Supporting Information

New Theoretical Insights into the Crystal-Field Splitting and Transition Mechanism for Nd³⁺ Doped Y₃Al₅O₁₂

Meng Ju¹, Yang Xiao^{2,3}, MingMin Zhong¹, Weiguo Sun³, Xinxin Xia³, Yau-yuen Yeung^{4,*} and

Cheng Lu^{2,5,*}

¹School of Physical Science and Technology, Southwest University, Chongqing 400715, China
²Department of Physics, Nanyang Normal University, Nanyang 473061, China
³Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
⁴Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, NT, Hong Kong, China
⁵School of Science, Northwestern Polytechnic University, Xi'an 710072, China

*Correspondence author. E-mail: <u>yyyeung@eduhk.hk</u> (Yau-yuen Yeung) and <u>lucheng@calypso.cn</u> (Cheng Lu)

Figure S1. Coordination structures the optimized metastable (a), (b), (c) and (d) for Nd:YAG. The red, yellow, blue and green spheres represent O, Al, Y and Nd atoms, respectively.

Figure S2. The simulated complete XRD patterns of Nd:YAG compared with experimental data.

Figure S3. The calculated partial density of states for Nd:YAG.

Table S1. Lattice constants a, b and c, unit-cell volume, relative energies for theground state and metastable Nd:YAG crystals.

	Space group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(\text{\AA}^3)$	$\Delta E (\times 10^{-2} \mathrm{meV})$
Nd:YAG	C_{222}	12.1145	12.1145	12.1145	1777.94	0
Isomer (a)	P_1	12.1146	12.1146	12.1220	1779.07	0.42
Isomer (b)	C_{222}	12.1145	12.1145	12.1222	1779.07	0.47
Isomer (c)	C_{222}	12.1146	12.1146	12.1223	1779.11	1.25
Isomer (d)	P_1	12.1145	12.1145	12.1222	1779.06	18.76

2S+1	G 4 - 4 -				Ould					r i csciit v	VUIK	Other	[*]
LJ	State	$E_{\rm obs}^{[3]}$	$E_{\rm calc}$	ΔE	$E_{\rm calc}$	ΔE	$^{2S+1}L_J$	State	$E_{\rm obs}^{[3]}$	$E_{\rm calc}$	ΔE	$E_{\rm calc}$	ΔE
${}^{4}I_{9/2}$	1	0	-12	-12	-4	-4		87	_	21505		21491	
	2	130	130	0	142	12		88	21522	21524	2	21514	-8
	3	199	197	-2	205	6		89	21593	21612	19	21608	15
	4	308	311	3	328	20		90	21661	21674	13	21664	3
	5	857	850	-7	870	13		91	21697	21700	3	21709	12
${}^{4}I_{11/2}$	6	2002	2004	2	1990	-12		92	21767	21766	-1	21754	-13
	7	2029	2028	-1	2017	-12		93	21791	21781	-10	21782	-9
	8	2110	2109	-1	2102	-8		94		21844		21851	
	9	2147	2148	1	2140	-7		95	21872	21863	-9	21866	-6
	10	2468	2465	-3	2465	-3		96	21906	21914	8	21906	0
	11	2521	2523	2	2524	3		97	22036	22063	27	22043	7
${}^{4}I_{13/2}$	12	3922	3928	6	3908	-14	${}^{2}P_{1/2}$	98	23155	23122	-33	23135	-20
	13	3930	3932	2	3916	-14	$^{2}\mathrm{D}(1)_{5/2}$	99	23674	23654	-20	23685	11
	14	4032	4036	4	4026	-6		100	23764	23757	-7	23764	0
	15	4047	4054	7	4041	-6		101	23849	23848	-1	23838	-11
	16	4435	4430	-5	4421	-14	${}^{2}P_{3/2}$	102	25994	26003	9	26026	32
	17	4442	4441	-1	4441	-1		103	_	26078		26085	_
	18	4498	4506	8	4504	6	${}^{4}D_{3/2}$	104	27571	27562	-9	27550	-21
${}^{4}I_{15/2}$	19	5758	5757	-1	5756	-2	and	105	27670	27677	7	27683	13
	20	5814	5815	1	5804	-10	$^{4}D_{5/2}$	106	27809	27819	10	27818	9
	21	5936	5942	6	5939	3		107	28183	28192	9	28182	-1
	22	5970	5966	-4	5971	1		108	28263	28268	5	28272	9
	23	6570	6555	-15	6557	-13	${}^{4}D_{1/2}$	109	28359	28355	-4	28374	15

Table S2. The experimental and calculated Stark energy levels (all in cm^{-1}) of Nd³⁺ in YAG.

