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The notation in this supplementary text follows the notation in the main text. 

S1. Optimal Relative PCAs via Average-Covariance Sub-Spacing  

Let 𝒙 = (𝑥1…𝑥𝑑  )
𝑇 be a d-dimensional continuous random variable with two samples from two 

macroscopic states that will be labeled (a) and (b). RPCA aims at finding  𝑘  latent canonical variables 𝒚 =

(𝑦1, 𝑦2…𝑦𝑘  )
𝑇 = 𝑓(𝒙) which satisfy:  

 

max𝐷𝑘𝑙(𝑦𝑖 = 𝑓(𝒙); 𝑎: 𝑏) 

𝐷𝑘𝑙(𝒚 = (𝑦1, 𝑦2…𝑦𝑘  )
𝑇; 𝑎: 𝑏) =∑𝐷𝑘𝑙(𝑦𝑖; 𝑎: 𝑏)

𝑘

𝑖=1

 
(1.1) 

Under the model assumption of normality (see the main text), the KL divergence of a normally distributed 

variable 𝑦𝑖 = 𝒈𝑖
𝑇𝒙 is given by: 

 

𝐷𝑘𝑙(𝑦𝑖 = 𝒈𝑖
𝑇𝒙; 𝑎: 𝑏) =

1

2 [
− ln

𝒈𝑖
𝑻𝑺𝒃𝒈𝑖

𝒈𝑖
𝑻𝑺𝒂𝒈𝑖

+
𝒈𝑖
𝑻𝑺𝒃𝒈𝑖

𝒈𝑖
𝑻𝑺𝒂𝒈𝑖

− 1
⏟                  

Variance change 

+
𝒈𝑖
𝑻∆∆𝑇𝒈𝑖

𝒈𝑖
𝑻𝑺𝒂𝒈𝑖

 
⏟      
Average change

]
 

𝜆𝑖 =
𝒈𝑖
𝑻𝑺𝒃𝒈𝑖

𝒈𝑖
𝑻𝑺𝒂𝒈𝑖

 

(1.2) 

Kullback emphasized that the generalized eigenvectors and eigenvalues obtained by the simultaneous 

diagonalization algorithm are stationary points when maximizing the first term of the right-hand side of 

equation (1.2), which accounts for the contribution to the KL divergence due to variance change 1. The total 

KL divergence of the variables 𝑦𝑖  is not maximum at these points, due to the additional contributions from 

the second term of the right-hand side of equation (1.2), when ∆≠ 𝟎. One way of avoiding this problem is 

finding a transformation matrix 𝑮 = [𝒈𝜇 𝑮𝒗] such that the KL divergence of the variable 𝑦𝜇 = 𝒈𝜇
𝑇𝒙 

comprises the contribution to the KL divergence due to the second term (the change of the average), while 

the simultaneous diagonalization algorithm can be used to obtain the optimal variables 𝒚𝒗 = 𝑮𝑣
𝑇𝒙 because 

the corresponding second term of equation (1.2) is zero (𝒈𝑖≠𝜇
𝑇 ∆= 0).  

Optimal relative principle component with respect to KL divergence due to the change of the 

average (𝒚𝝁 = 𝒈𝝁
𝑻𝒙) 

In case of nonsingular 𝑺𝒂, the KL divergence of the projection on the vector 𝑺𝒂
−𝟏∆ , is known to collect the 

total contributions to the divergence due to the average change 1. Now, we will show that the solution in 

the general case (e.g. singular matrix 𝑺𝒂) can be performed analogously using the generalized inverse 𝑺𝒂
− 

(see below) instead of 𝑺𝒂
−𝟏. 

Maximizing 𝒈𝑖
𝑻∆∆𝑇𝒈𝑖 𝒈𝑖

𝑻𝑺𝒂𝒈𝑖⁄  (the contribution due to the change of the averages) from equation (1.2) 

with respect to 𝒈𝑖 yields the required solution: 
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 𝒈𝜇 = argmax  
𝒈𝑖 ∈ ℝ

𝑑×1

𝒈𝑖
𝑻∆∆𝑻𝒈𝑖

𝒈𝑖
𝑻𝑺𝒂𝒈𝑖

 
(1.3) 

This maximization becomes much simpler if we first whiten the data 2 using the transformation matrix 𝑾 

(see the main text). The new variable 𝒙 → 𝑾𝑻𝒙 has a covariance matrix at state a which is the identity 

matrix (𝑾𝑻𝑺𝒂𝑾 = 𝑰) and the maximization problem above is turned into maximizing the term: 

