SUPPLEMENTARY INFORMATION FOR

Rational reprograming *O*-methylation regioselectivity for combinatorial biosynthetic tailoring of benzenediol lactone scaffolds

Xiaojing Wang^{a,b,c,1}, Chen Wang^{a,b,1}, Lixin Duan^{b,d,1}, Liwen Zhang^a, Hang Liu^{a,b}, Ya-ming Xu^b,

Qingpei Liu^{b,e}, Tonglin Mao^c, Wei Zhang^a, Ming Chen^a, Min Lin^a, A.A. Leslie Gunatilaka^b, Yuquan Xu^{a*}, and István Molnár^{b*}

^a Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China

^b Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA

^c State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China

^d Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou University City, Panyu District, Guangzhou 510006, P.R. China

^e Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology

, Huazhong Agricultural University , Wuhan 430070 , P.R. China

¹ These authors contribute equally to this work.

* Corresponding authors: I. Molnár (<u>imolnar@email.arizona.edu</u>), Tel: +1 (520) 621-9932; and Y. Xu (xuyuquan@caas.cn), Tel: +86 (010) 8210-9850.

Contents

1	SI Mat	erials and Methods	7	
	1.1 M	Iolecular biology, microbiology and bioinformatics	7	
	1.1.1	Construction of Saccharomyces cerevisiae expression vectors	7	
	1.1.2	Total biosynthesis and biotransformation.	8	
	1.1.3	OMT expression in <i>E. coli</i> and protein purification	9	
	1.1.4	Protein structure modeling	10	
	1.2 Is	olation and characterization of O-methylated products	11	
	1.2.1	General methods.	11	
	1.2.2	Lasiodiplodin (1a)	12	
	1.2.3	5-O-Methyl-desmethyllasiodiplodin (1b)	13	
	1.2.4	3,5-Di- <i>O</i> -methyl-desmethyllasiodiplodin (1c)	13	
	1.2.5	3-O-Methylradiplodin (2a)	14	
	1.2.6	5- <i>O</i> -Methylradiplodin (2b)	14	
	1.2.7	3,5-Di- <i>O</i> -methylradiplodin (2c)	14	
	1.2.8	14,15-Dehydro-3-O-methylzearalenol (3a)	15	
	1.2.9	14,15-Dehydro-5- <i>O</i> -methylzearalenol (3b)	15	
	1.2.10	14,15-Dehydro-3,5-di- <i>O</i> -methylzearalenol (3c)	16	
	1.2.11	3-O-Methylzearalenol (4a)	16	
	1.2.12	5-O-Methylzearalenol (4b)	16	
	1.2.13	3,5-Di- <i>O</i> -methylzearalenol (4c)	17	
	1.2.14	3-O-Methyllasicicol (5a)	17	
	1.2.15	7- <i>O</i> -methyllasilarin (6a)	17	
	1.2.16	5- <i>O</i> -methyllasilarin (6b)	18	
	1.2.17	5,7-Di- <i>O</i> -methyllasilarin (6c)	18	
	1.2.18	7-[(<i>R</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-3- <i>O</i> -methylresorcylic acid ethyl 18	ester	(7 a)
	1.2.19	7-[(<i>R</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-5- <i>O</i> -methylresorcylic acid ethyl 19	ester	(7b)
	1.2.20	7-[(<i>R</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-3,5-di- <i>O</i> -methylresorcylic acid ethy 19	vl ester	(7c)
	1.2.21	7-[(<i>S</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-resorcylic acid ethyl ester (8)	20	

1.2.22 7-[(<i>S</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-3- <i>O</i> -methylresorcylic acid ethyl ex	ster (8a)
1.2.23 7-[(<i>S</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-5- <i>O</i> -methylresorcylic acid ethyl es	ster (8b)
1.2.24 7-[(<i>S</i> , <i>E</i>)-6-Hydroxyhept-1-en-1-yl]-3,5-di- <i>O</i> -methylresorcylic acid ethyl 21	ester (8c)
1.3 Structure elucidation	21
2 SI Tables2	27
Table S1. Mutations engineered into LtOMT.	27
Table S2. ¹ H NMR (400 MHz) and ¹³ C NMR (100 MHz) data2	28
Table S2.1. Compounds 1a , 1b and 1c (in methanol- d_4)	28
Table S2.2. Compounds 2a, 2b and 2c (in CDCl ₃). 2a	29
Table S2.3. Compounds 3a , 3b and 3c (in DMSO- d_6)	30
Table S2.4. Compounds 4a , 4b , 4c (in methanol- d_4) and 5a (in CDCl ₃)	31
Table S2.5. Compounds 6a , 6b and 6c (in methanol- d_4)	32
Table S2.6. Compounds 7a , 7b and 7c (in methanol- d_4)	33
Table S2.7. Compounds 8a , 8b and 8c (in methanol- d_4)	34
Table S3. Combinatorial methylation with LtOMT and HsOMT	35
Table S4. Methylation of the model substrate DLD (1) with mutant LtOMT enzyme	es. 39
Table S5. Combinatorial methylation with selected LtOMT variants4	¥1
Table S6. Primers used in this study4	16
3 SI Figures4	19
Figure S1. Compounds not accepted as substrates by LtOMT and HsOMT4	19
Figure S2. Influence of preexisting methylation on the activities of LtOMT and 52	HsOMT.
Figure S3. Topology of LtOMT and HsOMT5	54
Figure S4. Docking models of DLD and SAM for LtOMT and HsOMT5	55
Figure S5. SDS-PAGE analysis of purified methyltransferases5	56
Figure S6. Chemical structures and key HMBC (\rightarrow) and NOE (<>) correction isolated compounds.	
Figure S7. NMR spectra5	58
Figure S7.1. ¹ H NMR spectrum of compound 1a in methanol- d_4	58
Figure S7.2. ¹³ C NMR spectrum of compound 1a in methanol- d_4	59

Figure S7.3.	¹ H NMR spectrum of compound 1b in methanol- d_4 60
Figure S7.4.	¹³ C NMR spectrum of compound 1b in methanol- d_4 61
Figure S7.5.	HSQC spectrum of compound $1b$ in methanol- d_4 62
Figure S7.6.	HMBC spectrum of compound $1b$ in methanol- d_4 63
Figure S7.7.	1D NOESY spectrum of compound 1b in methanol- d_4 64
Figure S7.8.	¹ H NMR spectrum of compound 1 c in methanol- d_4 65
Figure S7.9.	¹³ C NMR spectrum of compound 1c in methanol- d_4 66
Figure S7.10.	HMBC spectrum of compound $1c$ in methanol- d_4 67
Figure S7.11.	¹ H NMR spectrum of compound 2a in CDCl ₃ 68
Figure S7.12.	¹³ C NMR spectrum of compound 2a in CDCl ₃ 69
Figure S7.13.	HMBC spectrum of compound 2a in CDCl ₃ 70
Figure S7.14.	¹ H NMR spectrum of compound 2b in CDCl ₃ 71
Figure S7.15.	¹³ C NMR spectrum of compound 2b in CDCl ₃ 72
Figure S7.16.	HSQC spectrum of compound 2b in CDCl3 73
Figure S7.17.	HMBC spectrum of compound 2b in CDCl ₃ 74
Figure S7.18.	¹ H NMR spectrum of compound 2c in CDCl ₃ 75
Figure S7.19.	¹³ C NMR spectrum of compound 2c in CDCl ₃ 76
Figure S7.20.	DEPT 135 spectrum of compound 2c in CDCl ₃ 77
Figure S7.21.	¹ H ⁻¹ H COSY spectrum of compound 2c in CDCl ₃ 78
Figure S7.22.	HSQC spectrum of compound 2c in CDCl ₃ 79
Figure S7.23.	HMBC spectrum of compound 2c in CDCl380
Figure S7.24.	¹ H NMR spectrum of compound 3a in DMSO- d_6 81
Figure S7.25.	¹³ C NMR spectrum of compound 3a in DMSO- d_6 82
Figure S7.26.	¹ H- ¹ H COSY spectrum of compound $3a$ in DMSO- d_6 83
Figure S7.27.	HSQC spectrum of compound 3a in DMSO- <i>d</i> ₆ 84
Figure S7.28.	HMBC spectrum of compound 3a in DMSO- <i>d</i> ₆ 85
Figure S7.29.	¹ H NMR spectrum of compound 3b in DMSO- d_6 86
Figure S7.30.	¹³ C NMR spectrum of compound 3b in DMSO- d_6
Figure S7.31.	¹ H- ¹ H COSY spectrum of compound 3b in DMSO- d_6 88
Figure S7.32.	HSQC spectrum of compound 3b in DMSO- d_6 89
Figure S7.33.	HMBC spectrum of compound $3b$ in DMSO- d_6 90
Figure S7.34.	¹ H NMR spectrum of compound 3c in DMSO- d_6 91

Figure S7.35.	¹³ C NMR spectrum of compound $3c$ in DMSO- d_6
Figure S7.36.	¹ H- ¹ H COSY spectrum of compound $3c$ in DMSO- d_6 93
Figure S7.37.	HSQC spectrum of compound $3c$ in DMSO- d_6 94
Figure S7.38.	HMBC spectrum of compound $3c$ in DMSO- d_6 95
Figure S7.39.	¹ H NMR spectrum of compound 4a in methanol- d_4 96
Figure S7.40.	¹³ C NMR spectrum of compound 4a in methanol- d_4 97
Figure S7.41.	DEPT 135 spectrum of compound $4a$ in methanol- d_4
Figure S7.42.	1D NOESY spectrum of compound $4a$ in methanol- d_4
Figure S7.43.	¹ H NMR spectrum of compound 4b in methanol- d_4 100
Figure S7.44.	¹³ C NMR spectrum of compound 4b in methanol- d_4 101
Figure S7.45.	1D NOESY NMR spectrum of compound 4b in methanol- d_4 102
Figure S7.46.	¹ H NMR spectrum of compound 4c in methanol- d_4 103
Figure S7.47.	¹³ C NMR spectrum of compound 4c in methanol- d_4 104
Figure S7.48.	HMBC spectrum of compound $4c$ in methanol- d_4 105
Figure S7.49.	¹ H NMR spectrum of compound 5a in CDCl ₃ 106
Figure S7.50.	¹³ C NMR spectrum of compound 5a in CDCl ₃ 107
Figure S7.51.	HMBC spectrum of compound 5a in CDCl ₃ 108
Figure S7.52.	¹ H NMR spectrum of compound 6a in methanol- d_4 109
Figure S7.53.	¹³ C NMR spectrum of compound 6a in methanol- d_4 110
Figure S7.54.	1D NOESY spectrum of compound 6a in methanol- d_4 111
Figure S7.55.	¹ H NMR spectrum of compound 6b in methanol- d_4 112
Figure S7.56.	¹³ C NMR spectrum of compound 6b in methanol- d_4 113
Figure S7.57.	HSQC spectrum of compound 6b in methanol- d_4 114
Figure S7.58.	HMBC spectrum of compound $6b$ in methanol- d_4 115
Figure S7.59.	¹ H NMR spectrum of compound 6c in methanol- d_4 116
Figure S7.60.	¹³ C NMR spectrum of compound 6c in methanol- d_4 117
Figure S7.61.	¹ H NMR spectrum of compound 7a in methanol- d_4 118
Figure S7.62.	¹³ C NMR spectrum of compound 7a in methanol- d_4 119
Figure S7.63.	HMBC spectrum of compound $7a$ in methanol- d_4
Figure S7.64.	¹ H NMR spectrum of compound 7b in methanol- d_4 121
Figure S7.65.	¹³ C NMR spectrum of compound 7b in methanol- d_4 122
Figure S7.66.	HSQC spectrum of compound 7b in methanol- d_4 123

	Figure S7.67.	HMBC spectrum of compound 7b in methanol- d_4	124
	Figure S7.68.	¹ H NMR spectrum of compound 7c in methanol- d_4	125
	Figure S7.69.	¹³ C NMR spectrum of compound 7c in methanol- d_4	126
	Figure S7.70.	HSQC spectrum of compound $7c$ in methanol- d_4	127
	Figure S7.71.	HMBC spectrum of compound $7c$ in methanol- d_4	128
	Figure S7.72.	¹ H NMR spectrum of compound 8a in methanol- d_4	129
	Figure S7.73.	¹³ C NMR spectrum of compound 8a in methanol- d_4	130
	Figure S7.74.	HMBC NMR spectrum of compound 8a in methanol- d_4	131
	Figure S7.75.	¹ H NMR spectrum of compound 8b in methanol- d_4	132
	Figure S7.76.	¹³ C NMR spectrum of compound 8b in methanol- d_4	133
	Figure S7.77.	HMBC spectrum of compound 8b in methanol- d_4	134
	Figure S7.78.	¹ H NMR spectrum of compound 8c in methanol- d_4	135
	Figure S7.79.	¹³ C NMR spectrum of compound 8c in methanol- d_4	136
	Figure S7.80.	HMBC spectrum of compound $8c$ in methanol- d_4	137
	Figure S8. CD	spectra of ARA7 and ARA8.	138
4	SI References.		139

4

1 SI Materials and Methods

1.1 Molecular biology, microbiology and bioinformatics.

1.1.1 Construction of *Saccharomyces cerevisiae* expression vectors.

The gene encoding LtOMT was cloned from Lasiodiplodia theobromae NBRC 31059 as described (1), and the hpm5 gene for HsOMT (2) and the gene for the LtOMT variant M1 were commercially synthesized (Joint Genome Institute and BioBasic, respectively). Hybrid OMT genes were constructed by amplifying the appropriate fragments of the parental genes by PCR and fusing these initial PCR products during a second round of PCR. Genes encoding mutant LtOMT variants were constructed by site-directed mutagenesis using synthetic DNA primers. The primers used in this study are listed in Table S6, and mutations engineered into LtOMT are listed in Table S1. OMT genes were inserted between the *NdeI-PmeI* sites of the YEpADH2p expression vector featuring a LEU selectable marker (YEpADH2p-LEU) using the InFusion Kit (BioTool). The YEpADH2p-LEU expression vector that contained the genes for both LtOMT and HsOMT was constructed by ligating the 2,142-bp Bg/III-SalI restriction fragment of YEpADH2p-LEU LtOMT into the BamHI-XhoI-digested YEpADH2p-LEU vector already containing the gene for HsOMT. Highly reducing PKS (hrPKS) genes for benzenediol lactone (BDL) biosynthesis were cloned into YEpADH2p-TRP1, while BDL nonreducing PKS (nrPKS) genes were cloned into YEpADH2p-URA3 as described in our previous studies (1, 3-8) or were custom synthesized by the Joint Genome Institute based on publicly available sequence data (2). All newly constructed plasmids were verified by DNA sequencing. Escherichia coli DH10B and plasmid pJET1.2 (Thermo Fisher) were used for routine DNA manipulations.

