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Figure S1. PXRD patterns of 1 simulated from the X-ray single-crystal structure, as-

synthesized, desolvated sample and desolvated sample after being soaked in water of 1. 

 

 

 

 

 

 

Figure S2. TGA plots of 1 under N2 environment. 

 

 

 

 

 

 



 

Figure S3. UV-vis spectra of MV (a), RhB (b), MO (c) and OrII (d) in aqueous solutions 

at different time; (e) the adsorption rate of MLB, NR, MV and RhB in 1. 



 
Figure S4. The PXRD patterns of 1 after immersing in different organic dyes. 

 

 

 

 

 

 

Figure S5. FT-IR spectra of 1 at the as-synthesized, MLB, NR, MV and RhB adsorbed 

states. 

 

 

 

 



Computational methods  

Based on the density functional theory (DFT), we chose the Vienna Ab-initio 

Simulation Package (VASP) package for first-principle calculations. The generalized 

gradient approximation (GGA) with the Perdew− Burke−Ernzerhof (PBE) functional 

were used to describe the electronic exchange and correlation effects. Uniform G-

centered k-points meshes with a resolution of 2π*0.03 Å-1 and Methfessel-Paxton 

electronic smearing were adopted for the integration in the Brillouin zone for geometric 

optimization. The simulation was run with a cutoff energy of 500 eV throughout the 

computations. These settings ensure convergence of the total energies to within 1 meV 

per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV 

Å-1 and the total stress tensor was within 0.01 GPa of the target value. The adsorption 

energy of molecule on MOF surface (ΔEadsorption) was defined as 

ΔEadsorption = EMOF+dye – EMOF-Edye 

where EMOF+dye, EMOF and Edye stand for the ground-state energies of the substrate 

binding with molecules. 

 

 

 

Table S1 The maximum adsorption amounts for MLB and NR on 1, based on the data 

of different initial concentrations experiments. 

 

Dyes 1 2 3 4 5 
Average 

(mg/g) 

MLB 415 412 408 400 418 410 

NR 200 200 210 205 198 202 

 

  



Table S2 Comparison of maximum adsorption amounts for MLB on various adsorbents. 

 

Adsorbent Qe(mg/g) Solvent Ref. 

CTS-g-PAA/10% VMT 1685.6 Water 1 

MIL-100(Fe) 1105 Water 2 

[Ca(HDCPP)2(H2O)2](DMF)1.5 952 Water 3 

ZJU-24 902 Water 4 

H3PW12O40@ZIF-8 810 Water 5 

MIL-100(Cr) 645 Water 6 

PAC2 588 Water 7 

1  410 Water This work 

Cd-MOF (2) 318 Water 8 

JLU-Liu39 308 C2H5OH 9 

Sr-BTTC 270 DMA 10 

MOF-235 187 Water 11 

 

  



Table S3 Molecular parameters of the dyes 

 

Dyes Charge 
Dimensions 

(Å) 
Molecular structure 

Methylene 

blue 

+1 1.8×5.5×14.2 

 

Neutral red +1 2.3×6.4×12.6 

 

Methyl 

violet 
+1 3.5×13.0×13.7 

 

Rhodamine 

B 

+1 15.6×13.5×4.2 

 

Methyl 

orange 

-1 4.5×6.0×14.8 

 

Orange II -1 13.5×7.2×2.8 
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