
Supporting information

Understanding the hydration process of salts:

The impact of a nucleation barrier

Leyla-Cann Sögütoglu,† Michael Steiger,‡ Jelle Houben,† Daan Biemans,†

Hartmut R. Fischer,¶ Pim Donkers,¶ Henk Huinink,∗,† and Olaf C.G. Adan†,¶

†Technical University Eindhoven, Department of Applied Physics, Den Dolech 2, 5600 MB

Eindhoven, The Netherlands

‡University of Hamburg, Department of Chemistry, Martin-Luther-King-Platz 6, 20146

Hamburg, Germany

¶TNO, High Tech Campus 25, 5656 AE Eindhoven. The Netherlands

E-mail: h.p.huinink@tue.nl

S1. Application of the Classical Nucleation Theory

to hydration

The induction time τ [s] is taken as a measure of the nucleation frequency J [s−1]:

τ ≡ c

J
, (1)

where c [-] is a proportionality constant.
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The generic expression for the nucleation rate J given by:1

J = NsjZ exp
(−∆G∗

kBT

)
(2)

where

Ns: number of nucleation sites [-]

j: rate at which molecules attach to the cluster causing it to grow [s−1]

Z: Zeldovich factor [-]

∆G∗: Formation Gibbs free energy of a critical cluster [J]

kB: Boltzmann constant [1.38·10−23J/K]

T : absolute temperature [K]

For analysis of the induction time, the theory of homogeneous nucleation as developed

by Volmer and Weber2 has been adapted to the generic case of hydration, where the energy

barrier ∆G∗ to form a critical cluster (nucleus) and the nucleus radius r∗ [m] are evaluated

for the generic case of hydration:

MX · aH2O (s) + (b−a)H2O(g) −−⇀↽−− MX · bH2O (s), (I)

where (b-a) gaseous molecules of water bind to a unit MX · aH
2
O to form the hydrated unit

MX · bH
2
O.

We will obtain:

∆G∗ = ∆G(r∗) (3)
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by �nding the maximum of the Gibbs free energy ∆G as a function of the cluster radius r

[m]:

(
∂∆G(r)

∂r

)
T

= 0. (4)

The total formation Gibbs free energy by formation of a cluster is given by the sum of a

bulk term and a surface term:

∆G = ∆Gbulk + ∆Gsurface (5)

∆G = (Gf −Gi) + γA (6)

where Gf [J] is the Gibbs free energy of the bulk hydrated state and Gi [J] is the Gibbs

free energy of the bulk dehydrated state of the cluster, γ [J/m2] and A [m2] are the surface

tension and the surface area of the cluster respectively.

The bulk term will be analysed �rst:

∆Gbulk = Gf −Gi = Gb +Nbµ− (Ga +Naµ) (7)

where Gb is the Gibbs free energy of the �nal solid phase (MX · bH
2
O); Nb is the �nal number

of water molecules in the gas phase; Ga is the Gibbs free energy of the initial solid phase

(MX · aH
2
O) and Na is the initial number of water molecules in the gas phase and µ is the

chemical potential of the gas phase water.

Since the reaction has the following stoichiometry with respect to the number of salt

units N in the cluster:

Nb −Na = −N(b− a) (8)
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the bulk term is:

∆Gbulk = Gb −Ga −N(b− a)µ. (9)

When macroscopically sized phases α and β are in equilibrium, the change in bulk Gibbs

free energy should be zero:

∆Gbulk = 0 (10)

∆Gbulk = Gb −Ga −N(b− a)µeq = 0 (11)

Therefore, the Gibbs free energy contributions of the solid can be expressed in the equilibrium

potential µeq [J].

Gb −Ga = N(b− a)µeq (12)

That is, in equilibrium, the change in Gibbs free energy of the solid phase is compensated

by the change in Gibbs free energy of the gas phase. This is the condition at the equilibrium

(de)hydration temperature.

