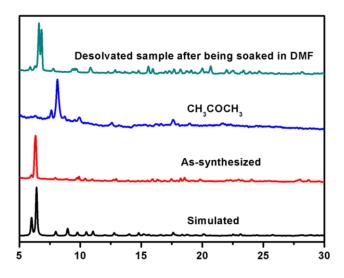
Supplementary Information

A Flexible and Stable Interpenetrated Indium-Pyridylcarboxylate Framework with Breathing Behaviours and High Selective


Adsorption of Cationic Dyes

Bin Zhang,^{*a,b*} Qian-Qian Chu,^{*b*} Ke-Fen Yue, ^{**a} Shi-Hui Zhang,^{*a*} Bo Liu^{**b} and Yao-Yu Wang^{*a*}

a. Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China. E-mail: ykflyy@nwu.edu.cn

b. College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P.

R. China. E-mail: chemliubo@nwsuaf.edu.cn

Figure S1. PXRD patterns of **1** simulated from the X-ray single-crystal structure, assynthesized, desolvated sample and desolvated sample after being soaked in water of **1**.

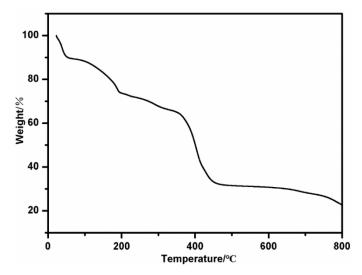
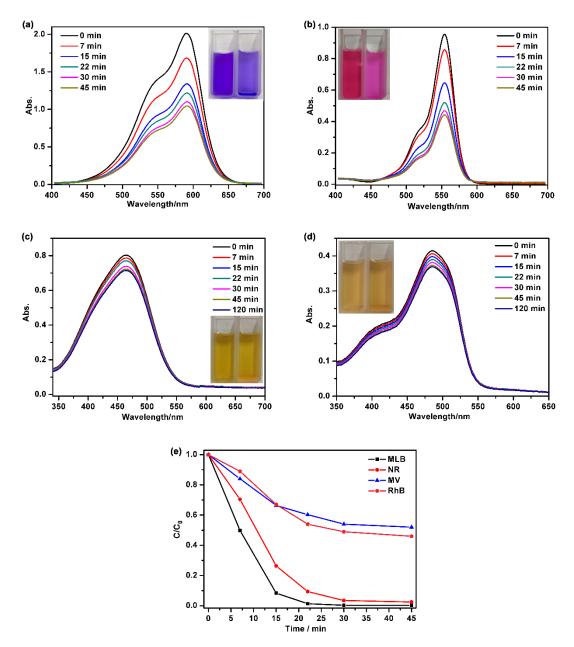



Figure S2. TGA plots of 1 under N_2 environment.

Figure S3. UV-vis spectra of MV (a), RhB (b), MO (c) and OrII (d) in aqueous solutions at different time; (e) the adsorption rate of MLB, NR, MV and RhB in **1**.

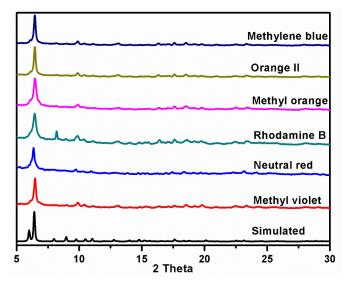
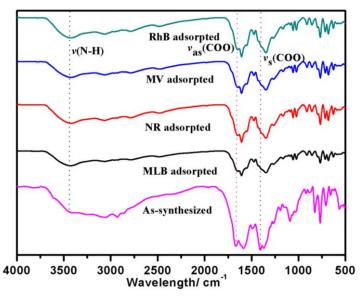



Figure S4. The PXRD patterns of 1 after immersing in different organic dyes.

Figure S5. FT-IR spectra of **1** at the as-synthesized, MLB, NR, MV and RhB adsorbed states.

Computational methods

Based on the density functional theory (DFT), we chose the Vienna Ab-initio Simulation Package (VASP) package for first-principle calculations. The generalized gradient approximation (GGA) with the Perdew– Burke–Ernzerhof (PBE) functional were used to describe the electronic exchange and correlation effects. Uniform Gcentered k-points meshes with a resolution of 2π *0.03 Å⁻¹ and Methfessel-Paxton electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization. The simulation was run with a cutoff energy of 500 eV throughout the computations. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å⁻¹ and the total stress tensor was within 0.01 GPa of the target value. The adsorption energy of molecule on MOF surface ($\Delta E_{adsorption}$) was defined as

 $\Delta E_{\text{adsorption}} = E_{\text{MOF+dye}} - E_{\text{MOF-}}E_{\text{dye}}$

where $E_{\text{MOF+dye}}$, E_{MOF} and E_{dye} stand for the ground-state energies of the substrate binding with molecules.