1.1.2 Total biosynthesis and biotransformation.

Saccharomyces cerevisiae BJ5464-NpgA (MAT α ura3-52 his3- Δ 200 leu2- Δ 1 trp1 pep4::HIS3 prb1 $\Delta 1.6R$ can1 GAL)(37) was the host for expression vectors based on YEpADH2p-TRP, YEpADH2p-URA and YEpADH2p-LEU (21-29). For total biosynthesis, expression plasmids for the appropriate hrPKS, nrPKS and OMT were transformed into cells of Saccharomyces cerevisiae BJ5464-NpgA (MATa ura3-52 his3- $\Delta 200$ leu2- $\Delta 1$ trp1 pep4::HIS3 prb1 $\Delta 1.6R$ can1 GAL)(9) using the LiCl-PEG procedure (10), and the cells were plated on SC minimal dropout (-Trp, -Ura, -Leu) agar plates (Clontech). For biotransformation experiments, the expression vector for the appropriate OMT was transformed into the Saccharomyces cerevisiae BJ5464-NpgA host (9), and transformants were selected on SC minimal droupout (-Leu) agar plates (Clontech). Three to five independent S. cerevisiae transformants were tested for the production of BDL congeners or for the biotransformation of BDL substrates, and fermentations with representative isolates were repeated at least three times with three replicates each (n=9) for product identification and quantitation. Recombinant yeast cells were grown in 100-mL Erlenmeyer flasks containing 25 mL of the appropriate SC minimal droupout medium (Clontech) at 30 °C with shaking at 220 rpm until the OD₆₀₀ reached 0.6, corresponding to 0.33 ± 0.03 g of S. cerevisiae cells (wet weight). Then, an equal volume of YP medium (1% yeast extract, 2% peptone, 1% glucose) was added to the cultures. Polyketide substrates for biotransformations were dissolved in methanol, and supplemented to the cultures (10 μ g/mL, final concentration) at the time of addition of the YP medium. The fermentations were continued at 30 °C with shaking at 220 rpm for an additional 48 hours, with the wet cell weight reaching 1.28 ± 0.18 g. No significant differences in

cell growth were noted for the *S. cerevisiae* strains expressing different variants of the OMT enzymes. Fermentations were scaled up for the isolation of polyketide compounds to two to ten liters, depending on yield.

1.1.3 OMT expression in *E. coli* and protein purification.

The gene encoding LtOMT was cloned from Lasiodiplodia theobromae NBRC 31059 as described (21).The *hpm5* gene for HsOMT (29) and the gene for LtOMT variant M1 were commercially synthesized (Joint Genome Institute and BioBasic, respectively). OMT-encoding genes were inserted as NotI-EcoRI fragments into the multiple cloning site of the pACYCDuet-1 vector (EMD Millipore) and transformed into Escherichia coli Arctic Express (DE3) RIL cells (Agilent Technologies). Transformed E. coli strains were cultivated in LB medium supplemented with chloramphenicol (17.0 μ g/mL, final concentration) with shaking at 220 rpm at 37 °C until the OD₆₀₀ reached 0.6, induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), and the incubation was continued for 24 hours with shaking at 220 rpm at 11 °C. The cells were harvested, washed, and suspended in Binding Buffer (20 mM sodium phosphate buffer (pH7.4), 500 mM NaCl) supplemented with fungal/yeast protease inhibitor cocktail (Biomake). After sonication and centrifugation at 10,000 rpm, the supernatant was loaded onto a His-Bind Ni2+-NTA column (Thermo) and washed with 20 bed volumes of Wash Buffer (20 mM sodium phosphate buffer (pH7.4), 500 mM NaCl, 20 mM imidazole (pH7.4)). The His tagged protein was eluted with Elution Buffer (20 mM sodium phosphate buffer (pH7.4), 500 mM NaCl, 250 mM imidazole (pH7.4)). Eluted fractions were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Fractions demonstrating at least 95% purity for the target OMT by SDS-PAGE were concentrated and desalted by VivaSpin Turbo ultrafiltration concentrators (Sartorius, molecular weight cutoff of 10,000) and the buffer was exchanged to Binding Buffer. Protein concentration was determined using the Bradford dye-binding assay (Thermo). Purified enzymes were stored as aliquots at -80°C after the addition of 10% (vol/vol) glycerol. Enzyme activity assays were performed in 100 μ L reaction mixtures containing 50 mM Tris-HCl (pH 8.0), 10 mM MgCl₂, 0.2% Tween-20, 1 mM DLD **1** as the substrate, and 1 mM *S*-adenosyl methionine (SAM) as the methyl group donor. Reactions were initiated by adding the OMT enzyme (2 μ g/100 μ L for LtOMT, 20 μ g/100 μ L for the mutant enzymes), the mixtures were incubated at 30 °C for 1 hour for LtOMT and overnight for the mutants, and the reactions were stopped by extractions with ethyl acetate (three times 400 μ L). The solvent was evaporated from the pooled ethyl acetate fractions, and the residue was dissolved in 100 μ L methanol for quantitative HPLC analysis. Kinetic parameters (V_{max} and K_m) were obtained under initial velocity conditions at 30 °C for 5 or 15 minutes (LtOMT or mutants, respectively) for substrate DLD **1** (0.125, 0.25, 0.5, 1, 2 and 4 mM, final concentrations) while the concentration of SAM was held at 1mM. Michaelis-Menten saturation curves were fitted to the equation V= V_{max} [S]/(K_m +[S]) using KaleidaGraph (Synergy). Measurements were repeated three times with three replicates each (n=9).

1.1.4 Protein structure modeling.

Homology protein structure models for LtOMT and HsOMT were built with SWISS-MODEL (11) using the MmcR mitomycin 7-*O*-methyltransferase of *Streptomyces lavendulae* (PDB: 3GXO) (12) as the template. Substrates DLD **1**, DHZ **3**, and co-product SAH were modeled in Chem3D using energy minimization to a minimum root mean square (RMS) gradient of 0.010, and molecular dynamics (2.0 fs step interval, 10,000 steps, 1.0 Kcal/atoms/ps heating and cooling rate, 300 K target temperature), followed by docking with the LtOMT or the HsOMT enzymes using Autodock in a two-step approach

(first the co-product, then the methyl acceptor substrate). Protein structures were rendered in Pymol and compared using the DALI server (13). Protein topologies were illustrated with Pro-Origami (http://munk.csse.unimelb.edu.au/pro-origami/porun.shtml).

1.2 Isolation and characterization of *O*-methylated products.

1.2.1 General methods.

Extracts of recombinant yeast cultures were prepared and analyzed by liquid chromatography – mass spectrometry (LC-MS), and the BDL congeners were isolated from large scale fermentations (1-5 L, depending on yield) as previously described (21, 24-28). Quantitative HPLC analysis was conducted on an Agilent 1100 series HPLC instrument equipped with a reversed-phase C18 column (Kromasil 100-5-C18, 5 \square m, 4.6 mm \square 250 mm). Substrate and product amounts were determined from the area under the peak at 210 nm using a calibration curve for the analyte.

For large scale fermentations, *Saccharomyces cerevisiae* BJ5464-NpgA cultures were adjusted to pH 5.0 and extracted with equal volumes of ethyl acetate three times. The extracts were pooled, dried *in vacuo*, and reconstituted in methanol. Samples were routinely analyzed on an Agilent 1100 series HPLC instrument equipped with a C18 reversed-phase column (Kromasil 100-5-C18, 5 \Box m, 4.6 mm \Box 250 mm). For the isolation of *O*-methylated polyketide products, extracts were first subjected to silica gel (25 g) column chromatography and eluted with a gradient of chloroform/methanol to yield five fractions (Fraction A, v/v 100:0, 250 mL; Fraction B, v/v 99:1, 250 mL; Fraction C, v/v 98:2, 250 mL; Fraction E, v/v 90:10, 250 mL). Each of these fractions was

analyzed by LC-MS to detect the O-methylated products on a Thermo Scientific LXQ ESI-spray mass spectrometer coupled with an Agilent 1100 series HPLC instrument. Fractions containing the target compounds were subsequently purified by preparative HPLC on a Kromasil KR100-7-C18 reversedphase column (5 \Box m, 10 mm \Box 250 mm) using a Waters Delta Prep 4000 system equipped with a PDA 996 detector. ¹H, ¹³C, and 2D NMR spectra were recorded on a Bruker Avance III 400 spectrometer at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shift values (\Box) are given in parts per million (ppm), and the coupling constants (J values) are in Hz. Chemical shifts were referenced to the residual solvent peaks of methanol- d_4 , chloroform-d, and DMSO- d_6 , respectively. HPLC-HRESIMS and MS-MS spectra were acquired on an Agilent 1290 Infinity II HPLC coupled with an Agilent QTOF 6530 instrument using capillary and cone voltages of 3.6 kV and 40-150 V, respectively. The collision energy was optimized from 15 to 50 V. For accurate mass measurements the instrument was calibrated each time using a standard calibration mix (Agilent) in the range of m/z 150-1900. The HPLC was equipped with an Agilent Eclipse Plus C18 RRHD column (50 mm x 2.1 mm id, 1.8 µm particle size), and eluted with a linear gradient of 10-50% of acetonitrile-water over 4 min, 50-95% for 4 min, 95% acetonitrile-water for 2 min and drop down to 10% in 1 min at a flow rate of 0.5 mL/min. Unless otherwise stated, chemicals and solvents were of reagent grade and used as obtained from commercial sources.

1.2.2 Lasiodiplodin (1a)

The crude extract (1.2 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-LtLasS2 (1) with LtOMT (1) was separated by silica gel column chromatography to yield fractions A–E. Fraction A was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O

(85:15, v/v) to yield compound **1a** (15 mg, $t_R = 14.2 \text{ min}$) as a colorless oil.

Compound **1a**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4) data (Table S2.1) were in agreement with the published data (1) for lasiodiplodin (**1a**) (–)-HRESIMS m/z 291.1608 [M–H][–] (calcd. for C₁₇H₂₃O₄, 291.1602).

1.2.3 5-O-Methyl-desmethyllasiodiplodin (1b)

The crude extract (1.5 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-LtLasS2 (1) with HsOMT (2) was separated by silica gel column chromatography to yield fractions A–E. Fraction A was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (85:15, v/v) to yield compound **1b** (20 mg, $t_{\rm R}$ = 17.5 min) as a colorless oil.

Compound **1b**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.1; (-)-HRESIMS *m*/*z* 291.1603 [M–H]⁻ (calcd. for C₁₇H₂₃O₄, 291.1602).

1.2.4 3,5-Di-O-methyl-desmethyllasiodiplodin (1c)

The crude extract (1.3 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-LtLasS2 (3) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction A was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (85:15, v/v) to yield compound **1c** (12 mg, $t_R = 15.2$ min) as a colorless oil.

Compound 1c: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.1; (+)-HRESIMS *m*/*z* 307.1904 [M+H]⁺ (calcd. for C₁₈H₂₇O₄, 307.1907).

1.2.5 3-O-Methylradiplodin (2a)

The crude extract (1.5 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing CcRadS1-LtLasS2(SAT_{CcRadS2}) (5) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (80:20, v/v) to yield compound **2a** (13 mg, $t_{\rm R}$ = 14.7 min) as a colorless oil.

Compound **2a**: ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table S2.2; (–)-HRESIMS m/z 287.1293 [M–H][–] (calcd. for C₁₇H₁₉O₄, 287.1289).

1.2.6 5-O-Methylradiplodin (2b)

The crude extract (1.2 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing CcRadS1-LtLasS2(SAT_{CcRadS2}) (5) with LtOMT mutant M6 was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (80:20, v/v) to yield compound **2b** (13 mg, $t_R = 16.2$ min) as a colorless oil.

Compound **2b**: ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table S2.2; (–)-HRESIMS m/z 287.1291 [M–H][–] (calcd. for C₁₇H₁₉O₄, 287.1289).

1.2.7 3,5-Di-O-methylradiplodin (2c)

The crude extract (1.0 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing CcRadS1-LtLasS2(SAT_{CcRadS2}) (5) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction A was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (80:20, v/v) to yield compound **2c** (9.8 mg, t_R = 15.3 min) as a colorless oil.

Compound **2c**: ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table S2.2; (+)-S14

HRESIMS *m*/*z* 303.1587 [M+H]⁺ (calcd. for C₁₈H₂₃O₄, 303.1596).

1.2.8 14,15-Dehydro-3-O-methylzearalenol (3a)

The crude extract (1.3 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing the *hpm8-hpm3* genes for HsHypS1-HsHypS2 (2) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **3a** (13.2 mg, $t_R = 16.0$ min) as a white solid.

Compound **3a**: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (100 MHz, DMSO-*d*₆): Table S2.3; (-)-HRESIMS *m*/*z* 331.1554 [M–H]⁻ (calcd. for C₁₉H₂₃O₅, 331.1551).

1.2.9 14,15-Dehydro-5-O-methylzearalenol (3b)

The crude extract (1.1 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing the *hpm8-hpm3* genes for HsHypS1-HsHypS2 (2) with HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **3b** (12.1 mg, $t_R = 18.2$ min) as a white solid.

Compound **3b**: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (100 MHz, DMSO-*d*₆): Table S2.3; (+)-HRESIMS *m*/*z* 315.1576 [M–H₂O+H]⁺ (calcd. for C₁₉H₂₃O₄, 315.1596).