The driving force ∆G for nucleus formation is therefore:

∆G = [N(b− a)µeq − (N(b− a)µ] + γA (13)

= −N(b− a)(µ− µeq) + γA (14)

≡ −N(b− a)∆µ+ γA (15)

The number of salt units N in the cluster can be expressed as follows:

N =
V

v
(16)
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where V [m3] is the volume of the cluster and v is the volume of 1 hydrated salt unit

MX · bH
2
O.

The expression for ∆G is thus:

∆G = −V
v

(b− a)∆µ+ γA (17)

The critical cluster size r∗ is obtained by application of equation 4 using the volume V

and surface area A of a 2D-disc, 3D-sphere and 3D-hemisphere in terms of the radius r:

V2D(disc) = πr2h ; A2D = 2πrh (18)

V3D(sphere) =
4

3
πr3 ; A3D = 4πr2 (19)

V3D(hemi−sphere) =
2

3
πr3 ; A3D = 2πr2, (20)

which yields:

r∗2D(disc) =
vγ

(b− a)∆µ
(21)

r∗3D(sphere) = r∗3D(hemi−sphere) =
2vγ

(b− a)∆µ
(22)

The corresponding energy barriers ∆G∗ are found by substituting equations 21 and 22

in equation 17:

∆G∗
2D =

hπvγ2

(b− a)∆µ
(23)

∆G∗
3D =

ηπv2γ3

(b− a)2(∆µ)2
(24)

with η = 16/3 in case of a sphere and 8/3 in case of half a sphere (hemisphere).
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Via the ideal gas law µ and µeq can be coupled with the respective water vapour pressures:

µ = µ0 + kBT ln
p

p0
(25)

µeq = µ0 + kBT ln
peq
p0

(26)

in which p is the partial water vapour pressure [Pa], p0 is the reference pressure in stan-

dard conditions [105 Pa] and µ0 is the chemical potential of the gas molecules in standard

conditions [J].

Therefore:

∆µ = kBT ln
p

peq
. (27)

The following expressions for the nucleation frequency are obtained when the full expres-

sion of ∆G∗ is substituted in the generic nucleation rate (equation 2):

J2D = κ exp
( −hπvγ2

(kBT )2(b− a) ln p/peq

)
(28)

J3D = κ exp
( −ηπv2γ3

(kBT )3(b− a)2(ln p/peq)2

)
(29)

with the pre-exponential factor κ [s−1]

κ = NsjZ. (30)
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S2. Deliquescence humidities of K2CO3 and MgCl2·4H2O 

Direct measurements of the solubilities and deliquescence humidities (DRH) of the -

phases K2CO3 and MgCl2·4H2O at low temperatures are not available and had to be 

calculated. The DRH of a crystalline phase equals the equilibrium vapor pressure above 

its saturated solution. Therefore, the DRH can be calculated if the solubility and the water 

activity aw of the saturated solution are known. The water activity is given as aw = p/p0, 

where p is the vapor pressure above the saturated solution and p0 is the saturation water 

vapor pressure. The thermodynamic solubility product K of a salt hydrate MmXx·aH2O with 

either 1–2 or 2–1 stoichiometry (m = 1, x = 2 or vice versa) is given by 

  1/3
wln 3ln 4 3ln lnK m m a a


     (S1) 

where m is the saturation molality, mo  1 mol kg1 and  is the mean activity coefficient 

of the saturated solution. Also, the water activity is related to the osmotic coefficient : 

  w wln 3a m m  (S2) 

where mw  55.50844 mol kg1 is the molality of water. 

In lack of solubility data, the thermodynamic solubility product K of the lower hydrated 

phase (the -phase with a mol H2O) can be calculated from the solubility product K of 

the higher hydrated phase (the -phase with b mol H2O) using the following equation:1 

  α β eq 0ln ln ( )lnK K b a p p    (S3) 

where peq is the equilibrium vapor pressure of the hydration transition of the respective 

salt pair. 