	24	6583	6585	2	6596	13	$^{2}I_{11/2}$	110	28580	28611	31	28601	21
	25	6639	6641	2	6659	20	11/2	111	28800	28822	22	28819	19
	26	6734	6737	3	6758	24		112	28930	28956	26	28957	27
${}^{4}F_{3/2}$	27	11427	11426	-1	11421	-6		113	29140	29139	-1	29124	-16
512	28	11512	11500	-12	11493	-19		114	29270	29287	17	29258	-12
4 Esia	29	12370	12354	-16	12359	-11		115	29360	29382	22	29366	6
and	30	12432	12437	5	12436	4	$^{2}L_{15/2}$	116	29715	29705	-10	29712	-3
$^{2}\text{H}(2)_{9/2}$	31	12519	12500	-19	12451	-68	${}^{4}D_{7/2}$	117	29876	29865	-11	29867	_9
	32	12575	12590	15	12610	35	and	118	29880	29881	1	29881	1
	33	12607	12640	33	12650	43	${}^{2}I_{13/2}$	119	29920	29905	-15	29917	-3
	34	12623	12646	23	12693	70		120	29953	29953	0	29952	-1
	35	12819	12827	8	12811	-8		121	_	30054		30048	_
	36	12840	12844	4	12856	16		122	30070	30064	-6	30057	-13
${}^{4}F_{7/2}$	37	13363	13355	-8	13364	1		123	30140	30135	-5	30121	-19
and	38	13433	13426	-7	13440	7		124	30160	30140	-20	30147	-13
${}^{4}S_{3/2}$	39	13563	13555	-8	13555	-8		125	30190	30193	3	30198	8
	40	13572	13574	2	13572	0		126	30230	30234	4	30233	3
	41	13596	13591	-5	13596	0		127	30289	30270	-19	30283	-6
	42	13633	13632	-1	13646	13		128	30360	30340	-20	30350	-10
${}^{4}F_{9/2}$	43	14626	14634	8	14643	17		129	30400	30387	-13	30389	-11
	44	14678	14675	-3	14685	7		130	30464	30453	-11	30442	-22
	45	14793	14788	-5	14779	-14		131	30495	30504	9	30495	0
	46	14819	14825	6	14815	-4		132	30547	30552	5	30550	3
	47	14916	14924	8	14914	-2		133	30611	30602	-9	30593	-18
$^{2}\text{H}(2)_{11/2}$	48	15838	15836	-2	15898	60		134	30620	30620	0	30611	-9
	49	15870	15900	30	15920	50	${}^{2}L_{17/2}$	135	_	31237	—	31247	—
	50		15920	—	15946	—		136		31406		31393	—
	51	15957	15943	-14	15956	-1		137	31440	31441	1	31459	19
	52	16103	16079	-24	16037	-66		138	31530	31503	-27	31525	-5