1.2.10 14,15-Dehydro-3,5-di-O-methylzearalenol (3c)

The crude extract (1.2 g) of a 4 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing the *hpm8-hpm3* genes for HsHypS1-HsHypS2 (2) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semipreparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **3c** (10.2 mg, $t_R = 17.5$ min) S15 as a white solid.

Compound **3c**: ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (100 MHz, DMSO-*d*₆): Table S2.3; (+)-HRESIMS *m*/*z* 329.1782 [M–H₂O+H]⁺ (calcd. for C₂₀H₂₅O₄, 329.1752).

1.2.11 3-O-Methylzearalenol (4a)

The crude extract (1.2 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing GzZeaS1-GzZeaS2 (14, 15) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **4a** (5.3 mg, t_R = 15.6 min) as a white solid.

Compound **4a**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.4; (–)-HRESIMS *m*/*z* 333.1713 [M–H][–] (calcd. for C₁₉H₂₅O₅, 333.1707).

1.2.12 5-O-Methylzearalenol (4b)

The crude extract (1.4 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing GzZeaS1-GzZeaS2 (14, 15) with HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **4b** (6.5 mg, $t_R = 17.2$ min) as a white solid.

Compound **4b**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.4; (–)-HRESIMS *m*/*z* 333.1705 [M–H][–] (calcd. for C₁₉H₂₅O₅, 333.1707).

1.2.13 3,5-Di-O-methylzearalenol (4c)

Compound 4b (4 mg) was fed to a 1 L fermentation of S. cerevisiae BJ5464-NpgA expressing

LtOMT. The crude extract (0.5 g) was separated by silica gel column chromatography to yield fractions A–E. Fraction D was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (75:25, v/v) to yield compound **4c** (3.0 mg, $t_{\rm R}$ = 16.2 min) as a colorless oil.

Compound 4c: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.4; (+)-HRESIMS *m*/*z* 331.1910 [M–H₂O+H]⁺ (calcd. for C₂₀H₂₇O₄, 331.1909).

1.2.14 3-O-Methyllasicicol (5a)

The crude extract (1.3 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-CcRadS2 (5) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (75:25, v/v) to yield compound **5a** (8.2 mg, $t_{\rm R}$ = 18.3 min) as a white solid.

Compound **5a**: ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃): Table S2.4; (–)-HRESIMS m/z 333.1708 [M–H][–] (calcd. for C₁₉H₂₅O₅, 333.1707).

1.2.15 7-O-methyllasilarin (6a)

The crude extract (1.7 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-AtCurS2 (5) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (75:35, v/v) to yield compound **6a** (13.2 mg, $t_R = 15.5$ min) as a white solid.

Compound **6a**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.5; (–)-HRESIMS *m*/*z* 333.1701 [M–H][–] (calcd. for C₁₉H₂₅O₅, 333.1707).

1.2.16 5-O-methyllasilarin (6b)

The crude extract (1.6 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-AtCurS2 (5) with HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (75:35, v/v) to yield compound **6b** (12.2 mg, $t_{\rm R} = 17.5$ min) as a white solid.

Compound **6b**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.5; (–)-HRESIMS *m*/*z* 333.1701 [M–H][–] (calcd. for C₁₉H₂₅O₅, 333.1707).

1.2.17 5,7-Di-O-methyllasilarin (6c)

The crude extract (1.4 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing LtLasS1-AtCurS2 (5) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction B was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (75:35, v/v) to yield compound **6c** (3.2 mg, $t_R = 16.3$ min) as a white solid.

Compound **6c**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.5; (–)-HRESIMS *m*/*z* 347.1874 [M–H][–] (calcd. for C₂₀H₂₇O₅, 347.1864).

1.2.18 7-[(*R*,*E*)-6-Hydroxyhept-1-en-1-yl]-3-*O*-methylresorcylic acid ethyl ester (7a)

The crude extract (1.5 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AzResS1-LtLasS2(SAT_{AzResS2}) (5) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **7a** (15.3 mg, $t_R = 13.4$ min) as a white solid.

Compound 7a: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S18

S2.6; (–)-HRESIMS *m*/*z* 307.1561 [M–H][–] (calcd. for C₁₇H₂₃O₅, 307.1551).

1.2.19 7-[(*R*,*E*)-6-Hydroxyhept-1-en-1-yl]-5-*O*-methylresorcylic acid ethyl ester (7b)

The crude extract (1.2 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AzResS1-LtLasS2(SAT_{AzResS2}) (5) with HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **7b** (11.2 mg, $t_R = 15.4$ min) as a white solid.

Compound **7b**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.6; (–)-HRESIMS *m*/*z* 307.1543 [M–H][–] (calcd. for C₁₇H₂₃O₅, 307.1551).

1.2.20 7-[(*R*,*E*)-6-Hydroxyhept-1-en-1-yl]-3,5-di-*O*-methylresorcylic acid ethyl ester (7c)

The crude extract (1.5 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AzResS1-LtLasS2(SAT_{AzResS2}) (5) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **7c** (8.9 mg, $t_R = 14.4$ min) as a white solid.

Compound **7c**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.6; (–)-HRESIMS *m/z* 321.1701 [M–H][–] (calcd. for C₁₈H₂₅O₅, 321.1707).

1.2.21 7-[(*S*,*E*)-6-Hydroxyhept-1-en-1-yl]-resorcylic acid ethyl ester (8)

The crude extract (1.2 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AtCurS1-LtLasS2(SAT_{AtCurS2}) was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, S19

v/v) to yield compound 8 (10.2 mg, $t_{\rm R}$ = 14.0 min) as a colorless oil.

Compound **8**: ¹H NMR (400 MHz, methanol- d_4): δ_H 6.92 (1H, d, J = 15.5 Hz, H-8), 6.37 (1H, d, J = 2.4 Hz, H-6), 6.21 (1H, d, J = 2.4 Hz, H-4), 5.90 (1H, dt, J = 15.5, 6.8 Hz, H-9), 4.36 (2H, q, J = 7.1 Hz, H-15), 3.75 (1H, m, H-13), 2.22 (2H, m, H-10), 1.61 (2H, m, H-12), 1.44 (2H, m, H-11), 1.39 (3H, t, J = 7.1 Hz, H-16), 1.17 (3H, d, J = 6.2 Hz, H-14); ¹³C NMR (100 MHz, methanol- d_4): 172.7 (C-1), 165.4 (C-3), 163.8 (C-5), 145.1 (C-7), 133.4 (C-9), 132.6 (C-8), 109.2 (C-6), 105.2 (C-2), 102.8 (C-4), 68.7 (C-13), 62.4 (C-15), 39.9 (C-12), 34.2 (C-10), 26.7 (C-11), 23.7 (C-14), 14.8 (C-16); (-)-HRESIMS *m*/*z* 293.1400 [M–H]⁻ (calcd. for C₁₆H₂₁O₅, 293.1389).

1.2.22 7-[(*S*,*E*)-6-Hydroxyhept-1-en-1-yl]-3-*O*-methylresorcylic acid ethyl ester (8a)

The crude extract (1.3 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AtCurS1-LtLasS2(SAT_{AtCurS2}) (5) with LtOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **8a** (3.2 mg, $t_R = 13.5$ min) as a white solid.

Compound **8a**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.7; (–)-HRESIMS *m*/*z* 307.1549 [M–H][–] (calcd. for C₁₇H₂₃O₅, 307.1551).

1.2.23 7-[(*S*,*E*)-6-Hydroxyhept-1-en-1-yl]-5-*O*-methylresorcylic acid ethyl ester (8b)

The crude extract (1.4 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AtCurS1-LtLasS2(SAT_{AtCurS2}) (5) with HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **8b** (1.8 mg, $t_{\rm R}$ = 15.3 min) as a white solid.

Compound **8b**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.7; (–)-HRESIMS *m*/*z* 307.1544 [M–H][–] (calcd. for C₁₇H₂₃O₅, 307.1551).

1.2.24 7-[(*S*,*E*)-6-Hydroxyhept-1-en-1-yl]-3,5-di-*O*-methylresorcylic acid ethyl ester (8c)

The crude extract (1.4 g) of a 3 L fermentation broth of *S. cerevisiae* BJ5464-NpgA co-expressing AtCurS1-LtLasS2(SAT_{AtCurS2}) (5) with LtOMT and HsOMT was separated by silica gel column chromatography to yield fractions A–E. Fraction C was further purified by semi-preparative HPLC eluting with CH₃CN/H₂O (70:30, v/v) to yield compound **8c** (3.2 mg, t_R = 14.3 min) as a colorless oil.

Compound **8c**: ¹H NMR (400 MHz, methanol- d_4) and ¹³C NMR (100 MHz, methanol- d_4): Table S2.7; (–)-HRESIMS *m*/*z* 321.1699 [M–H][–] (calcd. for C₁₈H₂₅O₅, 321.1707).

1.3 Structure elucidation.

The HRESIMS-determined molecular formula of compound **1b**, $C_{17}H_{24}O_4$, was identical to that of **1a**. The ¹H and ¹³C NMR spectra of **1b** displayed resonances corresponding to a desmethyllasiodiplodin core and an *O*-methyl functionality, and were highly similar to those of **1a**. However, discrepancies in the ¹H and ¹³C chemical shifts were observed (Table S2.1), indicating that these two compounds were regioisomers which only differed in the position of the *O*-methylation. Next, HSQC, HMBC and 1D NOESY experiments were carried out to identify the position to which the *O*-methyl functionality was attached in **1b**. The HMBC correlations of the aromatic protons (δ_{H} 6.29, d, J = 2.8Hz; δ_{H} 6.31, d, J = 2.8 Hz) and the *O*-methyl protons (δ_{H} 3.78, s) with the aromatic carbon at δ_{C} 165.1 suggested that the *O*-methyl functionality was attached to C-5 (Figure S6). This was further supported by the fact that both aromatic protons had NOE correlations with the *O*-methyl protons (Figure S6). Based on the above-described evidence, the structure of **1b** was established as 5-*O*-methyldesmethyllasiodiplodin.

The HRESIMS-determined molecular weight of **1c** was 14 amu higher than that of **1a** and **1b**. The ¹H and ¹³C NMR spectra of **1c** were similar to those of **1a** and **1b** (Table S2.1), except for the presence of resonances corresponding to two *O*-methyl functionalities ($\delta_{\rm H}$ 3.80, s, $\delta_{\rm C}$ 55.8; $\delta_{\rm H}$ 3.79, s, $\delta_{\rm C}$ 56.4) instead of one. Extensive analysis of the HMBC spectrum confirmed that **1c** was the 3,5-di-*O*-methylated derivative of desmethyllasiodiplodin **1** (Figure S6).

The HRESIMS-determined molecular weight of compounds **2a** and **2b** were 14 amu higher than that of radiplodin. The ¹H and ¹³C NMR spectra of **2a** and **2b** were quite similar, and both showed resonances corresponding to an extra *O*-methyl substituent (**2a**: $\delta_{\rm H}$ 3.69, s; $\delta_{\rm C}$ 56.0; **2b**: $\delta_{\rm H}$ 3.79, s; $\delta_{\rm C}$ 55.4) when compared to those of radiplodin (Table S2.2). The determination of *O*-methylation positions and the assignments of ¹H and ¹³C NMR data were achieved by analyzing the 2D NMR spectra. In the HMBC spectra, the *O*-methyl protons of **2a** showed correlations with C-3 ($\delta_{\rm C}$ 158.0), while the *O*methyl protons of **2b** had correlations with C-5 ($\delta_{\rm C}$ 163.8), which suggested **2a** and **2b** as the 3-*O*methylated and 5-*O*-methylated products of radiplodin, respectively (Figure S6).

Based on the HRESIMS-determined molecular weight and the 1D NMR spectra (Table S2.2), **2c** was elucidated as the 3,5-di-*O*-methylated product of radiplodin, and this hypothesis was verified by HSQC and HMBC experiments (Figure S6).

The molecular formula of compounds **3a** and **3b** were determined as $C_{19}H_{24}O_5$ by the HRESIMS. The initial interpretation of the ¹H and ¹³C NMR data (Table S2.3) established their structures as mono-*O*-methyl substituted 14,15-dehydrozearalenol. Next, HSQC and HMBC experiments were carried out to determine the *O*-methylation position. In the HMBC spectrum of **3a**, the aromatic proton at δ_H 6.31 (d, *J* = 2.0 Hz, H-4) and the *O*-methyl protons (δ_H 3.68, s) had a cross peak with the aromatic carbon at δ_C 157.2 (C-3), indicating that **3a** was the 3-*O*-methylated product of 14,15-dehydrozearalenol (Figure S6). By contrast, both aromatic protons (δ_H 6.30, d, *J* = 2.4 Hz, H-4; δ_H 6.56, d, *J* = 2.4 Hz, H-6) and the *O*-methyl protons (δ_H 3.73, s) of **3b** had HMBC correlations with the aromatic carbon at δ_C 160.9 (C-5), defining the structure of **3b** as 14,15-dehydro-3-*O*-methylzearalenol (Figure S6).

The HRESIMS-determined molecular weight of compound **3c** was 14 amu higher than those of **3a** and **3b**, indicating the presence of an extra methyl functional group. After the comprehensive analysis of 1D and 2D NMR data (Table S2.3 and Figure S6), the structure of **3c** was elucidated as 14,15-dehydro-3,5-di-*O*-methylzearalenol.

The HRESIMS-determined molecular formula, $C_{19}H_{26}O_5$, as well as the ¹H and ¹³C NMR data of compounds **4a** and **4b** (Table S2.4) indicated that they were both mono-*O*-methylated products of zearalenol. The 1D NOESY spectrum of **4a** showed that the *O*-methyl protons (δ_H 3.76, s) correlated with only one aromatic proton (δ_H 6.55, d, J = 2.0 Hz). On the other hand, the *O*-methyl protons of **4b** (δ_H 3.80, s) had NOE correlations with not only one, but both aromatic protons (δ_H 6.56, d, J = 2.0 Hz; δ_H 6.34, d, J = 2.0 Hz) (Figure S6). These evidences strongly indicated that **4a** and **4b** were 3-*O*-methylzearalenol and 5-*O*-methylzearalenol, respectively.

