHz), dashed lines (4 MHz).

2. Thermal boundary conductance (TBC) measurements




Figure S2. Al/MoS₂ (G_1) and MoS₂/SiO₂ (G_2) TBCs plotted versus film thickness *t*, shown by the blue circles and red diamonds, respectively. Also shown for comparison are TBC measurements between monolayer MoS₂ and SiO₂ obtained by Raman thermometry^{1,2} (red shaded region represents the error bars of the reported result).

3. Thermal penetration depth calculations

To calculate the thermal penetration depth (d_p) in the TDTR measurements, we solve the full 3D heat diffusion equation in the multilayer stack. This is solved in the frequency domain under a sinusoidal heat flux excitation using methods described elsewhere^{3,4}. We compute the amplitude of temperature oscillations $\Delta T(r, z)$ at the modulation frequency f_{mod} ; d_p is the distance from the top surface at which $\Delta T(r, z)$ is reduced to 1/e of its maximum value.

Figure S3(a) shows $\Delta T(r, z)$ within a 300 nm thick MoS₂ film – this case is representative of one of the thick samples measured in our study (for which $\kappa_z \sim 2 \text{ Wm}^{-1}\text{K}^{-1}$). The simulation is carried out on a multilayer stack of Al/MoS₂/SiO₂/Si using a 4-layer model. The thermal properties of the various layers are provided in the main text. The TBCs of the Al/MoS₂ and MoS₂/SiO₂ interfaces are 40 MWm⁻²K⁻¹ and 20 MWm⁻²K⁻¹ respectively, although these do not affect d_p significantly. The heat flux is modulated at $f_{mod} = 4$ MHz, since this is the frequency at which we extract κ_z . Note that d_p is affected both by f_{mod} and the laser spot diameter (w_0); in these simulations, $w_0 =$ 3 µm. Figure S3(b) plots $\Delta T(z)$ at r = 0. From this we estimate $d_p \approx 160$ nm.

The same procedure is used to calculate d_p for the bulk samples measured in previous studies⁵⁻⁷ using a 2-layer model (Al/MoS₂). In each case, the simulations are performed using the reported κ_z , f_{mod} and w_0 values. A representative calculation⁵ is shown in Figures S3(c),(d).

Figure S3. (a) Normalized amplitude of temperature oscillations in a 300 nm thick MoS₂ film with $\kappa_z = 2 \text{ Wm}^{-1}\text{K}^{-1}$, $f_{\text{mod}} = 4 \text{ MHz}$, $w_0 = 3 \mu\text{m}$. The film is part of a multilayer stack: Al/MoS₂/SiO₂/Si, representative of the samples measured in this study. (b) Line-out along r = 0, with the dashed line indicating a 1/*e* thermal penetration depth of $d_p \approx 160 \text{ nm}$. (c) Normalized amplitude of temperature oscillations in a bulk MoS₂ substrate⁵ with $\kappa_z = 2 \text{ Wm}^{-1}\text{K}^{-1}$, $f_{\text{mod}} = 9.8 \text{ MHz}$, $w_0 = 24 \mu\text{m}$. (d) Line-out along r = 0, indicating $d_p \approx 180 \text{ nm}$.

4. Phonon wavelength contributions to thermal conductivity

We use DFT calculations to determine the range of phonon wavelengths that contribute to thermal transport along the *c*-axis. Figure S4 shows the thermal conductivity accumulation function plotted versus wavelength at 300 K. Based on this, the median wavelength is $\lambda \sim 1.5$ nm. If we posit that the MoS₂ film must have a thickness of at least $\sim 3\lambda$ in order to have a '3D' phonon dispersion, we estimate a minimum thickness of ~ 5 nm. For t < 5 nm, more detailed calculations may be needed to understand the effect of confinement on phonon band structure and cross-plane thermal transport.

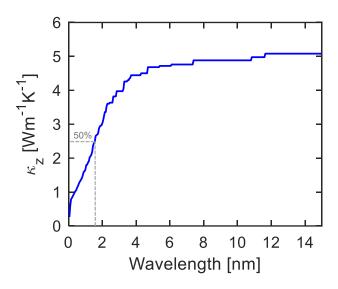
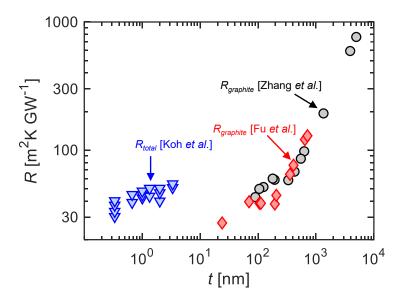



Figure S4. Calculated cumulative distribution function of the cross-plane thermal conductivity (κ_z) versus phonon wavelength at 300 K.