	53	16119	16102	-17	16067	-52		139	31570	31573	3	31567	-3
${}^{4}G_{5/2}$	54	16849	16852	3	16848	-1		140	31585	31598	13	31583	-2
	55	16992	16979	-13	16978	-14		141	31665	31652	-13	31667	2
	56	17047	17057	10	17054	7		142		31776		31795	
${}^{2}G_{7/2}$	57	17241	17226	-15	17220	-21		143		31903		31885	
	58	17268	17275	7	17275	7	$^{2}\text{H}(1)_{9/2}$	144	32613	32614	1	32621	8
	59	17322	17296	-26	17302	-20		145	32663	32663	0	32662	0
	60	17575	17565	-10	17594	19		146	32745	32725	-20	32730	-15
${}^{4}G_{7/2}$	61	18723	18719	-4	18709	-14		147	32802	32805	3	32801	-1
	62	18822	18830	8	18831	9		148	32840	32822	-18	32835	-5
	63	18843	18855	12	18863	20	$^{2}D(2)_{3/2}$	149	32980	32970	10	32966	-14
	64	18986	18968	-18	18987	1		150	33045	33051	6	33056	11
${}^{2}K_{13/2}$	65	19154	19136	-18	19133	-21	$^{2}\mathrm{D}(2)_{5/2}$	151	33693	33724	31	33699	6
and	66	—	19272	—	19262		and	152		33800	—	33783	—
${}^{4}G_{9/2}$	67	19294	19319	25	19317	23	$^{2}\mathrm{H}(1)_{11/2}$	153	33840	33837	-3	33830	-10
	68	—	19429	—	19421			154	34050	34080	30	34071	21
	69	19470	19452	-18	19448	-22		155	34110	34122	12	34123	13
	70	—	19509	—	19499			156	34210	34179	-31	34170	-40
	71	19543	19547	4	19555	12		157	34260	34255	-5	34256	-4
	72	19596	19586	-10	19593	-3		158	34290	34327	37	34333	43
	73	19651	19666	15	19660	9		159	_	34457		34475	
	74	19814	19833	19	19823	9	$^{2}F(2)_{5/2}$	160	37789	37763	-26	37799	10
	75	—	19890	—	19870			161	37900	37939	39	37920	20
	76	20048	20045	-3	20026	-22		162	38065	38051	-14	38043	-22
$^{2}G(1)_{9/2}$	77	20730	20716	-14	20719	-11	$^{2}F(2)_{7/2}$	163	39202	39208	6	39232	30
$^{2}D(1)_{3/2}$	78	20773	20781	8	20797	24		164	_	39255	—	39251	
${}^{4}G_{11/2},$	79	20790	20787	-3	20819	29		165	39330	39316	-14	39312	-18
and	80	20803	20802	-1	20833	30		166		39565	—	39553	
$K_{15/2}$	81	20962	20954	-8	20954	-8	$^{2}G(2)_{9/2}$	167		47000		47000	_

82	_	21020	_	21011		168	_	47018	_	47010	
83	21029	21056	27	21057	28	169	47200	47191	-9	47170	-30
84	21080	21076	-4	21072	-8	170	_	47266	_	47247	_
85	21159	21144	15	21141	-18	171	_	47325		47266	_
86	21162	21150	-12	21152	-10						

Table S3. Calculated wavelengths (λ), ED (A_{ED}) and MD (A_{MD}) radiative decay rates, branching ratios (β) and radiative lifetimes (τ) for spontaneous emission transitions between the first 11 excited states in Nd:YAG. Available theoretical and experimental results are also listed for comparison.

		λ (1	nm)			A_{total}	(s^{-1})		β		τ (μs)
Transi	tion	Present	Other	$A_{ED}(s^{-1})$	$A_{MD}(s^{-1})$	Present	Other	Present	Other	Present	Other
${}^{4}I_{11/2}$	⁴ I _{9/2}	5359		13.4	1.6	15.0		1		66541	
⁴ I _{13/2}	${}^{4}I_{9/2}$	2609		37.6	0	37.6		0.69		18429	
	${}^{4}I_{11/2}$	5085		14.4	2.2	16.6		0.31			
${}^{4}I_{15/2}$	⁴ I _{9/2}	1707		11.5	0	11.5		0.18		15795	
	${}^{4}I_{11/2}$	2504		34.2	0	34.2		0.54			
	⁴ I _{13/2}	4933		16.0	1.6	17.6		0.28			
4 Fa /a	4 Io α	897	885 ^[4]	1254.2	0	1254.2	$1420^{[7]}$	0 34	0.32 ^[7]	274	259+25 ^[7] 250+25 ^[9]
1 3/2	19/2	077	900 ^[3]	123 1.2	Ū	123 1.2	1120	0.51	0.52	271	257-25 , 250-25
	${}^{4}I_{11/2}$	1077	1073 ^[0]	1962.0	0	1962.0	1940 ^[7]	0.54	$0.54^{1/1}$		
	${}^{4}I_{13/2}$	1367	$1350^{[7]},$ $1340^{[4]}$	415.8	0	415.8	473 ^[7]	0.11	0.14 ^[7]		
	${}^{4}I_{15/2}$	1891	1850 ^[5] , 1800 ^[7]	20.9	0	20.9	15 ^[7]	0.01	0.003 ^[7]		
${}^{4}\mathrm{F}_{5/2}$	⁴ I _{9/2}	822	$809^{[4]},$ $808^{[8]}$	3192.3	0	3192.3		0.66		207	
	${}^{4}I_{11/2}$	970		476.7	0	476.7		0.10			
	$4I_{13/2}$	1200		976.2	0	976.2		0.20			
	${}^{4}I_{15/2}$	1584		195.3	0	195.3		0.04			
$^{2}\text{H}(2)_{9/2}$	⁴ I _{9/2}	811		488.8	6.9	495.7		0.58		1177	
	${}^{4}I_{11/2}$	955		67.9	4.2	72.1		0.09			