The HRESIMS-determined molecular weight of compound **4c** was 14 amu higher than those of **4a** S23 and **4b**, indicating the presence of an additional methyl group. The ¹H and ¹³C NMR data (Table S2.4) further supported **4c** as the di-*O*-methylated product of zearalenol. Based on the HMBC correlations of one set of methoxy protons ($\delta_{\rm H}$ 3.83, s) with the aromatic carbon at $\delta_{\rm C}$ 162.9, and the other set of methoxy protons ($\delta_{\rm H}$ 3.79, s) with the aromatic carbon at $\delta_{\rm C}$ 159.0 (Figure S6), the structure of **4c** was confirmed as 3,5-di-*O*-methylzearalenol.

The HRESIMS-determined molecular formula and the 1D NMR data (Table S2.4) of compound **5a** suggested that it was an *O*-methylated product of lasicicol. The HMBC correlations of one aromatic proton ($\delta_{\rm H}$ 6.21, d, J = 2.0 Hz) and the *O*-methyl protons ($\delta_{\rm H}$ 3.71, s) with the aromatic carbon at $\delta_{\rm C}$ 159.1 confirmed that the OH at C-3 of lasicicol was *O*-methylated in **5a** (Figure S6).

The HRESIMS-determined molecular weight of compounds **6a** and **6b** were both 14 amu higher than that of lasilarin. Their ¹H and ¹³C NMR spectra were very similar, both showing resonances corresponding to a lasilarin core and an *O*-methyl functionality, but not superimposable with each other (Table S2.5). These evidences suggested that **6a** and **6b** were regioisomeric mono-*O*-methylated products of lasilarin. The 1D NOESY spectrum of **6a** showed that the *O*-methyl protons (δ_{H} 3.80, s) correlated with only one aromatic proton (δ_{H} 6.41, d, J = 2.2 Hz), indicating the *O*-methyl group was attached to C-7 in **6a** (Figure S6). By contrast, HMBC correlations of both aromatic protons (δ_{H} 6.34, d, J = 2.2 Hz; δ_{H} 6.36, d, J = 2.2 Hz) and the *O*-methyl protons (δ_{H} 3.77, s) with the aromatic carbon at δ_{C} 163.0 suggested that the *O*-methyl group in **6b** was attached to C-5 (Figure S6). Based on the above-described evidence, the structures of **6a** and **6b** were elucidated as 7-*O*-methyllasilarin and 5-*O*methyllasilarin, respectively.

The HRESIMS-determined molecular formula, $C_{20}H_{28}O_5$, and the 1D NMR data of **6c** were S24

consistent with those of a di-*O*-methylated product of lasilarin (Table S2.5). Since lasilarin had only two positions suitable for *O*-methylation, the structure of **6c** was elucidated as 5,7-di-*O*-methyllasilarin.

The molecular formula of compounds **7a** and **7b** were established as $C_{17}H_{25}O_5$ by HRESIMS. The ¹H and ¹³C NMR data of **7a** and **7b** (Table S2.6) suggested that they were regioisomeric mono-*O*methylated products of ARA7 (7). In the HMBC spectrum of **7a**, the *O*-methyl protons (δ_H 3.76, s) and one aromatic proton (δ_H 6.35, d, J = 2.0 Hz) had correlations with the aromatic carbon at δ_C 159.6 (C-3). However, in the case of **7b** the *O*-methyl protons (δ_H 3.81, s) and both aromatic protons (δ_H 6.36, d, J = 2.4 Hz; δ_H 6.47, d, J = 2.4 Hz) correlated with the aromatic carbon at δ_C 164.9 (C-5) (Figure S6). Based on these, the structures of **7a** and **7b** were established as 7-[(*R*,*E*)-6-Hydroxyhept-1-en-1yl]-3-*O*-methylresorcylic acid ethyl ester and 7-[(*R*,*E*)-6-Hydroxyhept-1-en-1-yl]-5-*O*methylresorcylic acid ethyl ester, respectively.

The HRESIMS-determined molecular weight of 7c was 14 amu higher than those of 7a and 7b, suggesting that 7c was the di-*O*-methylated derivative of 7. After careful examination of the 1D and 2D NMR data (Table S2.6 and Figure S6), the structure of 7c was elucidated as 7-[(R,E)-6-Hydroxyhept-1-en-1-yl]-3,5-di-*O*-methylresorcylic acid ethyl ester.

The ¹H and ¹³C NMR data of ARA8 (8) (see section 1.2.21) were identical to those of ARA7 (7) (5), while the circular dichroism (CD) spectra (Figure S8) indicated that 8 was the enantiomer of 7 whereby C-13 of 8 displays an *S*-configuration. The HRESIMS-determined molecular weight and the 1D NMR spectra of 8a and 8b (Table S2.7) were identical to those of 7a and 7b, respectively, suggesting that 8a is the 3-*O*-methylated derivative of 8, while 8b is the 5-*O*-methylated product. Further examination of the HMBC correlations supported this hypothesis (Figure S6). Thus, the structures of

8a and **8b** were elucidated as 7-[(S,E)-6-Hydroxyhept-1-en-1-yl]-3-*O*-methylresorcylic acid ethyl ester and 7-[(S,E)-6-Hydroxyhept-1-en-1-yl]-5-*O*-methylresorcylic acid ethyl ester, respectively.

Similarly, the HRESIMS determined molecular weight and the 1D NMR spectra of 8c (Table S2.7) were identical to those of 7c. Interpretation of the HMBC spectrum confirmed that 8c was 7-[(S,E)-6-Hydroxyhept-1-en-1-yl]-3,5-di-O-methylresorcylic acid ethyl ester (Figure S6).

2 SI Tables

	LtOM	T	Mutations		
Sites	Amino acid	Codon	Amino acid	Codon	
330	F	TTC	V	GTC	
356	Т	ACT	М	ATG	
384	Q	CAA	K	AAG	
386	G	GGT	R	AGA	
387	W	TGG	Н	CAT	
388	Q	CAA	Н	CAT	

 Table S1.
 Mutations engineered into LtOMT.

no.	1a		1b	1b		1c		
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)		
1	170.9, C		172.9, C		170.6, C			
2	109.2, C		107.3, C		118.9, C			
3	159.4, C		165.6, C		159.3, C			
4	97.9, CH	6.25, d (2.8)	99.9, CH	6.29, d (2.8)	97.2, CH	6.41, d (2.0)		
5	160.8, C		165.1, C		163.0, C			
6	117.6, CH	6.29, d (2.8)	110.9, CH	6.31, d (2.8)	107.1, CH	6.39, d (2.0)		
7	143.8, C		149.2, C		143.8, C			
8	31.3, CH ₂	2.64, m	32.2, CH ₂	3.25, m	31.4, CH ₂	2.69, dt (15.6, 8.0)		
		2.48, m		2.53, m		2.55, dt (15.6, 8.0)		
9	31.1, CH ₂	1.37–1.71, m	32.0, CH ₂	1.40–1.73, m	31.3, CH ₂	1.20–1.72, m		
10	25.6, CH ₂	1.37–1.71, m	25.5, CH ₂	1.40–1.73, m	25.6, CH ₂	1.20–1.72, m		
11	27.7, CH ₂	1.37–1.71, m	28.1, CH ₂	1.40–1.73, m	27.7, CH ₂	1.20–1.72, m		
12	26.3, CH ₂	1.37–1.71, m	25.5, CH ₂	1.40–1.73, m	26.3, CH ₂	1.20–1.72, m		
13	22.4, CH ₂	1.37–1.71, m	22.6, CH ₂	1.40–1.73, m	22.3, CH ₂	1.20–1.72, m		
14	33.6, CH ₂	1.92, m	34.2, CH ₂	1.92, m	33.6, CH ₂	1.93, m		
		1.58–1.71, m		1.82, m		1.58–1.72, m		
15	73.4, CH	5.17, m	76.0, CH	5.16, m	73.5, CH	5.17, m		
16	19.9, CH ₃	1.30, d (6.4)	20.4, CH ₃	1.35, d (6.2)	19.9, CH ₃	1.31, d (6.4)		
3-OCH ₃	56.3, CH ₃	3.75, s			56.4, CH ₃	3.79, s		
5-OCH ₃			55.7, CH ₃	3.78, s	55.8, CH ₃	3.80, s		

Table S2.1.Compounds 1a, 1b and 1c (in methanol- d_4).

no.	2a		2b	2b		2c		
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)		
1	168.9, C		171.4, C		167.9, C			
2	115.7, C		104.8, C		116.4, C			
3	158.0, C		164.6, C		157.5, C			
4	97.9, CH	6.25, d (2.4)	99.6, CH	6.35, d (2.8)	97.2, CH	6.32, d (2.4)		
5	157.9, C		163.8, C		161.1, C			
6	105.0, CH	6.31, d (2.4)	108.0, CH	6.34, d (2.8)	102.1, CH	6.40, d (2.4)		
7	138.6, C		144.0, C		138.1, C			
8	130.5, CH	6.23, d (15.1)	136.0, CH	6.69, d (15.6)	130.6, CH	6.29, d (16.0)		
9	133.0, CH	5.77, dt (15.1, 6.0)	128.9, CH	5.70, m	132.6, CH	5.85, dt (16.0, 6.0		
10	30.7, CH ₂	2.20, m	31.0, CH ₂	2.16, m	30.7, CH ₂	2.28, m		
		2.31, m		2.31, m				
11	30.0, CH ₂	2.23, m	30.9, CH ₂	2.16, m	29.8, CH ₂	2.24, m		
		2.31, m		2.31, m		2.30, m		
12	132.5, CH	5.28, m	134.3, CH	5.36, m	132.5, CH	5.23, m		
13	128.6, CH	5.39, m	126.6, CH	5.36, m	128.6, CH	5.40, ddd (4.4, 9.0 15.2)		
14	40.2, CH ₂	2.31, m	39.1, CH ₂	2.31, m	40.1, CH ₂	2.24, m		
		2.41, brd (14.1)		2.51, dt (15.2, 4.4)		2.40, brd (14.0)		
15	71.9, CH	5.28, m	72.0, CH	5.13, m	71.3, CH	5.30, m		
16	20.9, CH ₃	1.34, d (6.4)	20.1, CH ₃	1.41, d (6.4)	20.8, CH ₃	1.33, d (6.4)		
3-OCH ₃	56.0, CH ₃	3.69, s			55.9, CH ₃	3.77, s		
5-OCH ₃			55.4, CH ₃	3.79, s	55.4, CH ₃	3.78, s		
3-ОН				11.60, s				

Table S2.2.Compounds 2a, 2b and 2c (in CDCl3).

no.	3a		3b		3c	3c		
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)		
1	167.4, C		168.2, C		167.2, C			
2	114.9, C		113.5, C		116.4, C			
3	157.2, C		156.9, C		157.1, C			
4	97.9, CH	6.31, d (2.0)	100.0, CH	6.30, d (2.4)	97.49, CH	6.47, d (2.0)		
5	159.0, C		160.9, C		160.8, C			
6	102.3, CH	6.50, d (2.0)	100.7, CH	6.56, d (2.4)	100.2, CH	6.69, d (2.0)		
7	135.6, C		137.2, C		135.7, C			
8	125.6, CH	6.15, brs	126.6, CH	6.34, d (16.0)	125.6, CH	6.17, d (16.0)		
9	131.8, CH	6.15, brs	132.1, CH	6.24, dt (16.0, 5.6)	132.5, CH	6.35, dt (16.0, 5.2)		
10	29.1, CH ₂	2.13–2.23, m	29.4, CH ₂	2.13–2.24, m	29.1, CH ₂	2.19–2.25, m		
11	21.5, CH ₂	1.47–1.51, m	21.4, CH ₂	1.47–1.52, m	21.5, CH ₂	1.39–1.51, m		
12	35.1, CH ₂	1.37–1.47, m	34.9, CH ₂	1.43–1.45, m	35.2, CH ₂	1.37–1.48, m		
13	70.6, CH	3.68, brs	70.5, CH	3.91, brs	70.6, CH	3.84, m		
14	136.7, CH	5.44–5.50, m	136.9, CH	5.44–5.58, m	136.8, CH	5.41–5.55, m		
15	125.7, CH	5.44–5.50, m	125.3, CH	5.44–5.58, m	125.5, CH	5.41–5.55, m		
16	38.4, CH ₂	2.22–2.49, m	38.2, CH ₂	2.24–2.43, m	38.4, CH ₂	2.22–2.41, m		
17	70.6, CH	5.11, m	70.9, CH	5.14, m	70.7, CH	5.13, m		
18	20.6, CH ₃	1.26, d (6.0)	20.3, CH ₃	2.56, d (6.4)	20.6, CH ₃	1.26, d (6.4)		
3-OCH ₃	55.7, CH ₃	3.68, s			56.0, CH ₃	3.73, s		
5-0CH ₃			55.2, CH ₃	3.73, s	55.4, CH ₃	3.79, s		
13 - OH		4.62, brs		4.63, d (4.0)		4.62, d (4.4)		
3-ОН				10.09, brs				
5-ОН		9.74, brs						

Table S2.3.Compounds 3a, 3b and 3c (in DMSO- d_6).

