Supplementary Information File ## RIFAMPICIN NANOFORMULATION ENHANCES TREATMENT OF TUBERCULOSIS IN ZEBRAFISH Jiří Trousil^{1, 2}*, Zdeňka Syrová³, Nils-Jørgen Knudsen Dal⁴, Dmytro Rak⁵, Rafał Konefał¹, Ewa Pavlova¹, Jana Matějková⁶, Dušan Cmarko³, Pavla Kubíčková⁷, Oto Pavliš⁷, Tomáš Urbánek¹, Marián Sedlák⁵, Federico Fenaroli⁴, Ivan Raška³, Petr Štěpánek¹, Martin Hrubý¹* ¹ Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic ² Department of Analytical Chemistry, Charles University, Faculty of Science, Hlavova 8, 128 43 Prague 2, Czech Republic ³ Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic ⁴ Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway ⁵ Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia ⁶ Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic ⁷ Center of Biological Defense, Military Health Institute, Military Medical Agency, 561 66 Těchonín, Czech Republic ^{*} Corresponding authors: M.H. (mhruby@centrum.cz), J.T. (jiri.trousil@centrum.cz) **Figure S1.** Physico-chemical characterization of prepared MPEO-*b*-PCL copolymers. (**A**) Typical ¹H NMR spectrum. Sample MPEO₄₄-*b*-PCL₁₈ (**P1**) is shown. (**B**) GPC curves of prepared copolymers (**P1**, MPEO₄₄-*b*-PCL₁₈; **P2**, MPEO₄₄-*b*-PCL₂₇; **P3**, MPEO₄₄-*b*-PCL₈₁; **P4**, MPEO₁₁₃-*b*-PCL₃₃; **P5**, MPEO₁₁₃-*b*-PCL₁₁₃). (**C**) Normalized absorption spectra of DACCA-labelled copolymers (**P1**-**P5**) and free DACCA in DMSO. (**D**) Normalized fluorescence emission spectra of DACCA-labelled copolymers (**P1**-**P5**) in DMSO (excited at 420 nm). Table SI. Chemical and molecular weight characterization of MPEO-b-PCL copolymers and DACCA content determination. | Copolymer (No.) | ¹ H NMR
M _n | GPC ^b Mw | $M_{ m n}$ | $oldsymbol{\mathcal{D}}^{\mathrm{c}}$ | CAC ^d
(μg/mL) | DACCA ^e (μg/mg) | |---|--------------------------------------|---------------------|------------|---------------------------------------|-----------------------------|----------------------------| | MPEO ₄₄ - <i>b</i> -PCL ₁₈ ^a (P1) | 4 000 | 6 400 | 5 500 | 1.17 | 8.7 | 51 | | MPEO ₄₄ - <i>b</i> -PCL ₂₇ (P2) | 5 000 | 6 700 | 5 400 | 1.23 | 5.1 | 46 | | MPEO ₄₄ - <i>b</i> -PCL ₈₁ (P3) | 11 200 | 18 300 | 15 200 | 1.21 | 9.1 | 20 | | MPEO ₁₁₃ - <i>b</i> -PCL ₃₃ (P4) | 8 800 | 8 300 | 7 200 | 1.16 | 17.7 | 26 | | MPEO ₁₁₃ - <i>b</i> -PCL ₁₁₃ (P5) | 17 900 | 19 200 | 16 000 | 1.19 | 8.7 | 12 | ^a Subscript means the repeating units of the block polymer calculated by ¹H NMR. ^b Values were determined by GPC calibrated with polystyrene standards. ^c Dispersity, $M_{\rm w}/M_{\rm n}$ ^d Critical aggregation concentrations were determined at room temperature in water. ^e When DACCA-labelled copolymers were used, the content of DACCA was determined by way of UV/VIS spectroscopy. Figure S2. CAC curves found for (A) P1, (B) P2, (C) P3, (D) P4, and (E) P5 copolymers using Nile red as a fluorescent probe. Relative fluorescence intensities at 650 nm as a function of the concentration of MPEO-b-PCL NPs are shown. **Figure S3.** Results from AFFFF analysis of chosen MPEO-b-PCL formulation. MPEO₄₄-b-PCL₈₁-related elugrams with associated molar mass (**A**) and diameter of gyration (**B**); corresponding size (**C**) and molar mass (**D**) volume-weighted distribution functions. $\textbf{Figure S4.