 𝒒𝜇 = argmax  
𝒒𝑖 ∈ ℝ

𝑘×1

𝒒𝑖
𝑻𝑾𝑻∆∆𝑇𝑾𝒒𝑖

𝒒𝑖
𝑻𝑾𝑻𝑺𝒂𝑾⏟    

𝑰

𝒒𝑖
= argmax  

𝒒𝑖 ∈ ℝ
𝑘×1

𝒒𝑖
𝑻𝑾𝑻∆∆𝑇𝑾𝒒𝑖

𝒒𝑖
𝑻𝒒𝑖

 
(1.4) 

with respect to the vector 𝒒𝑖. The final solution 𝒈𝜇 is the product 𝒈𝜇 = 𝑾𝒒𝜇. The solutions 𝒒𝜇  which 

maximize the quadratic term in (1.4) are known to be the eigenvectors of the matrix 3 𝑾𝑻∆∆𝑇𝑾. Indeed, 

there is only one eigenvector with non-zero eigenvalue, because the rank of the matrix is 1 (∆∆𝑇 is formed 

from a vector). Moreover, the eigenvalues of 𝑾𝑻∆∆𝑇𝑾 are the same as the eigenvalue 4 of ∆𝑇𝑾𝑾𝑻∆=

∆𝑇𝑺𝒂
−∆ (a scalar) and it is easy to check (see also Mardia5; p. 468) that the corresponding eigenvector is: 

 𝒒𝜇 = 𝑾
𝑻∆ 

(1.5) 

The generalized eigenvector is the product 𝑾𝑾𝑻∆ normalized with respect to the covariance matrix 𝑺𝒂: 

 

𝒈𝜇 =
𝑺𝒂
−∆

√(𝑺𝒂
−∆)𝑻𝑺𝒂(𝑺𝒂

−∆)
=  

𝑺𝒂
−∆

√
∆𝑻 𝑺𝒂

−𝑺𝒂𝑺𝒂
−⏟    

𝑺𝒂
−

∆

=
𝑺𝒂
−∆

√∆𝑻𝑺𝒂
−∆

 

𝑾𝑾𝑻 = 𝑼𝑘𝑫𝑘
−1/2 

𝑫𝑘
−1/2 

𝑼𝑘
𝑇 = 𝑼𝑘𝑫𝑘

−1 𝑼𝑘
𝑇 = 𝑺𝒂

− 

(1.6) 

The normality with respect to 𝑺𝒂 ( 𝒈𝜇
𝑻𝑺𝒂𝒈𝜇 = 1) is required for the simultaneous diagonalization (see 

below). The KL divergence due to the change of the mean along this vector is given by half of the 

Mahalanobis distance: 

 
1

2
𝒈𝜇
𝑻∆∆𝑇𝒈𝜇 =

∆𝑻𝑺𝒂
−∆∆𝑇𝑺𝒂

−∆

2∆𝑻𝑺𝒂
−∆

=
1

2
∆𝑇𝑺𝒂

−∆ (1.7) 

The corresponding generalized eigenvalue is the variance of 𝑦𝜇 = 𝒈𝜇
𝑇𝒙 at the state b:  

 𝜆𝜇 = 𝒈𝜇
𝑻𝑺𝒃𝒈𝜇 (1.8) 

Optimal relative principle components which do not contribute to the change of the average (𝒚𝒗 =
𝑮𝒗
𝑻𝒙 )  

Given the vector 𝒈𝜇 which collects the total contributions to the divergence due to the change of the average 

(above), the remaining generalized eigenvectors 𝑮𝒗, which do not have contributions due to the change of 

the averages (i.e. they are orthogonal to the change of the average 𝒈𝑖≠𝜇
𝑇 ∆= 0), are computed to be orthogonal 

to the vector 𝒈𝜇 with respect to the matrices 𝑺𝒂 and 𝑺𝒃 so that the KL divergences of their corresponding 
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variables 𝑦𝑖 are additive to the KL divergence of 𝑦𝑚 (see the main text). The conditions for 𝑮𝒗 to fulfill the 

restricted simultaneous diagonalization problem can be presented in the equations: 

 𝑮𝑻𝑺𝒂𝑮 = [
𝒈𝜇
𝑻

𝑮𝒗
𝑻
] 𝑺𝒂[𝒈𝜇 𝑮𝒗] = [

𝒈𝜇
𝑻𝑺𝒂𝒈𝜇 𝒈𝜇

𝑻𝑺𝒂𝑮𝒗

𝑮𝒗
𝑻𝑺𝒂𝒈𝜇 𝑮𝒗

𝑻𝑺𝒂𝑮𝒗
] = 𝑰 (1.9) 

