
Reconfigurable ultraviolet and high-energy-visible dielectric metamaterials: Supporting Information

Behrad Gholipour^{1, 2, 3}, Davide Piccinotti¹, Artemios Karvounis¹, Kevin F. MacDonald¹, and Nikolay I. Zheludev^{1, 4}

⁴ Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences and The Photonics Institute, Nanyang Technological University, 637371, Singapore

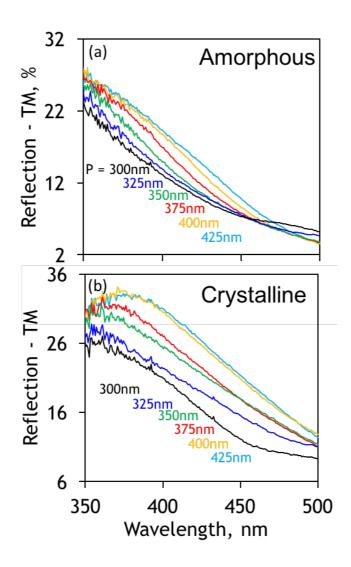


Figure S1. UV-HEV spectral dispersion (from variable angle ellipsometric measurements) of the real ε_1 (solid lines) and imaginary ε_2 (dashed) parts of the relative permittivity of sputtered germanium antimony telluride in its amorphous (red lines) and polycrystalline (blue) phases.

¹ Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton, SO15 4JB, UK

² Department of Chemistry, University of Southampton, Highfield, Southampton, SO15 4JB, UK

³ Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

Figure S2. Measured spectral dispersion of ZnS/SiO_2 –GST– ZnS/SiO_2 nano-grating metamaterial TM reflection for a selection of grating periods P [as labelled], for the amorphous (a) and polycrystalline (b) states of the GST layer.