Supporting Information

Heats of Adsorption of N₂, CO, Ar and CH₄ versus Coverage on the Zr-Based MOF NU-1000: Measurements and DFT Calculations

Graeme O. Vissers⁺, Wei Zhang⁺, Oscar E. Vilches[#], Wei-Guang Liu[‡], Haoyu S. Yu[‡], Donald G. Truhlar[‡], and Charles T. Campbell^{+*}

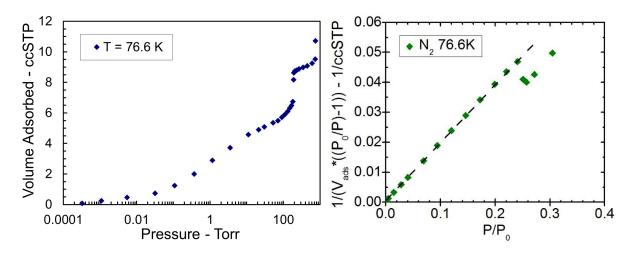
⁺ Department of Chemistry, University of Washington, Seattle WA 98195-1700

[#] Department of Physics, University of Washington, Seattle WA, 98195-1560

⁺ Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431

* Corresponding author: charliec@uw.edu

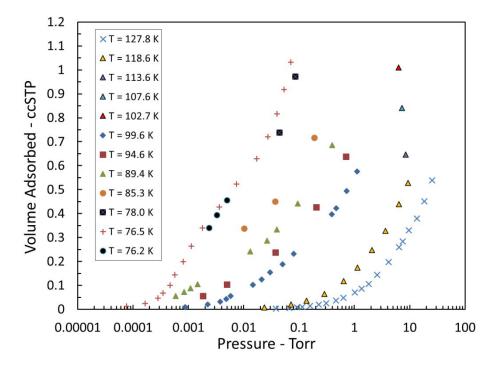
S1. Table of Contents

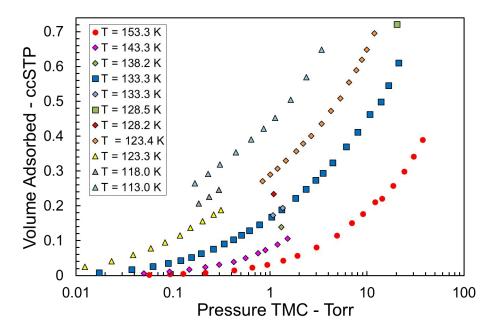

Contents	Page
S2. Gases used	S-1
S3. Nitrogen isotherm and BET plot on Sample 8 of NU-1000 at 77 K	S-2
S4. Adsorption isotherms of N_2 , CO, Ar, and CH_4	S-2
S4(a). N_2 isotherms	S-3
S4(b). CO isotherms	S-3
S4(c). Ar isotherms	S-4
S4(d). CH ₄ isotherms	S-4

S2. Gases used

N₂: Praxair, Grade 4.8 CO: Linde, Grade 3.0, 99.9% Ar: US Airgas, minimum purity 4.8 CH₄: Praxair, Grade 3.7 UH, 99.97%

S3. N₂ adsorption isotherm and BET plot on Sample 8 of NU-1000 at 77 K


All our NU-1000 samples were synthesized at Northwestern University and given to us by J. T. Hupp and O. K. Farha, as described in reference #1 of the main text. Sample 8 was accurately measured to have a mass of 10.3 mg before baking it to 75 °C.


Figure S1. Left: N₂ equilibrium adsorption isotherm on Sample 8 of NU-1000 measured at approximately 77 K in the cryocooler system after baking for several hours at 75 °C and 10⁻⁶ Torr. Right: BET plot of this same N₂ isotherm. Here, V_{ads} is the volume of gas adsorbed (if measured at STP), *P* is the pressure and P_0 is the equilibrium vapor pressure of the bulk liquid at the measurement temperature. The BET linearized best-fit equation shown gives V_{ML} = 5.11 ccSTP. This value was used to scale coverages to those of Sample 6 for which V_{ML} = 4.7 ccSTP (i.e., ~8% smaller sample size).

S4. Adsorption isotherms of N₂, CO, Ar, and CH₄

Two different approaches were used to measure adsorption isotherms of N_2 , CO, Ar, and CH₄ (see Figure S2 – S5). By keeping the temperature constant, a complete N_2 isotherm was measured up to the equilibrium vapor pressure of the bulk liquid at the measurement temperature (see Figure S1 left). To map the low-coverage and low-pressure region and check reproducibility after a certain amount was adsorbed, a different approach was also used to measure the isotherms for the four gases. In this approach, the temperature was regularly lowered or raised in approximately 5 K steps by keeping the coverage constant.

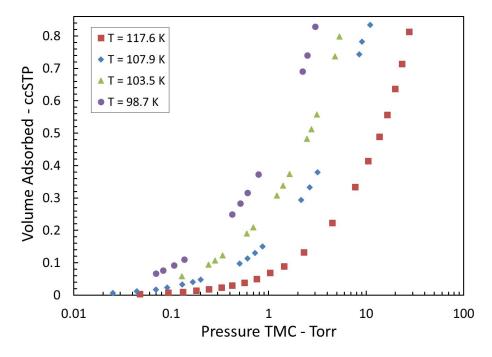
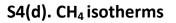


Figure S2. The N₂ adsorption isotherms on NU-1000 measured at the temperatures indicated in the inset. Only the data above 0.01 Torr and 98 K were used to calculate Q_{st} versus coverage.



S4(b). CO isotherms

Figure S3. The CO adsorption isotherms on NU-1000 measured at the temperatures indicated in the inset.

Figure S4. The Ar adsorption isotherms on NU-1000 measured at the temperatures indicated in the inset.

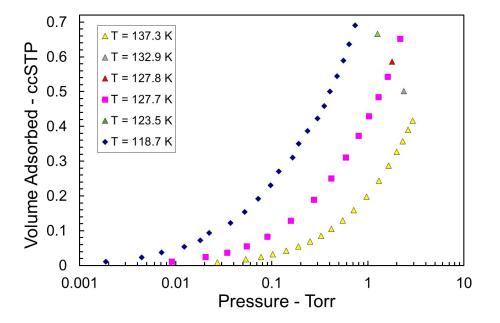


Figure S5. The CH_4 adsorption isotherms on NU-1000 measured at the temperatures indicated in the inset.