 𝑮𝑻𝑺𝒃𝑮 = [
𝒈𝜇
𝑻

𝑮𝒗
𝑻
] 𝑺𝒃[𝒈𝜇 𝑮𝒗] = [

𝒈𝜇
𝑻𝑺𝒃𝒈𝜇 𝒈𝜇

𝑻𝑺𝒃𝑮𝒗

𝑮𝒗
𝑻𝑺𝒃𝒈𝜇 𝑮𝒗

𝑻𝑺𝒃𝑮𝒗
] = [

𝜆𝜇 𝟎

𝟎 𝜦𝒗
] (1.10) 

                   𝑮𝒗
𝑻∆= 𝟎 (𝒈𝑖≠𝜇

𝑇 ∆= 0 ; 𝑮𝒗 is orthogonal to the change of the average). (1.11) 

The generalized eigenvectors 𝑮𝒗 can be constructed using a combination of two transformation matrices:  

 𝑮𝒗 = 𝑾𝒗𝑳𝒗 (1.12) 

The weighting transformation matrix 𝑾𝒗 is constructed here from the eigendecomposition of the projection 

of 𝑺𝒂 onto the subspace which is orthogonal to the vector 𝑺𝒂𝒈𝜇 (orthogonal to 𝒈𝜇 with respect to 𝑺𝒂). Let 

𝑷𝑺𝒂𝒈𝜇 be the projection matrix on the subspace which is spanned by the vector 𝑺𝒂𝒈𝜇. Now we can write 

𝑺𝒂 as the sum of its projection onto this subspace and its complement: 

 

𝑺𝒂 = 𝑷𝑺𝒂𝒈𝜇⏟  
proj.  matrix
on 𝑺𝒂𝒈𝜇 

𝑺𝒂 + 𝑷𝑪,𝑺𝒂𝒈𝜇⏟  
complement
proj.  matrix

𝑺𝒂 = 𝑺𝒂,𝒑 + 𝑺𝒂,𝒄⏟
𝑼𝑣𝑫𝑣𝑼𝑣

𝑇

   

𝑷𝑪,𝑺𝒂𝒈𝜇 = 𝑰 − 𝑷𝑺𝒂𝒈𝜇 

(1.13) 

It is important to notice that the matrix 𝑺𝒂,𝒄 is also symmetric and represents the covariance matrix of the 

projection 𝑷𝑪,𝑺𝒂𝒈𝜇𝒙 because COV(𝑷𝑪,𝑺𝒂𝒈𝜇𝒙) = 𝑷𝑪,𝑺𝒂𝒈𝜇𝑺𝒂𝑷𝑪,𝑺𝒂𝒈𝜇 = 𝑷𝑪,𝑺𝒂𝒈𝜇𝑺𝒂 = 𝑺𝒂,𝒄 (see reference 2, page 

169). The whitening transformation matrix 𝑾𝒗 of the matrix 𝑺𝒂,𝒄 is constructed from the 

eigendecomposition of 𝑺𝒂,𝒄 = 𝑼𝑣𝑫𝑣𝑼𝑣
𝑇: 

 𝑾𝒗 = 𝑼𝑣𝑫𝑣
−1 2⁄

 (1.14) 

Here, the eigenvectors in the columns of 𝑼𝑣 correspond to the nonzero eigenvalues in the diagonal matrix 

𝑫𝑣. Now we can show that 𝑾𝒗 whitens both of 𝑺𝒂,𝒄 and 𝑺𝒂: 

 

𝑾𝒗
𝑻𝑺𝒂,𝒄𝑾𝒗 = 𝑫𝑣

−1 2⁄ 𝑼𝑣
𝑇𝑺𝒂,𝒄𝑼𝑣⏟      
𝑫𝑣

𝑫𝑣
−1 2⁄ = 𝑰 

𝑾𝒗
𝑻𝑺𝒂𝑾𝒗 = 𝑾𝒗

𝑻(𝑺𝒂,𝒑 + 𝑺𝒂,𝒄)𝑾𝒗 = 𝑾𝒗
𝑻𝑺𝒂,𝒑𝑾𝒗⏟      

𝟎

+𝑾𝒗
𝑻𝑺𝒂,𝒄𝑾𝒗⏟      

𝑰

= 𝑰 

because 

𝑾𝒗
𝑻𝑺𝒂,𝒑𝑾𝒗 = 𝑫𝑣

−1 2⁄ 𝑼𝒗
𝑻𝑺𝒂,𝒑⏟  
=𝟎 

𝑼𝑣⊥ 𝑺𝒂,𝒑

𝑼𝑣𝑫𝑣
−1 2⁄ = 𝟎 

 