} \ Cryo\text{-}TEM \ image \ of \ blank \ NPs \ based \ on \ MPEO_{44}\text{-}\textit{b-}PCL_{18} \ (\textbf{P1}). \ Scale \ bar: \ 100 \ nm.$ **Figure S5.** Cryo-TEM image of RIF-loaded NPs based on MPEO₄₄-*b*-PCL₁₈ (**P1-RIF**). Scale bar: 100 nm. **Figure S6.** Comparison of volume weighted size distributions of nanoparticles measured with AFFFF method on the freshly prepared **P2** sample (MPEO₄₄-*b*-PCL₂₇, gray curve) and on the same sample after 2 months of aging (red curve). **Figure S7.** ¹H NMR spectra measured in deuterated PBS at 37°C. (**A**) Reaction of lipase-catalyzed degradation of MPEO-*b*-PCL matrix. (**B**) MPEO₄₄-*b*-PCL₂₇ NPs (**P2**) before lipase addition. (**C**) MPEO₄₄-*b*-PCL₂₇ NPs (**P2**) after lipase addition (2 minutes). (**D**) MPEO₄₄-*b*-PCL₂₇ NPs (**P2**) after lipase addition (20 minutes). (**E**) Neat 6-hydroxyhexanoic acid. **Figure S8.** RIF release studied by a common dialysis-based method without and in the presence of bacterial lipase. **Figure S9.** Time-kill curves of *M. fortuitum* exposed to both free RIF (**A**) and **P4**-based NPs loaded with RIF (**B**) in concentrations ranging from $1 \times MIC$ to $16 \times MIC$ estimated for the free RIF (i.e., $8 \mu g/mL$). Table SII. Cytotoxicity of RIF-loaded NPs in Raw 264.7 macrophages and ZF4 fibroblasts. | Formulation
(Copolymer used) | Cytotoxicity estimate
Raw 264.7 (24 h) ^a | ZF4 (48 h) ° | | |---|--|-------------------|------------------| | P1-RIF
(MPEO ₄₄ -b-PCL ₁₈) | 130.8 ± 4.1 | _d | _ | | P2-RIF
(MPEO ₄₄ -b-PCL ₂₇) | 110.1 ± 11.9 | _ | _ | | P3-RIF
(MPEO ₄₄ -b-PCL ₈₁) | 114.4 ± 12.6 | _ | _ | | P4-RIF (MPEO ₁₁₃ - <i>b</i> -PCL ₃₃) | 91.0 ± 2.5 | 245.6 ± 17.1 | 290.7 ± 24.3 | | P5-RIF (MPEO ₁₁₃ - <i>b</i> -PCL ₁₁₃) | 93.8 ± 6.6 | _ | _ | | RIF
(Free drug) | 295.9 ± 0.7 | 881.4 ± 199.2 | 391.3 ± 49.1 | ^a Raw 264.7 cells cytotoxicity detected by MTT assay after 24 h. ^a ZF4 cells cytotoxicity detected by MTT assay after 24 h. ^c ZF4 cells cytotoxicity detected by MTT assay after 48 h. ^d Not estimated. **Table SIII.** Results from the bio-relevant characterization. | Formulation
(Copolymer used) | Internalization half-live (min) | Intracellular degradation half-live (min) | |---|---------------------------------|---| | P1 (MPEO ₄₄ - <i>b</i> -PCL ₁₈) | 21.0 | 51.6 | | P2 (MPEO ₄₄ - <i>b</i> -PCL ₂₇) | 6.2 | 1,200 | | P3 (MPEO ₄₄ - <i>b</i> -PCL ₈₁) | 11.4 | 90.0 | | P4 (MPEO ₁₁₃ - <i>b</i> -PCL ₃₃) | 2.4 | 1,200 | | P5 (MPEO ₁₁₃ - <i>b</i> -PCL ₁₁₃) | 9.4 | 91.2 | **Figure S10.** Image from confocal laser scanning microscopy of Raw 264.7 cells after infection by DsRed-expressing *M. bovis* BCG (red channel) and one day of treatment with MPEO₁₁₃-b-PCL₃₃-DACCA NPs (**P4**, blue channel). Note the increased NPs-related signal within the location of mycobacteria persistence (white arrows). Scale bar: 10 μ m. **Figure S11.** ZF4 cells viability detected by MTT assay. Cells were incubated with different concentrations of RIF-free MPEO₁₁₃-*b*-PCL₃₃ (**P4**) NPs, RIF-loaded **P4** NPs (NPs-RIF) and free RIF for 24 h (**A**) and 48 h (**B**). The horizontal lines in the panels indicate a cell viability level where data above is considered non-cytotoxic and below cytotoxic.