	${}^{4}I_{13/2}$	1176	167.7	0	167.7	0.20		
	${}^{4}I_{15/2}$	1544	113.5	0	113.5	0.13		
$^{4}\mathrm{E}_{-}$	⁴ L	762	25727	0.1	2572.8	0.50	103	
1.7/2	^{19/2} 4	880	1562.3	0.1	1562.3	0.30	195	
	$4_{I}^{111/2}$	1077	266.2	0	266.2	0.50		
	4 ₁	1077	500.2	0	500.2	0.12		
	I _{15/2}	13/8	0//.0	0	0//.0	0.15		
${}^{4}S_{3/2}$	${}^{4}I_{9/2}$	755	2776.3	0	2776.3	0.43	156	
	${}^{4}I_{11/2}$	879	1566.3	0	1566.3	0.24		
	${}^{4}I_{13/2}$	1062	1389.1	0	1389.1	0.22		
	${}^{4}I_{15/2}$	1354	674.4	0	674.4	0.11		
4-	4.	<0.4	0.4.1	1.0	•	0.07	225	
F _{9/2}	·1 _{9/2}	694	264.1	1.9	266.0	0.06	237	
	${}^{-1}I_{11/2}$	798	1539.3	1.7	1541.0	0.37		
	${}^{4}I_{13/2}$	946	1483.9	0	1483.9	0.35		
	${}^{4}I_{15/2}$	1171	912.9	0	912.9	0.22		
2 H(2)11/2	4Io/2	638	79.0	0	79.0	0.28	3592	
11(2)11/2	⁴ L _{11/2}	725	54.6	26	57.2	0.20	5072	
	${}^{4}I_{12/2}$	845	35.7	2.0 5.7	41 4	0.15		
	4 L 5/2	1020	73.0	0	73.0	0.15		
	${}^{4}F_{2}$	2215	1 4	0	1 4	0.01		
	${}^{4}F_{$	2215	2.0	0	2.0	0.01		
	$^{2}\mathrm{H}(2)$	2005	17.6	1.0	10.5	0.07		
	$4^{4}{\rm E}$	3030	2.0	1.9	2.0	0.07		
	1 '7/2	3930	5.9	0	3.9	0.01		
${}^{4}G_{5/2}$	${}^{4}I_{9/2}$	597	4651.8	0	4651.8	0.58	124	
	${}^{4}I_{11/2}$	672	2783.4	0	2783.4	0.35		
	${}^{4}I_{13/2}$	775	488.8	0	488.8	0.06		
	${}^{4}I_{15/2}$	919	20.7	0	20.7	0.01		

Table S4. The calculated statevectors of the ground state and the first 11 excited states for Nd^{3+} in YAG.