(1.15) 

We have 𝑼𝒗
𝑻𝑺𝒂𝒈𝜇 = 𝟎  because the columns of 𝑼𝑣 are orthogonal to the vector 𝑺𝒂𝒈𝜇. Thus, we can write: 
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𝑾𝒗
𝑻𝑺𝒂𝒈𝜇 = 𝑫𝑣

−1 2⁄ 𝑼𝒗
𝑻𝑺𝒂𝒈𝜇⏟    
𝟎

𝑼𝑣 ⊥(𝑺𝒂𝒈𝜇) 

= 𝟎 

(1.16) 

The second transformation 𝑳𝒗 can be obtained from the eigenvectors of the subspace of 𝑾𝒗
𝑻𝑺𝒃𝑾𝒗 which is 

orthogonal to the vector 𝑾𝒗
𝑻𝑺𝒃𝒈𝜇 : 

 
𝑳𝑽  ⊥ 𝑾𝒗

𝑻𝑺𝒃𝒈𝜇 ⟺ 𝑳𝑽
𝑻𝑾𝒗

𝑻𝑺𝒃𝒈𝜇 = 𝑮𝒗
𝑻𝑺𝒃𝒈𝜇 = 𝟎 

(1.17) 

Let 𝑷 be the projection matrix onto the subspace which is spanned by the vector 𝑾𝒗
𝑻𝑺𝒃𝒈𝜇 . Now we can 

write 𝑺𝒃 as the sum of its projection onto this subspace and its complement: 

 

𝑾𝒗
𝑻𝑺𝒃𝑾𝒗 = 𝑷𝑾𝒗

𝑻𝑺𝒃𝑾𝒗 + (𝑰 − 𝑷𝒄)⏟    
complement
proj.  matrix

𝑾𝒗
𝑻𝑺𝒃𝑾𝒗 = 𝑺𝒃,𝒑 + 𝑺𝒃,𝒄⏟

𝑳𝑽𝜦𝒗𝑳𝑽
𝑻

   

(1.18) 

From the eigendecomposition of 𝑺𝒃,𝒄 we have: 

 
𝑺𝒃,𝒄 = 𝑳𝑽𝜦𝒗𝑳𝑽

𝑻 ⇔ 𝑳𝑽
𝑻𝑺𝒃,𝒄𝑳𝑽 = 𝜦𝒗 

(1.19) 

 

𝑮𝒗
𝑻𝑺𝒃𝑮𝒗 = 𝑳𝑽

𝑻𝑾𝒗
𝑻𝑺𝒃𝑾𝒗𝑳𝑽 = 𝑳𝑽

𝑻 [𝑺𝒃,𝒑 + 𝑺𝒃,𝒄]⏟        
𝑾𝒗
𝑻𝑺𝒃𝑾𝒗

𝒆𝒒.  (1.18)

𝑳𝑽 = 𝑳𝑽
𝑻𝑺𝒃,𝒑𝑳𝑽⏟      

𝟎
𝑳𝑽 ⊥ 𝑺𝒃,𝒑 

+ 𝑳𝑽
𝑻𝑺𝒃,𝒄𝑳𝑽⏟    
𝜦𝒗

𝑒𝑞.(1.19)

= 𝜦𝒗 

(1.20) 

Now we can show that the conditions in (1.9) are satisfied: 

 

𝑮𝑻𝑺𝒂𝑮 = [
𝒈𝜇
𝑻

𝑮𝒗
𝑻
] 𝑺𝒂[𝒈𝜇 𝑮𝒗] = [

𝒈𝜇
𝑻𝑺𝒂𝒈𝒎⏟    
1

𝑒𝑞.(1.6) 

𝒈𝜇
𝑻𝑺𝒂𝑮𝒗

𝑮𝒗
𝑻𝑺𝒂𝒈𝜇 𝑮𝒗

𝑻𝑺𝒂𝑮𝒗

] 

=

[
 
 
 
 
 
 

1 𝒈𝜇
𝑻𝑺𝒂𝑾𝒗⏟      𝑳𝑽

𝟎
 𝑒𝑞.(1.16)

𝑳𝑽
𝑻𝑾𝒗

𝑻𝑺𝒂𝒈𝜇⏟      
𝟎

𝑒𝑞.(1.16)

𝑳𝑽
𝑻𝑾𝒗

𝑻𝑺𝒂𝑾𝒗⏟      
𝑰

𝑒𝑞.(1.15)