no.	4a		4b	4b 4		4c		5a	
	$\delta_{\rm C}$, type	δ_{H} , mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	δ_{H} , mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{ m H}$, mult. (<i>J</i> in Hz)	
1	170.3, C		171.9, C		170.0, C		168.7, C		
2	116.4, C		109.6, C		117.7, C		116.2, C		
3	160.6, C		164.4, C		159.0, C		159.1, C		
4	104.4, CH	6.55, d (2.0)	106.2, CH	6.56, d (2.0)	98.4, CH	6.47, d (2.1)	98.7, CH	6.21, d (2.0)	
5	159.1, C		162.5, C		162.9, C		158.7, C		
6	98.9, CH	6.31, d (2.0)	100.8, CH	6.34, d (2.0)	102.4, CH	6.68, d (2.1)	110.4, CH	6.18, d (2.0)	
7	138.1, C		140.1, C		138.0, C		133.9, C		
8	129.0, CH	6.31, d (15.8)	131.8, CH	6.69, dt (15.8,	128.8, CH	6.35, d (15.8)	46.3, CH ₂	4.28, d (17.6)	
				1.5)				3.48, d (17.6)	
9	134.2, CH	6.08, ddd (15.8, 8.6, 5.1)	133.7, CH	6.03, ddd (15.8, 8.6, 5.1)	134.7, CH	6.17, ddd (15.8, 8.5, 5.1)	211.0, C		
10	31.3, CH ₂	2.26, m	31.9, CH ₂	2.30, m	31.3, CH ₂	2.28, m	41.8, CH ₂	2.56, m	
								2.33, m	
11	23.9, CH ₂	1.15–1.85, m	23.7, CH ₂	1.25–1.93, m	23.8, CH ₂	1.21–1.88, m	22.5, CH ₂	1.16–1.70, m	
12	33.2, CH ₂	1.15–1.85, m	32.7, CH ₂	1.25–1.93, m	33.3, CH ₂	1.21–1.88, m	25.6, CH ₂	1.16–1.70, m	
13	69.5, CH	3.62, m	69.4, CH	3.71, m	69.5, CH	3.62, m	25.5, CH ₂	1.16–1.70, m	
14	37.5, CH ₂	1.15–1.85, m	37.2, CH ₂	1.25–1.93, m	37.5, CH ₂	1.21–1.88, m	26.4, CH ₂	1.16–1.70, m	
15	20.5, CH ₂	1.15–1.85, m	20.4, CH ₂	1.25–1.93, m	20.5, CH ₂	1.21–1.88, m	23.3, CH ₂	1.16–1.70, m	
16	35.9, CH ₂	1.15–1.85, m	35.6, CH ₂	1.25–1.93, m	35.9, CH ₂	1.21–1.88, m	35.0, CH ₂	1.16–1.70, m	
17	72.3, CH	5.28, m	74.1, CH	5.17, m	72.4, CH	5.29, m	71.0, CH	5.23, m	
18	19.6, CH ₃	1.28, d (6.5)	19.1, CH ₃	1.34, d (6.5)	19.6, CH ₃	1.28, d (6.5)	20.5, CH ₃	1.31, d (6.3)	
3-OCH ₃	56.3, CH ₃	3.76, s			56.5, CH ₃	3.79, s	55.8, CH ₃	3.71, s	
5-OCH ₃			55.8, CH ₃	3.80, s	55.9, CH ₃	3.83, s			

Table S2.4. Compounds 4a, 4b, 4c (in methanol- d_4) and 5a (in CDCl₃).

no.	6a	6b			6c	
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)
1	173.2, C		173.4, C		173.1, C	
2	38.7, CH ₂	3.87, d (17.0)	39.3, CH ₂	3.99, d (17.0)	38.7, CH ₂	3.91, d (17.0)
		3.49, d (17.0)		3.56, d (17.0)		3.56, d (17.0)
3	135.7, C		136.3, C		135.5, C	
4	112.0, CH	6.32, d (2.2)	110.6, CH	6.36, d (2.2)	110.0, CH	6.54, d (2.2)
5	160.6, C		163.0, C		163.0, C	
6	98.9, CH	6.41, d (2.2)	101.1, CH	6.34, d (2.2)	98.3, CH	6.47, d (2.2)
7	161.1, C		159.2, C		160.2, C	
8	123.9, C		122.9, C		125.3, C	
9	209.8, C		209.8, C		209.6, C	
10	44.4, CH ₂	2.91, ddd (16.6, 8.6, 3.7)	44.3, CH ₂	3.01, ddd (16.6, 8.6, 3.7)	44.4, CH ₂	2.91, ddd (16.6, 8.6, 3.7)
		2.76, ddd (16.6, 7.8, 3.9)		2.84, ddd (16.6, 7.8, 3.9)		2.77, ddd (16.6, 7.8, 3.9)
11	28.1, CH ₂	1.20–1.44, m	28.0, CH ₂	1.20–1.44, m	28.1, CH ₂	1.20–1.44, m
12	24.5, CH ₂	1.58, m	24.6, CH ₂	1.58, m	24.4, CH ₂	1.58, m
		1.50, m		1.50, m		1.50, m
13	27.5, CH ₂	1.20–1.44, m	27.6, CH ₂	1.20–1.44, m	27.6, CH ₂	1.20–1.44, m
14	27.1, CH ₂	1.20–1.44, m	27.0, CH ₂	1.20–1.44, m	27.1, CH ₂	1.20–1.44, m
15	22.6, CH ₂	1.41, m	22.6, CH ₂	1.41, m	22.6, CH ₂	1.41, m
		1.27, m		1.27, m		1.27, m
16	34.9, CH ₂	1.54, m	35.0, CH ₂	1.54, m	34.9, CH ₂	1.54, m
17	71.9, CH	4.95, m	71.9, CH	4.97, m	72.0, CH	4.98, m
18	20.4, CH ₃	1.18, d (6.3)	20.5, CH ₃	1.19, d (6.3)	20.4, CH ₃	1.19, d (6.3)
5-OCH ₃			55.7, CH ₃	3.77, s	55.9, CH ₃	3.83, s
7-OCH ₃	56.1, CH ₃	3.80, s			56.2, CH ₃	3.84, s

Table S2.5.Compounds 6a, 6b and 6c (in methanol- d_4).

no.	7a		7b	7b		7c		
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)		
1	170.5, C		172.4, C		170.3, C			
2	115.4, C		106.2, C		116.8, C			
3	159.6, C		165.2, C		159.4, C			
4	98.8, CH	6.35, d (2.0)	100.6, CH	6.36, d (2.4)	98.2, CH	6.46, d (2.0)		
5	160.8, C		164.9, C		163.0, C			
6	104.9, CH	6.55, d (2.0)	108.0, CH	6.47, d (2.4)	102.7, CH	6.65, d (2.0)		
7	139.0, C		144.3, C		138.9, C			
8	128.0, CH	6.33, brd (15.0)	132.1, CH	6.91, dt (15.6, 1.5)	127.9, CH	6.34, dt (16.0, 1.5)		
9	134.7, CH	6.17, dt (15.0, 6.7)	133.6, CH	5.95, dt (15.6, 6.8)	135.2, CH	6.24, dt (16.0, 6.4)		
10	34.1, CH ₂	2.20, m	34.1, CH ₂	2.22, m	34.1, CH ₂	2.20, m		
11	26.4, CH ₂	1.41–1.65, m	26.6, CH ₂	1.45–1.62, m	26.4, CH ₂	1.52–1.65, m		
12	39.6, CH ₂	1.41–1.65, m	39.8, CH ₂	1.48–1.55, m	39.6, CH ₂	1.40–1.52, m		
13	68.4, CH	3.74, m	68.4, CH	3.75, m	68.4, CH	3.74, m		
14	23.5, CH ₃	1.17, d (6.1)	23.6, CH ₃	1.17, d (6.2)	23.6, CH ₃	1.16, d (6.4)		
15	62.2, CH ₂	4,32, q (7.0)	62.4, CH ₂	4.37, q (7.2)	62.3, CH ₂	4.32, q (7.2)		
16	14.6, CH ₃	1.35, t (7.0)	14.7, CH ₃	1.40, t (7.2)	14.6, CH ₃	1.34, t (7.2)		
3-OCH ₃	56.3, CH ₃	3.76, s			56.4, CH ₃	3.79, s		
5-OCH ₃			55.9, CH ₃	3.81, s	55.9, CH ₃	3.83, s		

Table S2.6. Compounds 7a, 7b and 7c (in methanol- d_4).

no.	8a		8b		8c	8c	
	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	$\delta_{\rm C}$, type	δ_{H} , mult. (J in Hz)	$\delta_{\rm C}$, type	$\delta_{\rm H}$, mult. (J in Hz)	
1	170.5, C		172.3, C		170.3, C		
2	115.4, C		106.3, C		116.8, C		
3	159.6, C		165.2, C		159.4, C		
4	98.8, CH	6.34, d (2.0)	100.7, CH	6.36, d (2.4)	98.2, CH	6.46, d (2.0)	
5	160.8, C		164.9, C		163.0, C		
6	104.9, CH	6.53, d (2.0)	108.0, CH	6.47, d (2.4)	102.7, CH	6.65, d (2.0)	
7	139.0, C		144.4, C		138.9, C		
8	128.0, CH	6.32, dt (15.6, 1.4)	132.1, CH	6.91, dt (15.6, 1.5)	127.9, CH	6.34, dt (16.0, 1.5)	
9	134.7, CH	6.16, dt (15.6, 6.8)	133.6, CH	5.95, dt (15.6, 6.8)	135.2, CH	6.24, dt (16.0, 6.4)	
10	34.1, CH ₂	2.20, m	34.1, CH ₂	2.22, m	34.1, CH ₂	2.20, m	
11	26.5, CH ₂	1.41–1.65, m	26.5, CH ₂	1.45–1.62, m	26.4, CH ₂	1.52–1.65, m	
12	39.6, CH ₂	1.41–1.65, m	39.8, CH ₂	1.48–1.55, m	39.6, CH ₂	1.40–1.52, m	
13	68.4, CH	3.74, m	68.5, CH	3.75, m	68.4, CH	3.74, m	
14	23.6, CH ₃	1.16, d (6.2)	23.5, CH ₃	1.17, d (6.2)	23.6, CH ₃	1.16, d (6.4)	
15	62.2, CH ₂	4,30, q (7.0)	62.4, CH ₂	4.37, q (7.2)	62.3, CH ₂	4.32, q (7.2)	
16	14.6, CH ₃	1.34, t (7.0)	14.7, CH ₃	1.40, t (7.2)	14.6, CH ₃	1.34, t (7.2)	
3-OCH ₃	56.3, CH ₃	3.76, s			56.4, CH ₃	3.79, s	
5-OCH ₃			55.9, CH ₃	3.80, s	55.9, CH ₃	3.83, s	

Table S2.7.Compounds 8a, 8b and 8c (in methanol- d_4).

Substrate	Chemical structure	OMT	Total	o-Methoxy	<i>p</i> -Methoxy	<i>o,p</i> -Dimethoxy
		enzyme	conversion	product	product	product [%]
			[%]	[%]	[%]	
DLD 1	OH O = 3↓ 1↓ ∴15	LtOMT	95.9 ± 1.9	100	0	0
	HO 5 7 9 11	HsOMT	41.6 ± 1.2	0	100	0
		LtOMT	96.5 ± 0.7	62.0 ± 2.6	2.7 ± 0.5	35.3 ± 2.9
		+ HsOMT				
1a	H ₃ CO O \mathbb{I}_{15} HO 5 7 9 11	HsOMT	39.7 ± 0.1	NA	NA	100
1b	$H_{3}CO^{-5}$ T_{9} H_{1} O^{-1} H_{1} $H_{2}CO^{-5}$ T_{11} H_{1} H_{2} H_{1} H_{2} H_{2	LtOMT	97.0 ± 1.8	NA	NA	100
RDN 2	OH O =	LtOMT	96.7 ± 2.7	100	0	0
	HO 5 9 11	HsOMT	0	NA	NA	NA
		LtOMT + HsOMT	98.6 ± 0.1	94.7±0.4	0	5.3 ± 0.4
2a	H ₃ CO O $=$ 1 $O(R)HO -9$ $ 11$ $ 13$ $ 11$ $ 13$	HsOMT	7.7 ± 0.3	NA	NA	100
2b	H_3CO H_3C	LtOMT	97.1 ± 1.3	NA	NA	100

 Table S3.
 Combinatorial methylation with LtOMT and HsOMT.

DHZ 3	OH O	LtOMT	99.5 ± 0.6	100	0	0
	HO 7 15	HsOMT	98.2 ± 0.6	0	100	0
	9 11 (S) OH	LtOMT + HsOMT	99.8 ± 0.1	70.9 ± 4.9	1.0 ± 0.1	28.1 ± 4.8
<u>3</u> a	H0 9 11 (S) 0 (S) 15 15 15 13 (S) 0 H	HsOMT	0	NA	NA	NA
3b	OH 0 1 1 1 5 5 10 (S) 15 15 13 9 11 (S) OH	LtOMT	98.3 ± 0.6	NA	NA	100
ZEA 4	OH O 3 ↓ 1 ↓ ↓17	LtOMT	100	100	0	0
	HO 5 7	HsOMT	72.4 ± 2.0	0	100	0
	9 11 (S) OH	LtOMT + HsOMT	92.9 ± 1.6	96.0 ± 0.6	0	4.0 ± 0.6
4a	H ₃ CO O 3 1 0 (S) 15 HO 5 7 15 9 11 (S) OH	HsOMT	0	NA	NA	NA
4b	OH O 3 1 1 0 (S) 15 H ₃ CO 5 7 9 11 (S) OH	LtOMT	95.4 ± 0.8	NA	NA	100

	1	1			1
OH O = ↓ 1↓ ↓17	LtOMT	94.6 ± 0.5	100	0	0
HO 7 0 (R) 15	HsOMT	0	NA	NA	NA
0 9 11 13	LtOMT	98.1 ± 0.1	100	0	0
	+ HsOMT				
H ₃ CO O 1 5 HO 7 13	HsOMT	0	NA	NA	NA
0,10,17,15	LtOMT	37.7 ± 1.4	100	0	0
HO 3 13	HsOMT	30.7 ± 3.1	0	100	0
7 19 11 OH O	LtOMT + HsOMT	24.9 ± 1.9	25.7 ± 3.1	72.8 ± 3.6	1.5 ± 0.5
$HO_{1} = (R) = ($	HsOMT	8.3 ± 0.5	NA	NA	100
H_3CO 5 7 0 1 9 11 13 13 0 13 13 0 13 0 13 0 13 0 13 0 0 13 0 10 13 0 0 10 13 0 0 10 0 10 0 10 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 1	LtOMT	7.0 ± 1.1	NA	NA	100
	LtOMT	97.4 ± 0.1	100	0	0
$HO \begin{array}{c} 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 13 \\ 7 \\ 9 \\ 11 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 $	HsOMT	82.2 ± 1.6	0	100	0
	LtOMT + HsOMT	79.3 ± 1.5	94.0 ± 0.7	0.9 ± 0.2	5.2 ± 0.5
$H_{3}CO O O O O O O O O O O O O O O O O O O $	HsOMT	0	NA	NA	NA
	HO HO 5 7 0 9 11 13 13 13 13 13 13 13 14 13 15 10 17 15 13 10 17 15 13 10 17 15 13 10 17 15 13 10 17 15 13 10 17 15 13 13 10 17 15 13 14 15 13 15 15 13 15 13 15 13 15 13 15 13 15 13 15 13 15 13 15 13 15 13	$HO = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 9 & 11 & 13 & 13 & 14 \\ HSOMT = H$	$H_{0} = \frac{1}{9} + \frac{1}{10} + $	$H_{0} = \frac{1}{9} + \frac{1}{9} + \frac{1}{10} + 1$	$HO = \frac{1}{O(R)} + \frac{1}{O(R)} + \frac{1}{13} + \frac{1}{HSOMT} = \frac{1}{O(R)} + \frac{1}{O(R)} + \frac{1}{O(R)} + \frac{1}{HSOMT} = \frac{1}{O(R)} + $

