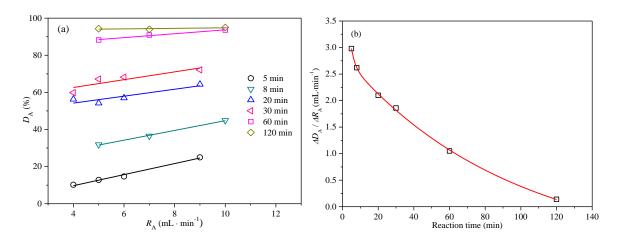
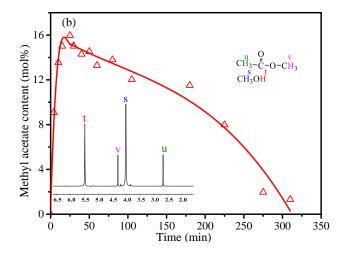
Supporting information for:


Effects of Composition and Sequence of Ethylene-Vinyl Acetate Copolymers on Their Alcoholysis and Oxygen Barrier Property of Alcoholyzed Copolymers

Xiaoxian Xue, † Li Tian, † Song Hong, $^{\sharp}$ Shu Zhang, $^{*,\,\dagger}$ and Yixian Wu *,†

† State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China


‡ Center for Instrumental Analysis, Beijing University of Chemical Technology, Beijing, 100029, China

Corresponding author. Email: wuyx@mail.buct.edu.cn (Y.X. Wu)

Figure S1. (a) Effect of removal rate (R_A) of distilled methanol/methyl acetate mixture on D_A of alcoholyzed EVA copolymer (EVA-385); (b) Effect of reaction time on D_A/R_A . EVA-371: E =

37.1 mol%, $M_n = 18 \text{ kg} \cdot \text{mol}^{-1}$, PDI = 2.7, concentration of EVA in methanol: 25 wt%, $n_{\text{NaOCH3}} = 0.05$, reaction temperature: 65 °C.

Figure S2. Dependence of methyl acetate content in the distilled mixtures on reaction time during alcoholysis of EVA-371. Representative ¹H NMR spectrum of distilled mixture (methanol and methyl acetate) from the alcoholysis reaction was inserted into the figure. Reaction conditions were the same as those in Figure S1.