𝑳𝑽
𝑻𝑳𝑽=𝑰

𝑳𝑽

]
 
 
 
 
 
 

= 𝑰 

(1.21) 

The conditions in (1.10) are also satisfied: 

 𝑮𝑻𝑺𝒃𝑮 = [
𝒈𝜇
𝑻

𝑮𝒗
𝑻
] 𝑺𝒃[𝒈𝜇 𝑮𝒗] =

[
 
 
 
 
 
𝒈𝜇
𝑻𝑺𝒃𝒈𝜇⏟    
𝜆𝜇

𝑒𝑞.(1.8)

𝒈𝜇
𝑻𝑺𝒃𝑮𝒗⏟    
𝟎

𝑒𝑞.(1.17)

𝑮𝒗
𝑻𝑺𝒃𝒈𝜇⏟    
𝟎

𝑒𝑞.(1.17)

𝑮𝒗
𝑻𝑺𝒃𝑮𝒗⏟    
𝜦𝒗 

𝑒𝑞.(1.20) ]
 
 
 
 
 

= [
𝜆𝜇 𝟎

𝟎 𝜦𝒗
] (1.22) 

Finally, we show that the condition (1.11) is satisfied: 



Supporting Information: Page 6 of 13 
 

In case of nonsingular 𝑺𝒂 we directly obtain the condition from equation (1.16): 

 

𝑾𝒗
𝑻𝑺𝒂𝒈𝜇 = 𝟎 = 𝑾𝒗

𝑻𝑺𝒂𝑺𝒂
−𝟏∆= 𝑾𝒗

𝑻∆= 𝟎 

Consequently, we have  𝑳𝑽
𝑻𝑾𝒗

𝑻∆= 𝑮𝒗
𝑻∆= 𝟎          

(1.23) 

 For the general case, we can also start from equation (1.16) to show: 

 

𝑾𝒗
𝑻𝑺𝒂𝒈𝜇 = 𝟎 =  𝑾𝒗

𝑻𝑺𝒂𝑺𝒂
−∆=  𝑾𝒗

𝑻𝑼𝑘𝑫𝑘 𝑼𝒌
𝑻𝑼𝒌⏟  
𝑰

𝑫𝒌
−𝟏𝑼𝑘

𝑇∆=  𝑾𝒗
𝑻𝑼𝑘𝑫𝑘𝑫𝒌

−𝟏
⏟    

𝐼

𝑼𝑘
𝑇∆

=  𝑾𝒗
𝑻𝑼𝑘𝑼𝑘

𝑇∆⏟    
∆

=  𝑾𝒗
𝑻∆= 𝟎 

(1.24) 

Consequently, we have: 

 𝑳𝑽
𝑻𝑾𝒗

𝑻∆= 𝑮𝒗
𝑻∆= 𝟎 (1.25) 

Here, we have used the eigendecomposition of 𝑺𝒂 = 𝑼𝑘𝑫𝑘𝑼𝑘
𝑇 to write its pseudoinverse 𝑺𝒂

− = 𝑼𝑘𝑫𝑘
−1𝑼𝑘

𝑇. 

It is important to notice that 𝑼𝑘𝑼𝑘
𝑇∆= ∆, because  𝑼𝑘𝑼𝑘

𝑇 is an orthogonal projection matrix onto the (non-

null) subspace. Thus, the projection of the vector ∆ on this subspace is identical to ∆ (identical to the 

projection on the total space ∆= 𝑼𝑼𝑇∆): 

 ∆= 𝑼𝑼𝑇∆= [𝑼𝑘𝑼𝑘
𝑇 +𝑼0𝑼0

𝑇]∆= 𝑼𝑘𝑼𝑘
𝑇∆ + 𝑼0𝑼0

𝑇∆⏟    
𝟎

 (1.26) 
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S2. Data reconstruction from RPCAs 

The influence of the m-dimensional (𝑚 < 𝑑) latent variables 𝒚𝒎 = 𝑮𝒎
𝑻𝒙 on the original d-dimensional 

variable 𝒙 can be presented via reconstructing the original variable 𝒙̂ in the d-dimensional subspace which 

is spanned by the m generalized eigenvectors 𝑮𝒎 = [𝒈𝟏…𝒈𝒎] = 𝑼𝑘𝑫𝑘
−1 2⁄ 𝑳𝑚. The projection 𝒙̂ 

(reconstruction) of a data point 𝒙 on the subspace, which is spanned by columns of 𝑮𝒎, is given by: 

 