State ${}^{2s+1}L_J$	Statevector $ ^{2s+1}L_{J}>$
⁴ I _{9/2}	$0.984 ^{4}I_{9/2} > -0.168 ^{2}H(2)_{9/2} > +0.057 ^{2}H(1)_{9/2} >$
${}^{4}I_{11/2}$	$-0.995 ^{4}I_{11/2} > + 0.096 ^{2}H(2)_{11/2} > - 0.036 ^{2}H(1)_{11/2} >$
${}^{4}I_{13/2}$	$-0.998 ^{4}I_{13/2} > -0.064 ^{2}K_{13/2} > +0.024 ^{2}I_{13/2} >$
${}^{4}I_{15/2}$	$-0.993 ^{4}I_{15/2} > -0.115 ^{2}K_{15/2} > +0.009 ^{2}L_{15/2} >$
${}^{4}F_{3/2}$	$-0.970 ^{4}F_{3/2} > -0.224 ^{2}D(1)_{3/2} > +0.062 ^{2}D(2)_{3/2} >$
${}^{4}F_{5/2}$	$-0.988 ^{4}F_{5/2} > -0.147 ^{2}D(1)_{5/2} > +0.033 ^{2}F(2)_{5/2} >$
$^{2}\mathrm{H}(2)_{9/2}$	$-0.731 ^{2}H(2)_{9/2} > + 0.385 ^{4}F_{9/2} > - 0.340 ^{2}G(1)_{9/2} >$
${}^{4}F_{7/2}$	$-0.965 ^{4}F_{7/2} > + 0.199 ^{2}G(1)_{7/2} > - 0.158 ^{2}G(2)_{7/2} >$
${}^{4}S_{3/2}$	$-0.971 ^4S_{3/2} > -0.222 ^2P_{3/2} > -0.073 ^4F_{3/2} >$
${}^{4}F_{9/2}$	$0.862 ^{4}F_{9/2} > + 0.454 ^{2}H(2)_{9/2} > - 0.156 ^{2}H(1)_{9/2} >$
$^{2}\mathrm{H}(2)_{11/2}$	$0.894 ^{2}H(2)_{11/2} > -0.354 ^{2}H(1)_{11/2} > -0.251 ^{4}G_{11/2} >$
${}^{4}G_{5/2}$	$-0.993 ^{4}G_{5/2} > -0.083 ^{2}F(1)_{5/2} > -0.082 ^{2}F(2)_{5/2} >$

Appendix – Method and equations for the calculations of transition intensities

The model Hamiltonian for Nd³⁺ is defined as^{[10]-[11]}

$$H_{f} = E_{AVE} + \sum_{k=2,4,6} F^{k} f_{k} + \zeta_{4f} \times \sum_{i} \overrightarrow{l}_{i} \cdot \overrightarrow{s}_{i} + \alpha L(L+1) + \beta G(G_{2}) + \gamma G(R_{7})$$

+
$$\sum_{i=2,3,4,6,7,8} T^{i} t_{i} + \sum_{j=0,2,4} M^{j} m_{j} + \sum_{k=2,4,6} P^{k} p_{k}$$
(A1)

where E_{AVE} represents the barycenter energy of the 4f³ configuration. The next seven terms represent the Coulomb repulsion, spin-orbit, two-body, three-body, spin-other-orbit and electrostatically correlated spin-orbit interactions. Moreover, F^k and ζ_{4f} are the radial parts of the electrostatic and spin-orbit coupling constant. Two-body and Judd's three-body parameters are represented by α , β , γ and T^i . G(G2)and G(R7) represent the eigenvalues of the Casimir's operators for the Lie groups G_2 and R_7 . The remaining parameters, M^i and P^k , are used to represent the Marvin integrals and spin-orbit perturbations.

The crystal field interaction H_{CF} for Nd³⁺ in YAG, in the form of Wybourne normalization, can be expressed as^[12]

$$H_{CF} = B_2^0 C_2^0 + B_2^2 (C_2^2 + C_2^{-2}) + B_4^0 C_4^0 + B_4^2 (C_4^2 + C_4^{-2}) + B_4^4 (C_4^4 + C_4^{-4}) + B_6^0 C_6^0 + B_6^2 (C_6^2 + C_6^{-2}) + B_6^4 (C_6^4 + C_6^{-4}) + B_6^6 (C_6^6 + C_6^{-6})$$
(A2)

where $C_q^{\ k}$ are the normalized spherical-tensor operators and $B_q^{\ k}$ are the crystal field parameters (CFPs). The values of these CFPs can be determined by the least-squares fit to the observed energy levels.^[12] The ED (A_{ED}) radiative decay rates can be written as^{[13]-[14]}