7b	$H_{3}CO \xrightarrow{OH 0}{7} 9 \underbrace{11}_{13} \underbrace{15}_{15} OH \\ H_{13}CO \underbrace{OH 0}_{5} \underbrace{15}_{7} OH \\ H_{13}CO \underbrace{OH 0}_{15} \underbrace{OH 0}_{15} OH \\ H_{13}CO \underbrace{OH 0}_{15} \underbrace{OH 0}_{15} OH \\ H_{13}CO \underbrace{OH 0}_{15} OH \\ H_{15} OH \\ H_{15} OH OH \\ H_{15} OH \\ H_$	LtOMT	96.8 ± 0.3	NA	NA	100
ARA8 8	OH O 1 15 0 0H	LtOMT	89.1 ± 1.1	100	0	0
	HO 7 9 11 13	HsOMT	95.7 ± 1.2	0	100	0
		LtOMT + HsOMT	82.7 ± 1.3	93.8 ± 0.5	1.0 ± 0.1	5.2 ± 0.4
8a	$H_{3}CO O \\ 1 \\ 1 \\ 5 \\ HO \\ 7 \\ 9 \\ 11 \\ 13 \\ (5) \\$	HsOMT	0	NA	NA	NA
8b	$H_{3}CO$ $OH O$ 15 OH OH OH 11 15 OH $H_{3}CO$ H (S)	LtOMT	96.2 ± 0.2	NA	NA	100

Total conversion: Numbers show the overall conversion percentage of the indicated substrate into all corresponding methylated products. *Individual products* are shown as their proportion amongst all three *O*-methylated product congeners (Yield of the individual product divided by the total yield of all products, multiplied by 100). Values represent the mean \pm SD from three independent experiments of three replicates each (n=9). NA, not applicable. Compound **5b** (5-*O*-methyl LCL) is not produced by the LtOMT or HsOMT enzymes, thus it was not included as a substrate in these experiments.

Table S4. Methylation of the model substrate DLD (1) with mutant

Mutant LtOMT enzyme	Mutation and/or replacement	Total conversion [%]	<i>o</i> -Methoxy product [%]	<i>p</i> -Methoxy product [%]	<i>o,p-</i> Dimethoxy product [%]
H1	1-329: HsOMT	3.8 ± 1.1	100	0	0
H2	330-398: HsOMT	26.1 ± 3.0	0	100	0
Н3	366-398: HsOMT	34.5 ± 0.8	76.3 ± 0.9	23.7 ± 0.9	0
M1	Q384K, G386R, W387H, Q388H	90.0 ± 2.9	82.9 ± 0.8	3.7 ± 0.8	13.4 ± 1.5
M2	Q384K, W387H, Q388H	87.0 ± 1.1	65.1 ± 7.5	17.1 ± 5.8	17.8 ± 1.7
M3	W387H, Q388H	88.6 ± 5.6	69.8 ± 1.2	14.6 ± 0.9	15.7 ± 0.3
M4	W387H	76.6 ± 20.2	92.3 ± 0.3	0	7.7 ± 0.3
HM1	330-366: HsOMT, Q384K, G386R, W387H, Q388H	58.3 ± 11.4	0	100	0
M5	F330V, Q384K, G386R, W387H, Q388H	88.0 ± 14.0	70.9 ± 5.6	13.3 ± 5.6	15.8 ± 8.5
M6	T356M, Q384K, G386R, W387H, Q388H	70.1 ± 5.8	10.0 ± 1.9	74.3 ± 4.2	15.7 ± 3.1
M7	F330V, T356M, Q384K, G386R, W387H, Q388H	93.7 ± 1.1	2.9 ± 1.9	94.1 ± 1.0	3.0 ± 1.2
M8	T356M	80.1 ± 10.2	34.4 ± 6.3	31.3 ± 2.3	34.3 ± 8.5
M9	Т356М, W387Н	96.4 ± 0.7	7.0 ± 0.8	1.0 ± 0.1	92.0 ± 0.9
M10	G386R, W387H, Q388H	82.9 ± 8.0	80.7 ± 1.5	5.8± 0.3	13.5 ± 1.8
M11	Q384K, G386R, Q388H	90.0 ± 4.2	90.7 ± 0.2	0	9.3 ± 0.2

LtOMT enzymes.

	W387H				
M13	Q384K, G386R	81.2 ± 0.7	100	0	0
M14	Q384K, W387H	89.0 ± 0.1	92.2 ± 0.1	0	7.8 ± 0.1
M15	Q384K, Q388H	96.2 ± 0.1	100	0	0
M16	G386R, W387H	78.6 ± 12.7	84.7 ± 0.7	2.7 ± 0.6	12.6 ± 0.2
M17	G386R, Q388H	89.9 ± 2.0	89.8 ± 1.6	0	10.2 ± 1.6
M18	Q384K	92.7 ± 0.5	100	0	0
M19	G386R	93.0 ± 0.5	100	0	0
M20	Q388H	98.1 ± 0.1	100	0	0

Total conversion: Numbers show the overall conversion percentage of the indicated substrate into all corresponding methylated products. *Individual products* are shown as their proportion amongst all three *O*-methylated product congeners (Yield of the individual product divided by the total yield of all products, multiplied by 100). Values represent the mean \pm SD from three independent experiments of three replicates each (n=9).

Substrate	Chemical structure	Mutant OMT enzyme	Total conversion [%]	<i>o</i> -Methoxy product [%]	<i>p-</i> Methoxypr oduct [%]	<i>o,p-</i> Dimethoxy product [%]
DLD 1	OH O = 3 ↓ 1 ↓	M1	90.0 ± 2.9	82.9 ± 0.8	3.7 ± 0.8	13.4 ± 1.5
		M6	70.1 ± 5.8	10.0 ± 1.9	74.3 ± 4.2	15.7 ± 3.1
	HO 5 7 9 11	M7	93.7 ± 1.1	2.9 ± 1.9	94.1 ± 1.0	3.0 ± 1.2
		M8	80.1 ± 10.2	34.4 ± 6.3	31.3 ± 2.3	34.3 ± 8.5
		M9	96.4 ± 0.7	7.0 ± 0.8	1.0 ± 0.1	92.0 ± 0.9
1a	H ₃ CO O = 3↓ 1↓ ↓15	M1	0	NA	NA	NA
		M6	14.9 ± 0.7	NA	NA	100
	HO 5 7 9 11	M7	15.0 ± 1.2	NA	NA	100
		M8	15.4 ± 2.7	NA	NA	100
		M9	74.7 ± 2.1	NA	NA	100
1b	OH O = 3↓ 1↓ ↓15	M1	84.5 ± 2.4	NA	NA	100
		M6	19.7 ± 1.4	NA	NA	100
	H ₃ CO 5 7 9 11	M7	20.0 ± 1.1	NA	NA	100
		M8	69.6 ± 3.6	NA	NA	100
		M9	84.9 ± 3.2	NA	NA	100
RDN 2	OH O = ↓ 1↓ 15	M1	97.3 ± 1.0	94.5 ± 0.7	0	5.5 ± 0.7
		M6	93.9 ± 3.5	18.1 ± 3.6	15.7 ± 1.1	66.2 ± 3.3
		M7	94.2 ± 1.6	17.9 ± 1.8	21.1 ± 3.3	61.0 ± 1.5
		M8	96.6 ± 0.1	16.9 ± 2.3	0	83.1 ± 2.2
		M9	99.4 ± 0.1	5.1 ± 0.3	0	94.9 ± 0.3
2a	H ₃ CO O = ↓ 1↓ ↓15	M1	0	NA	NA	NA
	$\begin{bmatrix} 3\\5 \end{bmatrix}$ $O(R)$	M6	7.5 ± 0.6	NA	NA	100
	HO 7 9 11	M7	7.2 ± 0.9	NA	NA	100
		M8	18.5 ± 1.1	NA	NA	100
		M9	48.0 ± 1.8	NA	NA	100

Table S5. Combinatorial methylation with selected LtOMT variants.

2b	OH O =	M1	88.3 ± 0.9	NA	NA	100
		M6	71.8 ± 1.9	NA	NA	100
	H ₃ CO 7 9 11	M7	72.2 ± 4.5	NA	NA	100
		M8	83.2 ± 1.1	NA	NA	100
		M9	97.4 ± 0.3	NA	NA	100
DHZ 3	OH O	M1	92.1 ± 1.2	97.6 ± 0.1	1.3 ± 0.1	1.1 ± 0.1
		M6	54.0 ± 2.0	77.2 ± 0.9	4.7 ± 0.8	18.1 ± 0.7
	HO 7	M7	63.8 ± 4.3	76.2 ± 3.0	4.3 ± 0.7	19.5 ± 2.4
	9 11 (S) OH	M8	80.5 ± 5.0	69.9 ± 1.5	1.5 ± 0.2	28.6 ± 1.5
		M9	99.7 ± 0.1	73.4 ± 0.6	0.5 ± 0.1	26.1 ± 0.7
3a	H ₃ CO O	M1	0	NA	NA	NA
		M6	0	NA	NA	NA
	H0 7	M7	0	NA	NA	NA
	9 11 (S) OH	M8	0	NA	NA	NA
		M9	0	NA	NA	NA
3b		M1	100	NA	NA	100
		M6	100	NA	NA	100
	H ₃ CO ⁷	M7	100	NA	NA	100
	9 11 (S) OH	M8	100	NA	NA	100
		M9	100	NA	NA	100
ZEA 4	OH O 3↓ 1↓ ↓17	M1	91.4 ± 0.7	94.6 ± 0.8	2.5 ± 0.4	2.9 ± 0.5
	3 1 0 17 0 (S) 15	M6	64.3 ± 0.5	90.6 ± 1.6	4.9 ± 0.8	4.5 ± 0.8
	HO 5 7	M7	74.3 ± 1.4	91.5 ± 1.1	5.2 ± 0.8	3.3 ± 0.4
	9 11 (S) OH	M8	69.4 ± 0.7	92.6 ± 0.3	4.4 ± 0.3	3.0 ± 0.1
		M9	88.0 ± 1.7	93.1 ± 0.5	1.2 ± 0.1	5.7 ± 0.5

4 a	H ₃ CO O 3 1 17	M1	0	NA	NA	NA
		M6	0	NA	NA	NA
	HO 5 7	M7	0	NA	NA	NA
	9 11 (S) OH	M8	0	NA	NA	NA
		M9	0	NA	NA	NA
4b	OH O 3 ↓ 1 ↓ ↓17	M1	94.7 ± 0.5	NA	NA	100
	3 1 17 0 (S) 15	M6	92.0 ± 0.1	NA	NA	100
	H ₃ CO 5 7 9 11 (5) OH	M7	92.7 ± 0.4	NA	NA	100
	9 ∽ 11 ∽ _(S) 'OH	M8	92.0 ± 0.3	NA	NA	100
		M9	95.7 ± 1.4	NA	NA	100
LCL 5	OH O =	M1	12.8 ± 0.9	100	0	0
	5 0 (R) 15	M6	11.7 ± 0.5	100	0	0
	H0 7	M7	11.5 ± 0.6	100	0	0
	0 ^{1/2} 9 11	M8	29.3 ± 2.8	100	0	0
		M9	59.9 ± 8.7	100	0	0
5a	H ₃ CO O = │ 1 │	M1	0	NA	NA	NA
		M6	0	NA	NA	NA
	H0 7	M7	0	NA	NA	NA
	0 ^{1/2} 9 11	M8	0	NA	NA	NA
		M9	0	NA	NA	NA
LLN 6	0,10,17,15	M1	4.8 ± 0.5	74.3 ± 5.9	5.5 ± 5.7	20.2 ± 1.0
		M6	2.6 ± 1.0	55.2 ± 10.6	13.3 ± 11.6	31.5 ± 3.4
	7 9 11	M7	4.0 ± 0.6	51.2 ± 6.5	19.9 ± 4.1	28.9 ± 4.2
	ÓH Ö	M8	4.3 ± 0.4	36.3 ± 4.4	30.9 ± 6.2	32.8 ± 2.5
		M9	15.8 ± 1.4	61.5 ± 4.2	8.5 ± 1.0	30.0 ± 4.0

6a	0 1 0 17 (R) 15	M1	0	NA	NA	NA
		M6	4.1 ± 0.4	NA	NA	100
	7 9 11	M7	4.1 ± 0.2	NA	NA	100
	H₃CÓ Ö	M8	3.5 ± 0.7	NA	NA	100
		M9	4.8 ± 0.3	NA	NA	100
6b	0,10,17,15	M1	5.9 ± 0.7	NA	NA	100
	H_3CO_{5}	M6	4.2 ± 0.5	NA	NA	100
	7 9 11	M7	4.0 ± 0.2	NA	NA	100
	ÓH Ö	M8	4.5 ± 0.6	NA	NA	100
		M9	5.0 ± 0.1	NA	NA	100
ARA7 7		M1	69.4 ± 1.2	93.7 ± 0.7	3.3 ± 0.6	3.0 ± 0.1
	$ \begin{array}{c} 3\\5\\5\\\hline \hline \\ \hline$	M6	47.0 ± 1.3	14.1 ± 4.0	65.8 ± 5.2	20.1 ± 2.2
	HO ⁷ 7 9 11 13	M7	50.0 ± 0.8	11.3 ± 3.5	70.1 ± 6.9	18.7 ± 3.8
		M8	59.5 ± 2.6	23.9 ± 0.8	57.6 ± 1.1	18.4 ± 0.8
		M9	89.0 ± 2.8	82.1 ± 1.9	0.8 ± 0.2	17.2 ± 1.8
7a	$H_3CO O \downarrow 1 \downarrow 15$	M1	0	NA	NA	NA
	HO 7 9 11 13	M6	0	NA	NA	NA
		M7	0	NA	NA	NA
		M8	0	NA	NA	NA
		M9	0	NA	NA	NA
7b	OH O ↓ 1↓ 15	M1	81.8 ± 2.7	NA	NA	100
	3 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	M6	38.4 ± 4.0	NA	NA	100
	$H_{3}CO^{15}$ 7 9 11 13	M7	55.5 ± 2.1	NA	NA	100
		M8	59.1 ± 4.1	NA	NA	100
		M9	93.4 ± 3.0	NA	NA	100

