Supporting Information

Size-controlled Preparation of Micro-sized Perfluorocarbon Emulsions as Oxygen Carriers via SPG Membrane Emulsification Technique

Xiaoting Fu⁺, Seiichi Ohta[‡], Masamichi Kamihira[§], Yasuyuki Sakai⁺, Taichi Ito^{*}[†][‡]

 †Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
 ‡Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
 §Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

* E-mail: taichi@m.u-tokyo.ac.jp

Table of Contents:	Page
Figure S1	S2
Figure S2	S3
Figure S3	S4
Table S1 and Table S2	S5
Figure S4	S6
Table S3	S7
Figure S5	S8
Figure S6	S9
Figure S7	S10
Figure S8	S11

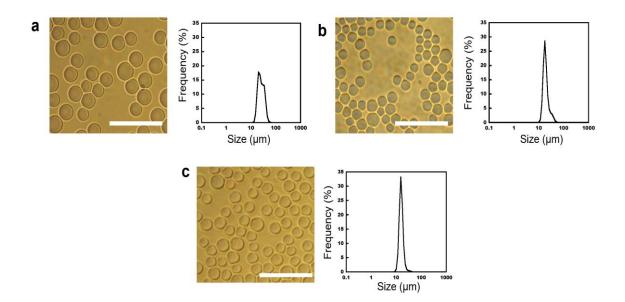


Figure S1. Optical pictures and size distributions of FDC emulsions prepared via SPG

membrane with pore size of (a) 5 μm (b) 4 μm (c) 3 $\mu m.$ Scale bars: 50 μm

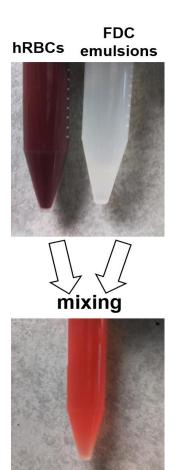


Figure S2. Mixing FDC emulsions with hRBCs

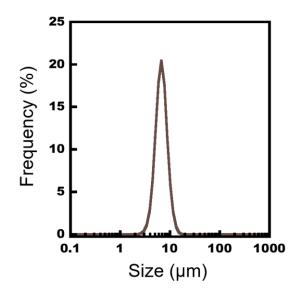


Figure S3. Size distribution of hRBCs measured using laser diffraction.

Subject	P(0.2%)	P (2%)
F127/P103	0.0003	0.1
F68/P85	0.0002	0.7
F127/F68	0.2	<0.0001
F127/P85	< 0.0001	< 0.0001
F68/P103	0.0002	<0.0001
P85/P103	0.1	< 0.0001

Table S1 Statistical analysis for different Pluronics at certain concentration

Table S2 Statistical analysis for certain Pluronics between different concentrations

Pluronics	Р
F127	< 0.0001
F68	< 0.0001
P85	0.002
P103	< 0.0001

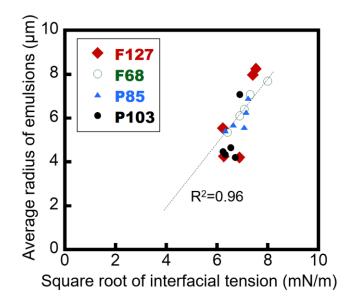
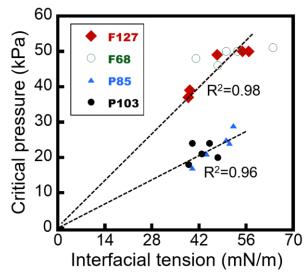
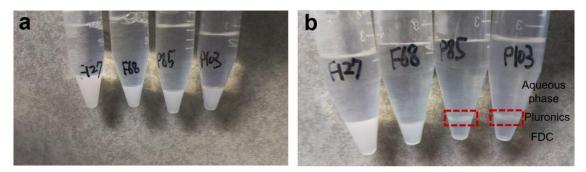
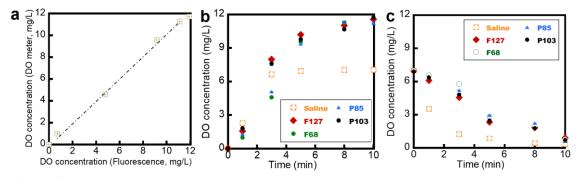



Figure S4. Relationship between the radius of emulsions and square root of the interfacial


tension.

Diumonio	Concentration of Pluronic in saline				
Pluronic	0.2%	0.5%	1%	2%	3%
F127	50	50	49	39	37
F68	51	50	50	46	48
P85	29	24	25	21	17
P103	20	24	21	24	18


Table S3 Critical pressures used to produce FDC emulsions with different Pluronics and their concentrations (kPa).

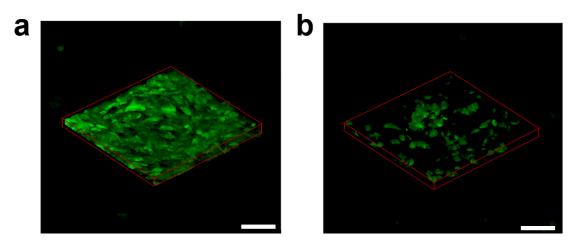

Figure S5. Relationship between the critical pressures and interfacial tensions. Dotted lines show the fitting lines based on eq 3 in the main text. Based on the catalogue-reported value of the membrane pore size, $R_p = 1.0 \mu m$, θ was estimated to be 63° for F127-F68 and 75° for P85-P103.

Figure S6. Pictures of emulsions with different Pluronics after preserving at (a) room temperature and (b) 4°C. Dashed rectangles indicate the phase-separated Pluronics phase.

Figure S7. Oxygen loading and release curves measured via DO meter. (a) Correlation between oxygen concentrations measured by fluorescence from Ru(ddp)-loaded FDC emulsions and DO meter. (b) Oxygen loading: mediums were first deoxygenated by nitrogen and then oxygenated by air. (c) Oxygen release: mediums were first oxygenated by air and then deoxygenated by nitrogen. All the data were shown as average \pm standard deviation (N=3).

Figure S8. 3D-constructed confocal microscopic images of multilayer EGFP cells cultured (a) without and (b) with FDC emulsions under $2\% O_2$. Scale bars: 50 μ m