𝒙̂ = 𝑮𝒎(𝑮𝒎
𝑻𝑮𝒎)

−
𝑮𝒎
𝑻

⏟          
𝑷𝒎

𝒙 = 𝑮𝒎(𝑮𝒎
𝑻𝑮𝒎)

−
⏟        

𝑹

𝒚𝒎 

𝑹 = 𝑮𝑚(𝑮𝑚
𝑻𝑮𝑚)

−
 

(2.1) 

Here, 𝑷𝑚  ∈ ℝ
𝑑×𝑑  is the projection matrix 2 on the d-dimensional subspace which is spanned by columns 

of 𝑮𝑚. 𝑹 ∈ ℝ𝑑×𝑚  is the reconstruction matrix. It is already known (see reference 2, page 167) that 𝑹 =

𝑮𝑚(𝑮𝑚
𝑻𝑮𝑚)

−
is the generalized (pseudo) inverse of 𝑮𝑚

𝑻 = 𝑳𝑚
𝑻 𝑫𝑘

−1 2⁄  𝑼𝑘
𝑻. Moreover, it is easy to check that 

the generalized (pseudo) inverse of 𝑮𝒎
𝑻  (𝑹) is given by: 

 𝑹 = (𝑮𝒎
𝑻)
−
= 𝑼𝑘𝑫𝑘

𝟏 𝟐⁄ 𝑳𝑚 
(2.2) 

 

𝑳𝑚
𝑻 𝑫𝑘

−1 2⁄  𝑼𝑘
𝑻

⏟        
𝑮𝒎
𝑻

𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝒎⏟      
𝑹

𝑳𝒎
𝑻 𝑫𝑘

−1 2⁄  𝑼𝑘
𝑻

⏟        
𝑮𝒎
𝑻

= 𝑳𝑚
𝑻 𝑫𝑘

−1 2⁄  𝑼𝑘
𝑻

⏟        
𝑮𝒎
𝑻

 

𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝑚⏟      
𝑹

𝑳𝑚
𝑻 𝑫𝑘

−1 2⁄  𝑼𝑘
𝑻

⏟        
𝑮𝒎
𝑻

𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝑚⏟      
𝑹

= 𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝑚⏟      
𝑹

 
(2.3) 

KL divergence of the reconstructed variable 

The covariance matrices 𝑺𝒙̂|𝒂 and 𝑺𝒙̂|𝒃 of the reconstructed variable 𝒙̂ = 𝑹𝒚𝑚 at states a and b are 

respectively: 

 
𝑺𝒙̂|𝒂 = 𝑹𝑰𝑹

𝑻 = 𝑹𝑹𝑻 

𝑺𝒙̂|𝒃 = 𝑹𝜦𝑚𝑹
𝑻 

(2.4) 

Where 𝑰 ∈ ℝ𝑚×𝑚 and 𝜦𝑚  ∈ ℝ
𝑚×𝑚 are the covariance matrices of 𝒚𝒎 at states a and b, respectively. Now 

we can show that the transformation matrix 𝑮𝑚 = 𝑼𝑘𝑫𝑘
−1 2⁄ 𝐋𝑚 simultaneously diagonalizes 𝑺𝒙̂|𝒂 𝑺𝒙̂|𝒃 into 

the matrices 𝑰 and 𝜦𝑚 respectively: 

 

𝑮𝑚
𝑻 𝑺𝒙̂|𝒂𝑮𝑚 = 𝑳𝑚

𝑻 𝑫𝑘
−1 2⁄  𝑼𝑘

𝑻
⏟        

𝑮𝒎
𝑻

𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝑚⏟      
𝑹

𝑰 𝑳𝑚
𝑻 𝑫𝑘

1 2⁄ 𝑼𝑘
𝑻

⏟      
𝑹𝑻

𝑼𝑘𝑫𝑘
−1 2⁄ 𝑳𝑚⏟        
𝑮𝒎

= 𝑰 

𝑮𝒎
𝑻𝑺𝒙̂|𝒃𝑮𝒎 = 𝑳𝑚

𝑻 𝑫𝑘
−1 2⁄  𝑼𝑘

𝑻
⏟        

𝑮𝒎
𝑻

𝑼𝑘𝑫𝑘
1 2⁄ 𝑳𝑚⏟      
𝑹

𝜦𝑚 𝑳𝑚
𝑻 𝑫𝑘

1 2⁄ 𝑼𝑘
𝑻

⏟      
𝑹𝑻

𝑼𝑘𝑫𝑘
−1 2⁄ 𝑳𝑚⏟        
𝑮𝒎

= 𝜦𝑚. 
(2.5) 