ARA8 8		M1	65.7 ± 2.7	92.4 ± 1.1	4.0 ± 0.8	3.6 ± 0.3
	HO 7 9 11 13	M6	23.5 ± 0.9	2.4 ± 0.2	78.0 ± 1.3	19.6 ± 1.1
		M7	25.4 ± 0.8	2.9 ± 0.4	81.3 ± 2.9	15.9 ± 3.2
		M8	48.2 ± 0.7	13.2 ± 0.8	63.9 ± 3.1	23.0 ± 2.5
		M9	83.3 ± 0.9	73.8 ± 1.1	7.5 ± 0.6	18.7 ± 1.3
8a	$H_3CO O$	M1	0	NA	NA	NA
	HO 7 9 11 13	M6	0	NA	NA	NA
		M7	0	NA	NA	NA
		M8	0	NA	NA	NA
		M9	0	NA	NA	NA
8b	OH O ↓ 1 ↓ ¹⁵	M1	94.8 ± 0.3	NA	NA	100
	13 O OH 15 (S)	M6	50.1 ± 1.0	NA	NA	100
	H ₃ CO 7 9 11 13	M7	51.7 ± 0.7	NA	NA	100
		M8	56.4 ± 1.3	NA	NA	100
		M9	95.8 ± 0.5	NA	NA	100

Total conversion: Numbers show the overall conversion percentage of the indicated substrate into all corresponding methylated products. *Individual products* are shown as their proportion amongst all three *O*-methylated product congeners (Yield of the individual product divided by the total yield of all products, multiplied by 100). Values represent the mean \pm SD from three independent experiments of three replicates each (n=9). NA, not applicable. Compound **5b** (5-*O*-methyl LCL) is not produced by the LtOMT or HsOMT enzymes, thus it was not included as a substrate in these experiments.

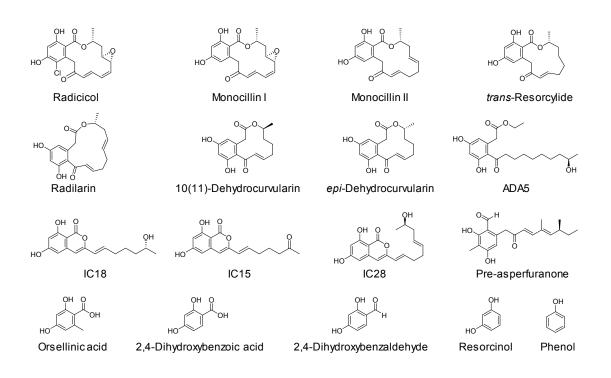
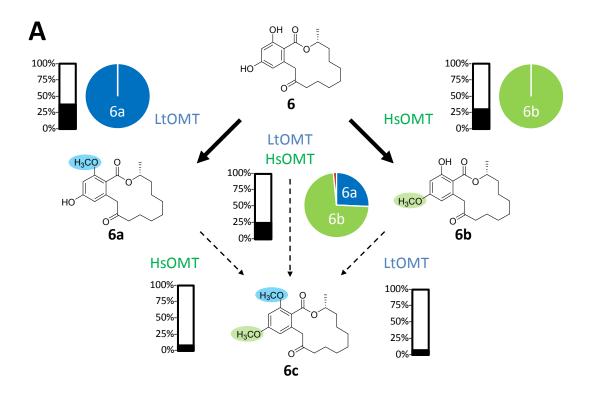
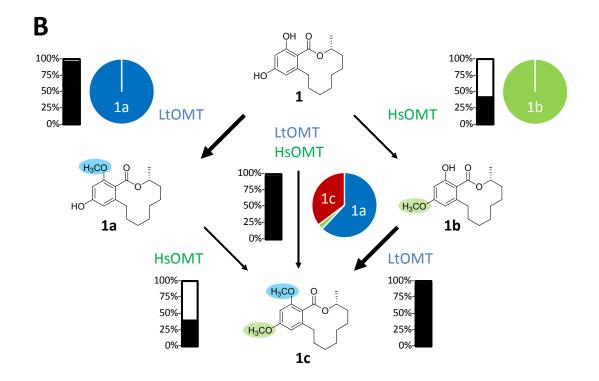
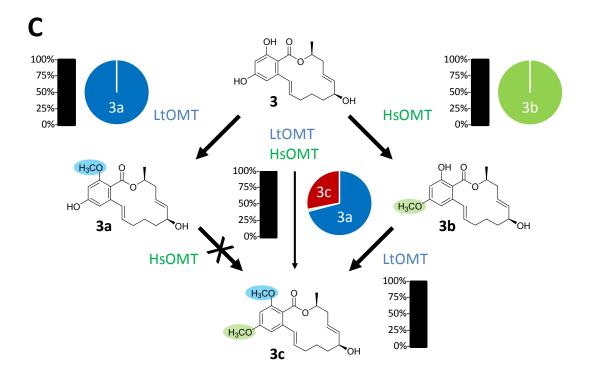

Primer Name	Primer sequence (5'-3')	PCR Product (Size in bp)
pACYC-	CGGAATTCGATGAGATCCTACTCATTGGA	LtOMT-EcoRI/NotI
LtOMT_F		
pACYC-	TAGCGGCCGCTTAACCTCTTTTCAATCTTG	(1,216 bp)
LtOMT_R		
pACYC-	CGGAATTCGATGTCTGCTTCTAATGGTGA	HsOMT-
HsOMT_F		EcoRI/NotI
pACYC-	TAGCGGCCGCTTAAGCTCTTTTTAATCTTG	(1,216 bp)
HsOMT_R		
H1-1_F	AAGCTTCATATGTCTGCTTCTAATGGTGA	H1-1
H1-1_R	ATCGAAAATCAATAATCTGGATGATGGACCCATAGCACC	(1,002 bp)
H1-2_F	TCCAGATTATTGATTTTCGATGCTG	H1-2
H1-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(243 bp)
H2-1_F	CGACAAGCTTCATATGAGATCCTACTCA	H2-1
H2-1_R	TTCGACAATCAACAACCTAGACTTTGG	(1,006 bp)
H2-2_F	TCTAGGTTGTTGATTGTCGAAGCTG	H2-2
H2-2_R	GGTGATGTCCGTTTAAACTTAAGCTC	(243 bp)
H3-1_F	CGACAAGCTTCATATGAGATCCTACTC	H3-1
H3-1_R	TTCTTTTCAGTTCTTTCTTTACCACC	(1,108 bp)
H3-2_F	AAGAAAGAACTGAAAAAGAATTTGCAACTTTATTAGGTACAG	H3-1
H3-2_R	GGTGATGTCCGTTTAAACTTAAGCTC	(140 bp)
HM1-1_F	CGACAAGCTTCATATGAGATCCTACTC	HM1-1
HM1-1_R	TTCTTTTTCTGTTCTTTCTTTACCACC	(1,108 bp)
HM1-2_F	AAGAAAGAACAGAAAAAGAAACCGCTGCTTTGTTGGATGCTG	HM1-1
HM1-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(140 bp)
M2-1_F	CGACAAGCTTCATATGAGATCCTACTC	M2-1
M2-1_R	ACCATGATGACCTGCCTTACCATG	(1,180 bp)
M2-2_F	GGTAAGGCAGGTCATCATGGTGTT	M2-2
 M2-2_R	AAACCGTCTATCAGGGCGATG	(696 bp)
 M3-1_F	CGACAAGCTTCATATGAGATCCTACTC	M3-1
 M3-1_R	AATAACACCATGATGACCTGCTTGACCATGCCAAACTCTAAC	(1,186 bp)
 M3-2_F	AGAGTTTGGCATGGTCAAGCAGGTCATCATGGTGTTATTGAAGC	M3-2
M3-2_R	AAACCGTCTATCAGGGCGATG	(708 bp)
 M4-1_F	CGACAAGCTTCATATGAGATCCTACTC	M4-1
M4-1_R	TTCAATAACACCTTGATGACCAGCTTGACCATGCCAAA	(1,183 bp)
M4-2_F	CATGGTCAAGCTGGTCATCAAGGTGTTATTGAAGCAAG	M4-2

Table S6.Primers used in this study.


M4-2_R	AAACCGTCTATCAGGGCGATG	(699 bp)
M5-1_F	CGACAAGCTTCATATGAGATCCTACTC	M5-1
M5-1_R	GAATAACAGCATCGACAATCAATA	(993 bp)
M5-2_F	TTATTGATTGTCGATGCTGTTATTC	M5-2
M5-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(237 bp)
M6-1_F	CGACAAGCTTCATATGAGATCCTACTC	M6-1
M6-1_R	TCTTTCTTTACCACCCATAGCCAAACCAACGATATCGAT	(1,096 bp)
M6-2_F	ATCGTTGGTTTGGCTATGGGTGGTAAAGAAAGAACTGAA	M6-2
M6-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(165 bp)
M7-1_F	CGACAAGCTTCATATGAGATCCTACTC	M6-1
M7-1_R	TCTTTCTTTACCACCCATAGCCAAACCAACGATATCGAT	(1,096 bp)
M7-2_F	ATCGTTGGTTTGGCTATGGGTGGTAAAGAAAGAACTGAA	M6-2
M7-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(165 bp)
M8-1_F	CGACAAGCTTCATATGAGATCCTACTC	M6-1
M8-1_R	TCTTTCTTTACCACCCATAGCCAAACCAACGATATCGAT	(1,096 bp)
M8-2_F	ATCGTTGGTTTGGCTATGGGTGGTAAAGAAAGAACTGAA	M6-2
M8-2_R	GGTGATGTCCGTTTAAACTTAACCTC	(165 bp)
M9-1_F	CGACAAGCTTCATATGAGATCCTACTC	M4-1
M9-1_R	TTCAATAACACCTTGATGACCAGCTTGACCATGCCAAA	(1,183 bp)
M9-2_F	CATGGTCAAGCTGGTCATCAAGGTGTTATTGAAGCAAG	M4-2
M9-2_R	AAACCGTCTATCAGGGCGATG	(699 bp)
M10-1_F	CGACAAGCTTCATATGAGATCCTACTC	M10-1
M10-1_R	ACCATGATGTCTTGCTTGACCATG	(1,180 bp)
M10-2_F	GGTCAAGCAAGACATCATGGTGTT	M10-2
M10-2_R	AAACCGTCTATCAGGGCGATG	(696 bp)
M11-1_F	CGACAAGCTTCATATGAGATCCTACTC	M11-1
M11-1_R	ACCATGCCATCTTGCCTTACCATG	(1,180 bp)
M11-2_F	GGTAAGGCAAGATGGCATGGTGTT	M11-2
M11-2_R	AAACCGTCTATCAGGGCGATG	(696 bp)
M12-1_F	CGACAAGCTTCATATGAGATCCTACTC	M12-1
M12-1_R	ACCTTGATGTCTTGCCTTACCATG	(1,180 bp)
M12-2_F	GGTAAGGCAAGACATCAAGGTGTT	M12-2
M12-2_R	AAACCGTCTATCAGGGCGATG	(696 bp)
M13-1_F	CGACAAGCTTCATATGAGATCCTACTC	M13-1
M13-1_R	TGCTTCAATAACACCTTGCCATCTTGCCTTACCATGCCA	(1,192 bp)
M13-2_F	CATGGTAAGGCAAGATGGCAAGGTGTTATTGAAGCAAGA	M13-2
M13-2_R	AAACCGTCTATCAGGGCGATG	(699 bp)
M14-1_F	CGACAAGCTTCATATGAGATCCTACTC	M14-1
M14-1_R	TGCTTCAATAACACCTTGATGACCTGCCTTACCATGCCAAAC	(1,192 bp)


M14-2_F	TGGCATGGTAAGGCAGGTCATCAAGGTGTTATTGAAGCAAGA	M14-2
M14-2_R	AAACCGTCTATCAGGGCGATG	(702 bp)
M15-1_F	CGACAAGCTTCATATGAGATCCTACTC	M15-1
M15-1_R	TTCAATAACACCATGCCAACCTGCCTTACCATGCCAAAC	(1,189 bp)
M15-2_F	TGGCATGGTAAGGCAGGTTGGCATGGTGTTATTGAAGCA	M15-2
M15-2_R	AAACCGTCTATCAGGGCGATG	(702 bp)
M16-1_F	CGACAAGCTTCATATGAGATCCTACTC	M16-1
M16-1_R	TGCTTCAATAACACCTTGATGTCTTGCTTGACCATGCCAAACTCTA	(1,192 bp)
	AC	
M16-2_F	AGAGTTTGGCATGGTCAAGCAAGACATCAAGGTGTTATTGAAGCA	M16-2
	AGATTG	
M16-2_R	AAACCGTCTATCAGGGCGATG	(708 bp)
M17-1_F	CGACAAGCTTCATATGAGATCCTACTC	M17-1
M17-1_R	TTCAATAACACCATGCCATCTTGCTTGACCATGCCAAACTCTAAC	(1,192 bp)
M17-2_F	AGAGTTTGGCATGGTCAAGCAAGATGGCATGGTGTTATTGAAGCA	M17-2
	AG	
M17-2_R	AAACCGTCTATCAGGGCGATG	(708 bp)
M18-1_F	CGACAAGCTTCATATGAGATCCTACTC	M18-1
M18-1_R	ACCTTGCCAACCAGCCTTACCATGCCAAACTCTAACAA	(1,180 bp)
M18-2_F	AGAGTTTGGCATGGTAAGGCTGGTTGGCAAGGTGTTAT	M18-2
M18-2_R	AAACCGTCTATCAGGGCGATG	(708 bp)
M19-1_F	CGACAAGCTTCATATGAGATCCTACTC	M19-1
M19-1_R	AATAACACCTTGCCATCTAGCTTGACCATGCCAAACTC	(1,186 bp)
M19-2_F	TGGCATGGTCAAGCTAGATGGCAAGGTGTTATTGAAGC	M19-2
M19-2_R	AAACCGTCTATCAGGGCGATG	(702 bp)
M20-1_F	CGACAAGCTTCATATGAGATCCTACTC	M20-1
M20-1_R	TGCTTCAATAACACCATGCCAACCAGCTTGACCATGCC	(1,192 bp)
M20-2_F	GGTCAAGCTGGTTGGCATGGTGTTATTGAAGCAAGATT	M20-2


3 SI Figures.

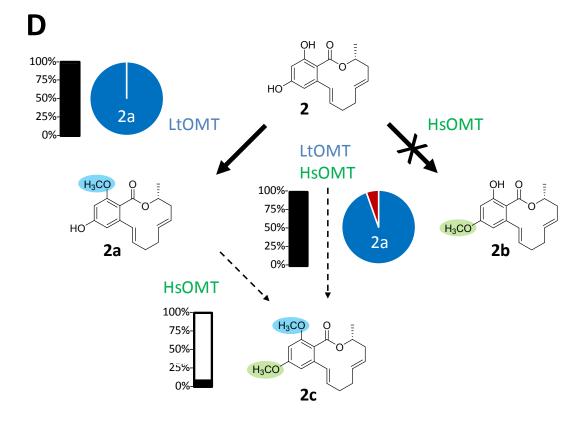


Figure S1. Compounds not accepted as substrates by LtOMT and HsOMT.