$$A_{ED(SLJ\to S'L'J')} = \frac{16\pi^{3}e^{2}}{3\varepsilon_{0}hc^{3}} \frac{\nu^{3}}{(2J+1)} \chi_{ED} \sum_{\lambda=2,4,6} \Omega_{(\lambda)} \left| \left\langle l^{N}SLJ \right\| U^{(\lambda)} \right\| l^{N}S'L'J' \right\rangle \right|^{2}$$
(A3)

where *v* is the transition frequency, *n* is the refractive index and χ_{ED} is the local-field correction for ED induced transitions with the form of $(n^2+1)^2/(9n)$ and $n(n^2+1)^2/9$ for absorption and emission transition, respectively. The Judd-Ofelt intensity parameters $\Omega_{(\lambda)}$ should be summed over $\lambda=2,4,6$ for a product with the even-rank reduced matrix elements of the $U^{(\lambda)}$ tensor operator.

The MD (A_{MD}) radiative decay rates can be written as^{[13]-[14]}

$$A_{MD} = \frac{\pi h e^2}{3\varepsilon_0 c^5 m_e^2} \frac{v^3}{g} \chi_{MD} \left| \left\langle l^N \psi \right| \left| L + g_e S \right| \left| l^N \psi' \right\rangle \right|^2$$
(A4)

where $g_e = 2.00232$ is the gyromagnetic ratio of the electron and g is the degeneracy of the initial level. χ_{MD} is the local-field correction for MD induced transitions with the form of n and n^3 for the absorption and emission transition, respectively. ψ and ψ ' are the statevectors for the initial and terminating levels for the $\psi \rightarrow \psi$ ' transition, respectively. For transitions between J-multiplets, the statevector takes the form of $\psi(SLJ)$ with g = (2J+1) while for transitions between crystal field levels, it takes the form of $\psi(SLJ\Gamma_i)$.

The radiative lifetime can be written as^{[13]-[14]}

$$\tau_{SLJ} = \frac{1}{\sum_{S'LJ'} \left(A_{ED(SLJ \to S'LJ')} + A_{MD(SLJ \to S'LJ')} \right)}$$
(A5)

The branching ratio can be written as^{[13]-[14]}

$$\beta_{(SLJ \to S'L'J')} = \tau_{SLJ} \times [A_{ED(SLJ \to S'L'J')} + A_{MD(SLJ \to S'L'J')}]$$
(A6)

The MD absorption oscillator strengths can be written as^{[13]-[14]}

$$P_{MD} = \frac{h\nu}{6m_e c^2} \frac{n}{(2J+1)} \left| \left\langle l^N SLJ \right\| L + g_e S \left\| l^N SLJ' \right\rangle \right|^2$$
(A7)

Coordinates of all atoms for the ground state Nd:YAG

Atom	x	У	Z
Nd	0.50000	0.50000	0.50000
Y1	0.12479	0.24980	-0.12460
Y2	0.37452	0.24891	-0.62590
Y9	0.00000	0.00000	0.00000
Y10	0.00000	-0.50000	-0.24970
Y12	0.87504	0.25006	-0.62507
Y13	0.37494	-0.24993	-0.12472
Y20	0.00000	-0.50000	-0.75044
Y22	-0.00000	-0.00000	-0.50000
Y23	0.50000	-0.50000	-0.00000
Al1	-0.00008	0.24983	0.12499
A12	0.50048	-0.24854	-0.37389
A15	0.00013	-0.24976	-0.37489
Al6	0.49981	0.24969	0.12438
Al17	0.37480	0.24966	-0.12514
Al18	0.12480	0.24963	-0.62515
Al21	0.24996	-0.12498	0.12486
A123	0.24890	-0.37497	-0.37449
A125	0.00000	-0.00000	-0.24993
Al26	0.00000	-0.50000	0.00014
A127	0.50000	-0.00000	-0.49984
A128	0.50000	-0.50000	-0.75245
01	0.96966	0.19943	-0.02409
O2	0.47044	-0.29614	-0.52395
O5	0.03024	-0.30032	-0.22569
O6	0.53015	0.19951	-0.72657
O9	0.14896	-0.72004	0.07461