Dyes	1	2	3	4	5	Average (mg/g)
MLB	415	412	408	400	418	410
NR	200	200	210	205	198	202

Table S1 The maximum adsorption amounts for MLB and NR on 1, based on the data of different initial concentrations experiments.

Adsorbent	Q _e (mg/g)	Solvent	Ref.
CTS-g-PAA/10% VMT	1685.6	Water	1
MIL-100(Fe)	1105	Water	2
[Ca(HDCPP) ₂ (H ₂ O) ₂](DMF) _{1.5}	952	Water	3
ZJU-24	902	Water	4
H ₃ PW ₁₂ O ₄₀ @ZIF-8	810	Water	5
MIL-100(Cr)	645	Water	6
PAC2	588	Water	7
1	410	Water	This work
Cd-MOF (2)	318	Water	8
JLU-Liu39	308	C ₂ H ₅ OH	9
Sr-BTTC	270	DMA	10
MOF-235	187	Water	11

 Table S2 Comparison of maximum adsorption amounts for MLB on various adsorbents.

Dyes	Charge	Dimensions (Å)	Molecular structure
Methylene blue	+1	1.8×5.5×14.2	
Neutral red	+1	2.3×6.4×12.6	A A A A A A A A A A A A A A A A A A A
Methyl violet	+1	3.5×13.0×13.7	A CONTRACTOR
Rhodamine B	+1	15.6×13.5×4.2	
Methyl orange	-1	4.5×6.0×14.8	
Orange II	-1	13.5×7.2×2.8	

Reference

- Liu, Y.; Zheng, Y.; Wang, A. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. *J. Environ. Sci.* 2010, 22, 486–493.
- Tan, F.; Liu, M.; Li, K.; Wang, Y.; Wang, J.; Guo, X.; Zhang, G.; Song, C. Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. *Chem. Eng. J.* 2015, 281, 360–367.
- 3. Hou, Y.; Sun, J.; Zhang, D.; Qi, D.; Jiang, J. Porphyrin–Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue. *Chem. Eur. J.* **2016**, *22*, 6345–6352.
- 4. Zhang, Q.; Yu, J.; Cai, J.; Song, R.; Cui, Y.; Yang, Y.; Chen, B.; Qian, G. A porous metal-organic framework with -COOH groups for highly efficient pollutant removal. *Chem. Commun.* **2014**, *50*, 14455–14458.
- Li, R.; Ren, X.; Zhao, J.; Feng, X.; Jiang, X.; Fan, X.; Lin, Z.; Li, X.; Hu, C.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. *J. Mater. Chem. A* 2014, *2*, 2168– 2173.
- Tong, M.; Liu, D.; Yang, Q.; Devautour-vinot, S.; Maurin, G.; Zhong, C. Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. *J. Mater. Chem. A.* 2013, *1*, 8534–8537.
- 7. Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of basic dyes from aqueous solution onto activated carbons. *Chem. Eng. J.* **2008**, *135*, 174–184.
- Yi, F.-Y.; Li, J.-P.; Wu, D.; Sun, Z.-M. A Series of Multifunctional Metal–Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. *Chem. Eur. J.* 2015, 21, 11475–11482.
- Yao, S.; Xu, T.; Zhao, N.; Zhang, L.; Huo, Q.; Liu, Y. An anionic metal–organic framework with ternary building units for rapid and selective adsorption of dyes. *Dalton Trans.* 2017, 46, 3332–3337.
- 10. Shen, Y.; Fan, C.-C.; Wei, Y.-Z.; Du, J.; Zhu, H.-B.; Zhao, Y. An anionic zeolitelike metal–organic framework (AZMOF) with a Moravia network for organic dye absorption through cation-exchange. *Dalton Trans.* **2016**, *45*, 10909–10915.
- 11. Haque, E.; Jun, J. W.; Jhung, S. H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). *J. Hazard. Mater.* **2011**, *185*, 507–511.