The use of Eqs. (S1) and (S2) requires the ability to calculate osmotic and activity 

coefficients in the saturated solutions of the - and -phases. A Pitzer type ion interaction 

model2 is appropriate for such calculations. In the present study, an extended form of the 

equations including (2) and (3) terms in the expression for the ionic strength dependence 

of the second virial coefficient was used.3 The model parameters have to be determined 

from experimental data. 
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S3. Ion interaction parameters 

S3.1 K2CO3(aq) at 25 °C 

The parameters of the ion interaction equations for K2CO3(aq) at 25 °C were determined 

from isopiestic vapor pressure measurements of Sarbar et al.4 Using their isopiestic 

molalities osmotic coefficients were calculated using appropriate equations for the 

reference electrolytes used in their study. Their data extend from dilute solution to 

saturation of K2CO3·1.5H2O (m = 8.1 mol kg–1). Since the expected solubility of the an-

hydrous salt, based on its solubilities at elevated temperatures,5 is significantly higher, 

the final model equation has to extend to such high concentrations. In order to obtain 

reasonable extrapolation behavior, additional values of estimated osmotic coefficients 

were used. These values were obtained using the data of Sarbar et al. together with the 

BET equation6,7 to obtain a realistic extrapolation of their data. These estimated osmotic 

coefficients extend to about 20 mol kg–1. In order to achieve both accurate representation 

of the experimental data4 and reasonable behavior in the supersaturated region, the 

extended model equation including the (2) and (3) parameters had to be used. The final 

model parameters at 25 °C are listed in Table S1. 

Using the model parameters in Table S1 the solubility product of K2CO3·1.5H2O was 

calculated yielding lnK = 6.766 with Eq. (S1). The solubility of anhydrous K2CO3 was 

calculated from Eq. (S3) using the equilibrium vapor pressures of the present work. With 

the resulting solubility product of lnK = 12.46 at 25 °C, the solubility of anhydrous K2CO3 

of 13.7 mol kg–1 and its deliquescence pressure of 6.02 mbar were obtained. 

S3.2 MgCl2(aq) at 25 °C 

The parameters of the ion interaction equations for MgCl2(aq) at 25 °C are largely based 

on the previous treatment of the MgCl2–H2O system.8 However, two modifications were 

necessary. First, as in the case of K2CO3(aq), the very high solubility of MgCl2·4H2O 

requires significant extrapolation to concentrations where no experimental data are 

available. Therefore, the same approach with extrapolated data using the BET model as 

described before was used again including the parameters (2) and (3). The resulting 

model parameters are listed in Table S1. Second, the solubility product of MgCl2·4H2O had 

to be recalculated as the equation reported earlier8 cannot be extrapolated to low 

temperatures.  

The parameters in Table S1 together with the solubility reported in the literature 

(5.814 mol kg–1) yield a value of 10.388 for the solubility product of MgCl2·6H2O at 25 °C. 

The solubility product of MgCl2·4H2O was then calculated from Eq. (S3) using the 

equilibrium vapor pressures of both the present work and those reported by Carling9 

yielding a value of 17.484. With this value, the solubility of 9.06 mol kg–1 and a deli-

quescence pressure of 2.61 mbar were obtained for MgCl2·4H2O. 
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Table S1 Ion interaction (Pitzer) parameters for K2CO3(aq) and MgCl2(aq) at 25 °C 

Parameter K2CO3(aq) MgCl2(aq) 

1 1.4 1.0 

2 0.5 0.5 

3 0.1 0.1 

(0) / kg mol–1 –5.763260E–01 5.566291E00 

(1) / kg mol–1 2.197031E–01 0 

(2) / kg mol–1 –1.192558E00 2.977926E00 

(3) / kg mol–1 1.254361E00 –7.463355E00 

C / kg2 mol–2 3.285781E–03 –7.561581E–02 
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