O10	0.64961	-0.21972	-0.42473
011	0.64957	-0.27943	-0.82532
012	0.14872	0.21957	-0.32453
017	0.05031	0.10071	-0.84490
O18	0.55170	-0.39698	-0.33916
019	0.94980	-0.39918	-0.40513
O20	0.44963	0.10066	0.09463
O49	0.03008	-0.70014	-0.72598
O50	0.53005	-0.19820	-0.22522
053	0.96986	-0.19956	-0.52415
054	0.46963	-0.69995	-0.02458
057	0.85068	0.21985	-0.82461
O58	0.35080	-0.28069	-0.32493
059	0.35077	-0.21964	0.07426
O60	0.85114	-0.72018	-0.42514
O65	0.94982	-0.60105	0.09467
066	0.44932	-0.10020	-0.40455
O67	0.05040	-0.10069	-0.34477
O68	0.55039	-0.60136	-0.84615

References

- [1] Kostić, S.; Lazarević, Z.; Radojević, V.; Milutinović, A.; Romčević, M.; Romčević, N. Z.; Valčić, A. Study of Structural and Optical Properties of YAG and Nd:YAG Single Crystals. *Mater. Research Bulletin* **2015**, *63*, 80-87.
- [2] Zhang, M.; Guo, H.; Han, J.; Zhang, H.; Xu, C. Distribution of Neodymium and Properties of Nd:YAG Crystal by Horizontal Directional Solidification. *J. Cryst. Growth* 2012, *340*, 130-134.
- [3] Gruber, J. B.; Hills, M. E.; Allik, T. H.; Jayasankar, C. K.; Quagliano, J. R.; Richardson, F. S. Comparative Analysis of Nd³⁺ (4f³) Energy Levels in Four Garnet Hosts. *Phys. Rev. B* 1990, *41*, 7999-8012.
- [4] Pavel, N.; Lupei, V.; Taira, T. 1.34-µm Efficient Laser Emission in Highly-Doped Nd:YAG Under 885-nm Diode Pumping. *Opt. Express* 2005, *13*, 7948–7953.
- [5] Kaminskii, A. A. Laser Crystals. Springer 1981.
- [6] Deserno, U.; Ross, D.; Zeidler, G. Quasicontinuous Giant Pilse Emission of ${}^{4}F_{3/2}$ $\rightarrow {}^{4}I_{13/2}$ Transitions at 1.32 µm in YAG:Nd³⁺. *Phys. Lett.* **1968**, *28A*, 422-423.
- [7] Krupke, W. F. Radiative Transition Probabilities Within the 4f³ Ground Configuration of Nd:YAG. *IEEE J. Quantum Electron.* 1971, 7, 153-159.
- [8] Lupei, V.; Pavel, N.; Taira, T. Laser Emission in Highly Doped Nd:YAG Crystals Under ⁴F_{5/2} and ⁴F_{3/2} Pumping. *Opt. Lett.* 2001, 26, 1678-1680.
- [9] Kramer, M. A.; Boyd, R. W. Three-Photon Absorption in Nd-Doped Yttrium Aluminum Garnet. *Phys. Rev. B* **1981**, *23*, 986-991.
- [10] Gorller-Walrand, C.; Binnemans, K. Handbook on the Physics and Chemistry of Rare Earths, ed. Gschneidner, K. A. and Eyring, L. *Elsevier Science* 1996, 23.
- [11] Henderson, B.; Imbusch, G. F. Optical Spectroscopy of Inorganic Solids. Clarendon Press, Oxford 1989.
- [12] Yeung, Y. Y.; Newman, D. J. High Order Crystal Field Invariants and the Determination of Lanthanide Crystal Field Parameters. J. Chem. Phys. 1986, 84, 4470-4473.
- [13] Walrand, C. G.; Fluyt, L.; Ceulemans, A.; Carnall, W. T. Magnetic Dipole Transitions as Standards for Judd-Ofelt Parametrization in Lanthanide Spectra. J. Chem. Phys. 1991, 95, 3099–3106.

 [14] Hehlen, M. P.; Brik, M. G.; Krämer, K. W. 50th Anniversary of the Judd-Ofelt Theory: An Experimentalist's View of the Formalism and Its Application. J. *Lumin.* 2013, 136, 221–239.