Therefore, the KL divergence of the reconstructed variable 𝒙̂ is the same as the KL divergence of the 

corresponding latent variable 𝒚𝑚.  
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S3. Derivation of equations 3.18 and 3.19 

 

(𝑾𝑻(𝒙1 − 𝒙2))
𝑻
(𝑾𝑻(𝒙1 − 𝒙2)) = (𝒙1 − 𝒙2)

𝑻𝑾𝑾𝑻(𝒙1 − 𝒙2) = (𝒙1 − 𝒙2)
𝑻𝑺𝒂
−(𝒙1 − 𝒙2) 

= (𝒙1 − 𝒙2)
𝑻𝑾𝑾𝑻(𝒙1 − 𝒙2) = (𝒙1 − 𝒙2)

𝑻𝑾𝑳𝑳𝑻⏟
𝑰

𝑾𝑻(𝒙1 − 𝒙2) 

= (𝑮𝑻(𝒙1 − 𝒙2))
𝑻
(𝑮𝑻(𝒙1 − 𝒙2)) =∑[𝒈𝒊

𝑻(𝒙1 − 𝒙2)]
𝟐

𝒌

𝒊=𝟏

 

(3.1) 

 

 

⟨(𝒙 − 𝝁𝒂)
𝑻𝑺𝒂
−(𝒙 − 𝝁𝒂)⟩𝑏 = ⟨(𝑾

𝑻𝒙 −𝑾𝑻𝝁𝒂)
𝑻
(𝑾𝑻𝒙 −𝑾𝑻𝝁𝒂)⟩

𝑏
 

=  trace ⟨(𝑾𝑻𝒙 −𝑾𝑻𝝁𝒂)(𝑾
𝑻𝒙 −𝑾𝑻𝝁𝒂)

𝑻
⟩
𝑏

 

= trace ⟨(𝑾𝑻𝒙 −𝑾𝑻𝝁𝒃)(𝑾
𝑻𝒙 −𝑾𝑻𝝁𝒃)

𝑻
⟩
𝑏⏟                        

covariance matrix of
 whitened points of state b  

      

+ trace(𝑾𝑻𝝁𝒃 −𝑾
𝑻𝝁𝒂)(𝑾

𝑻𝝁𝒃 −𝑾
𝑻𝝁𝒂)

𝑻
 

= trace [𝑾𝑻⟨(𝒙 − 𝝁𝒃)(𝒙 − 𝝁𝒃)
𝑻⟩
𝑏
𝑾]+ trace(𝑾𝑻∆∆𝑻𝑾)⏟          

∆𝑻𝑾𝑾𝑻∆

 

= trace(𝑾𝑻𝑺𝒃𝑾)⏟          
∑𝜆𝑖

+ ∆𝑻𝑺𝒂
−∆⏟  

Mahalanobis 
distance

 

(3.2) 
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S4. Log density ratio as a sufficient statistic  

The relationship between the log density ratio and the perturbation is given by equation (2.1) in the main 

text:  

 ln
𝑃𝑏(𝒙)

𝑃𝑎(𝒙)
= ∆𝐹(𝑎 → 𝑏) − 𝑈𝑝(𝒙). (4.1) 

For a new macroscopic state 𝜆 (e.g. an intermediate state between a and b during the course of an alchemical 

free energy calculation  we obtain by using the log density ratio as a sufficient statistic 𝑇(𝒙) = ln
𝑃𝑏(𝒙)

𝑃𝑎(𝒙)
 in 

equation (2.5) of the cumulant generating function of the main text: 

 

𝜓(𝜆) = ln [∫𝑑𝒙𝑃𝑎(𝒙) exp(𝜆𝑇(𝒙))] 

= ln [∫𝑑𝒙𝑃𝑎(𝒙) exp (𝜆∆𝐹(𝑎 → 𝑏) − 𝜆𝑈𝑝(𝒙))] 

= 𝜆∆𝐹(𝑎 → 𝑏) + ln [∫𝑑𝒙𝑃𝑎(𝒙) exp (−𝜆𝑈𝑝(𝒙))]⏟                    
−∆𝐹(𝑎→𝜆)

 

= 𝜆∆𝐹(𝑎 → 𝑏) − ∆𝐹(𝑎 → 𝜆) 

(4.2) 

Therefore, using the log density ratio as a sufficient statistic turns the cumulant generating function into the 

relative free energy, 𝜓(𝜆) = 𝜆∆𝐹(𝑎 → 𝑏) − ∆𝐹(𝑎 → 𝜆). 
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S5. Details of Molecular Dynamics simulations 