5. Cross-plane thermal transport in thin-film graphite and few-layer graphene

Figure S5. A summary of cross-plane thermal resistance measurements of crystalline graphite thin-films and few-layer graphene from literature. Intrinsic cross-plane thermal resistance measurements are from Zhang *et al.*⁸ (90 nm $< t < 5 \mu$ m), shown in black circles, and Fu *et al.*⁹ (24 nm < t < 714 nm), shown in red diamonds. The intrinsic resistance is defined as $R_{\text{graphite}} = t/\kappa_z$. For the case of Fu *et al.*⁹ this is calculated by subtracting out the estimated interface contribution. Total cross-plane thermal resistance measurements of Au/Ti/few-layer-graphene/SiO₂ interfaces for 0.3 < t < 3 nm are from Koh *et al.*¹⁰, shown as blue triangles; the total resistance including the interfacial contribution is $R_{\text{total}} = R_{\text{n-graphene}} + R_{\text{interfaces}}$. The plateau in intrinsic thermal resistance in Zhang *et al.*⁸ and Fu *et al.*⁹ could be related to the onset of quasi-ballistic thermal transport. A comparison to the total thermal resistance values for few-layer-graphene by Koh *et al.*¹⁰ suggests that a contributing factor to the thickness-independent R_{total} could be the strongly-ballistic transport of thermal phonons propagating along the *c*-axis of the thin-films.

References

- Yalon, E.; Mcclellan, C. J.; Smithe, K. K. H.; Xu, R. L.; Rojo, M. M.; Suryavanshi, S. V.;
 Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Pop, E. Energy Dissipation in Monolayer
 MoS₂ Electronics. *Nano Lett.* 2017, *17* (6), 3429–3433.
- Yalon, E.; Aslan, Ö. B.; Smithe, K. K. H.; McClellan, C. J.; Suryavanshi, S. V.; Xiong, F.;
 Sood, A.; Neumann, C. M.; Xu, X.; Goodson, K. E.; Heinz, T. F.; Pop, E. Temperature Dependent Thermal Boundary Conductance of Monolayer MoS₂ by Raman Thermometry.
 ACS Appl. Mater. Interfaces 2017, 9 (49), 43013–43020.
- Cahill, D. G. Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance. *Rev. Sci. Instrum.* 2004, 75 (12), 5119–5122.
- Braun, J. L.; Hopkins, P. E. Upper Limit to the Thermal Penetration Depth during Modulated Heating of Multilayer Thin Films with Pulsed and Continuous Wave Lasers: A Numerical Study. J. Appl. Phys. 2017, 121, 175107.
- (5) Liu, J.; Choi, G. M.; Cahill, D. G. Measurement of the Anisotropic Thermal Conductivity of Molybdenum Disulfide by the Time-Resolved Magneto-Optic Kerr Effect. J. Appl. Phys. 2014, 116, 233107.
- Jiang, P.; Qian, X.; Gu, X.; Yang, R. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX₂ (M = Mo, W and X = S, Se) Using Time-Domain Thermoreflectance. *Adv. Mater.* 2017, *29* (36), 1701068.
- Muratore, C.; Varshney, V.; Gengler, J. J.; Hu, J. J.; Bultman, J. E.; Smith, T. M.;
 Shamberger, P. J.; Qiu, B.; Ruan, X.; Roy, A. K.; Voevodin, A. A. Cross-Plane Thermal
 Properties of Transition Metal Dichalcogenides. *Appl. Phys. Lett.* 2013, *102*, 081604.
- (8) Zhang, H.; Chen, X.; Jho, Y. D.; Minnich, A. J. Temperature-Dependent Mean Free Path

Spectra of Thermal Phonons along the *c*-Axis of Graphite. *Nano Lett.* **2016**, *16* (3), 1643–1649.

- (9) Fu, Q.; Yang, J.; Chen, Y.; Li, D.; Xu, D. Experimental Evidence of Very Long Intrinsic Phonon Mean Free Path along the *c*-Axis of Graphite. *Appl. Phys. Lett.* 2015, *106*, 031905.
- (10) Koh, Y. K.; Bae, M. H.; Cahill, D. G.; Pop, E. Heat Conduction across Monolayer and Few-Layer Graphenes. *Nano Lett.* 2010, *10* (11), 4363–4368.