The molecular dynamic simulations were started using the following X-ray structures for complexes of 

HIV-1 protease with different small molecule inhibitors:  

Protein-Ligand complex PDB code 

Wild-type HIV-1 Protease with Tipranavir  1D4Y 

Wild-type HIV-1 Protease with Saquinavir 3OXC  

HIV-1 mutant I50V with Saquinavir 3CYX   

The free (unbound) start structures of the protein were modelled based on the structures of the complexes 

and by removing the ligand and relaxing the protein via 10 ns of MD simulations. The simulations of the 

free structures and the complexes were run for 150 and 50 ns, respectively, using the Gromacs 4.6.5 

simulation package 6. The conformational data were collected every 1 ps. The force field Amber99sb 7 was 

used for the protein while the general Amber force field 8 was used for the ligands. Antechamber 9 was used 

to obtain the force-field parameters and AM1-BCC was used to determine the partial atomic charges for 

the ligands. The solvent was represented using the TIP3P water model 10. The systems were solvated in a 

rectangular box and the water extended at least 1.2 nm beyond the solute surface. Periodic boundary 

conditions were used. 500 steps of steepest-descent energy minimization followed by 1000 steps of 

conjugate gradient optimization were used to energetically minimize each system. The systems were then 

equilibrated using a 100 ps molecular dynamics simulation with harmonic position restraints using a force 

constant of 1000 kJ mol−1nm−2 for the heavy atoms in the solutes for each system. The production 

simulations were performed using a leap-frog integrator 11 and a time step of 2.0 fs. Simulations were 

performed in the isothermal-isobaric ensemble (1 atm and 300 K) by maintaining the temperature and the 

pressure through a Berendsen bath 12. The van-der-Waals interactions and short-range electrostatic 

interactions were computed using a cutoff of 1.2 nm. The long-range electrostatic interactions were 

computed using the particle-mesh Ewald method 13. 

S6. Supplementary Movies 

Movie representation of the enhanced and restricted conformational fluctuations of HIV-1 protease upon 

binding the inhibitor Tipranavir which are presented in figure 5 of the main text. The conformations are 

reconstructed around the average conformation from the 33-dimensional latent variable; see equation (3.18) 

of the main text. The latent variable is interpolated around its average along the selected generalized 

eigenvectors. The conformation of the ligand is taken from the experimental structure.  

Files “increased_top.mpg” and “increased_side.mpg” show, respectively, top and side views of the 

enhanced conformational fluctuations around the average structure of the bound state along the 33 

eigenvectors with the highest generalized eigenvalues (𝜆𝑖 > 10).  

Files “decreased_top.mpg” and “decreased_side.mpg” show, respectively, top and side views of the highly 

restricted conformational fluctuations upon association to the ligand. Conformational fluctuations are 

represented around the average structure of the free state along the 33 eigenvectors with the smallest 

generalized eigenvalues. These latter fluctuations are highly restricted upon the association (𝜆𝑖< 0.009).  
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S7. Example of the performance of GPA for superimposing the conformations from an 

MD ensemble  

GPA rotates and translates the rigid conformations in an ensemble such as to minimize the sum of squared 

distances between all pairs of conformations in the ensemble. GPA performs the following steps:  

1. Choose an arbitrary conformation from the ensemble as the reference.  

2. Superimpose each of the conformations in the ensemble to the reference by rotating and translating 

the conformation such as to minimize the squared distance between the conformation and the 

reference. 

3. Compute the average conformation of the resulting ensemble and use it as a new reference  

4. Repeat steps 2 and 3 until the convergence of the average conformation (the average structure). 

 The table below shows an example of applying GPA fitting to superimpose the snapshots from an MD 

simulation of the complex between wild-type HIV-1 protease and tipranavir. The algorithm converged after 

three cycles when an RMSD threshold of 0.00001 Å was used. Using the GPA average structure as a 

reference for superimposing the conformations results in around 30% reduction of the average RMSD 

between the conformations and the reference when compared to using the starting MD structure as a 

reference for superimposing the conformations.   

  

Iteration RMSD (Å) between the new (computed) 

average structure and the reference 

structure 

Average RMSD (Å) between the 

conformations and the reference  

1 1.340040 1.870725 

2 0.000234 1.310567 

3 0.000008 1.310567 
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S8. Supplementary figure SF1 

 

Figure S1. Conformational interaction map between the residues of HIV-1 protease upon binding its 

inhibitor Tipranavir. The contributions are concentrated around the diagonal elements indicating the 

important local conformational changes and the propagation of the conformational changes through the 

neighbor residues.  
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