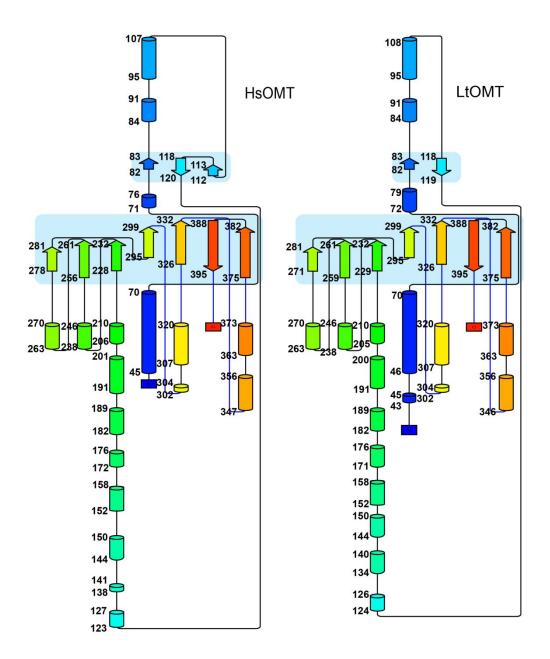
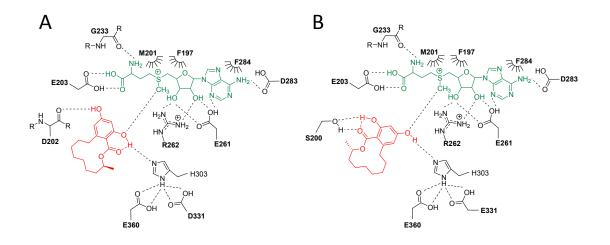
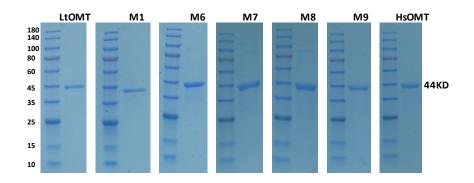


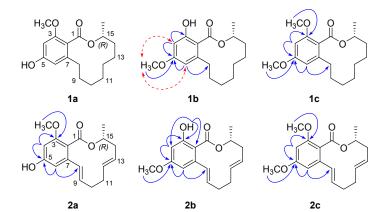
Figure S2. Influence of preexisting methylation on the activities of LtOMT and HsOMT.

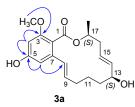
Unmethylated compounds were fed to cultures of Saccharomyces cerevisiae BJ5464-NpgA coexpressing LtOMT and HsOMT, or LtOMT and HsOMT separately. *o*-Methoxy or *p*-methoxy compounds were fed to cultures of Saccharomyces cerevisiae BJ5464-NpgA expressing HsOMT or LtOMT separately. Bars show the overall conversion percentage of the indicated substrate into all corresponding methylated products. Pie charts show the distribution of O-methylated product congeners (Yields of the individual products divided by the total yield of all products, multiplied by 100). See Table S3 for tabulated percent conversion values as the mean \pm SD from three independent experiments of three replicates each (n=9). A. LCL (6) is converted at moderate efficiency to 6a by LtOMT and to **6b** by HsOMT, with small additional amounts of the *o*,*p*-dimethoxy product **6c** also forming when both LtOMT and HsOMT are present. *O*-methylated congeners **6a** or **6b** can be converted at low efficiency to 6c by HsOMT or LtOMT, respectively. B. LtOMT converts DLD (1) to the O-methylated product 1a efficiently. Conversion of DLD (1) by HsOMT to 1b occurs at moderate levels. In the presence of both LtOMT and HsOMT, **1a** and **1c** are the main products. The *o*,*p*dimethoxy congener 1c can also be produced by HsOMT from 1a at moderate efficiency, and from 1b by LtOMT at high efficiency. C. DHZ (3) is efficiently converted to 3a or 3b by LtOMT or HsOMT, respectively. In the presence of both enzymes, **3a** and **3c** are the main products. The *o*-methoxy congener **3a** is not a substrate for HsOMT, while **3b** is efficiently converted to **3c** by LtOMT. D. RDN (2) is efficiently converted to 2a by LtOMT. However, RDN (2) is not a substrate for HsOMT, thus the *p*-methoxy congener **2b** is not produced. In the presence of both enzymes, **2a** forms efficiently. A small amount of the *o*,*p*-dimethoxy product **2c** is also produced, since the *o*-methoxy congener **2a** is a marginal substrate for HsOMT."

Figure S3. Topology of LtOMT and HsOMT.

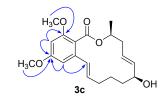
 β -strands are shown as *arrows*, α -helices indicated as *cylinders*, β -sheets are highlighted by *blue boxes*. Structural elements are colored as a gradient starting at the *N*-terminus (*dark blue*) and ending at the *C*-terminus (*red*). Amino acid residues at the start and at the end of each structural element are labeled by their residue number. The figure was generated using the Pro-Origami server (http://munk.csse.unimelb.edu.au/pro-origami/).

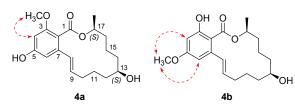



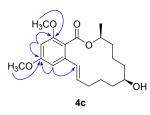

Figure S4. Docking models of DLD and SAM for LtOMT and HsOMT.

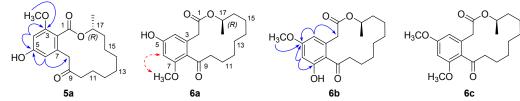

Predicted polar and hydrophobic interactions for *S*-adenosyl-methionine (SAM, in *green*), and polar interactions for DLD **1** (in *red*), with **A**. LtOMT, and **B**. HsOMT.




Figure S5. SDS-PAGE analysis of purified methyltransferases.


Recombinant methyltransferase enzymes were expressed as soluble ~44 kDa His-tagged proteins in *E. coli* Arctic Express (DE3) RIL cells and purified to substantial homogeneity as described in the SI Materials and Methods.





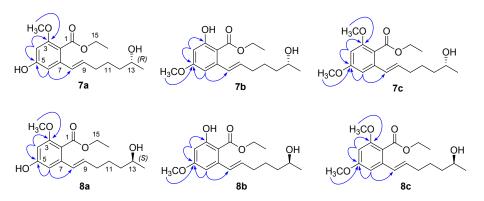


Figure S6. Chemical structures and key HMBC (→) and NOE (<--->) correlations of isolated compounds.

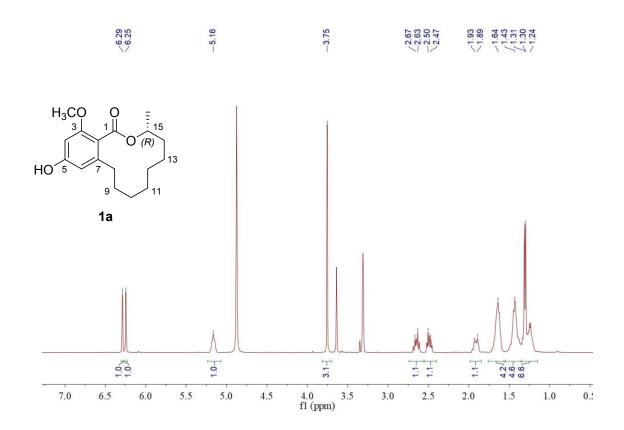


Figure S7.1. ¹H NMR spectrum of compound 1a in methanol-d₄

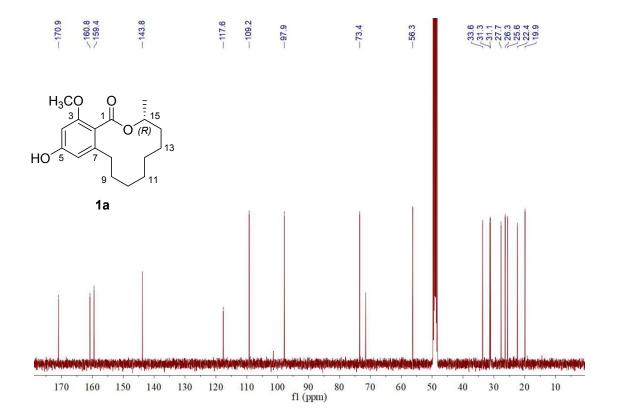


Figure S7.2. ¹³C NMR spectrum of compound 1a in methanol- d_4

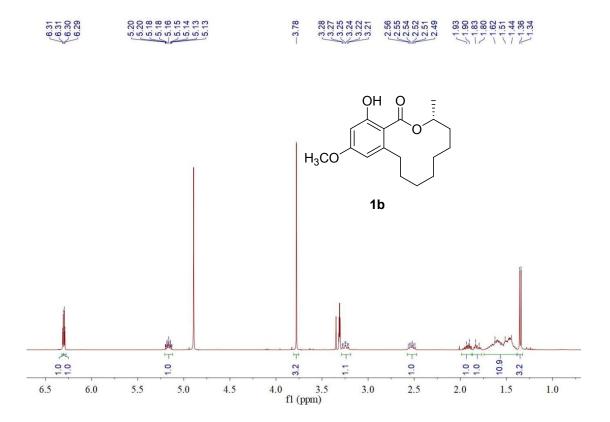


Figure S7.3. ¹H NMR spectrum of compound 1b in methanol- d_4

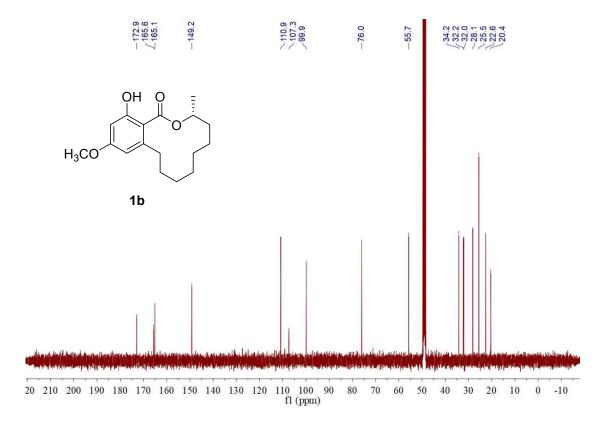


Figure S7.4. ¹³C NMR spectrum of compound 1b in methanol-*d*₄

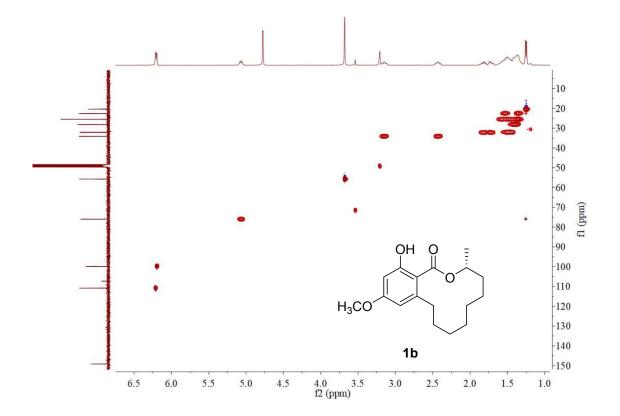


Figure S7.5. HSQC spectrum of compound 1b in methanol-d₄

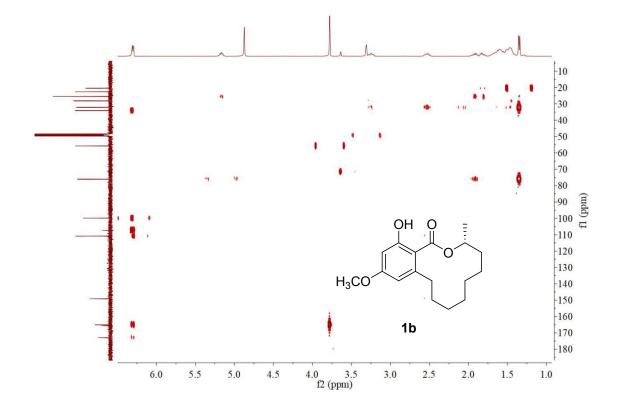


Figure S7.6. HMBC spectrum of compound 1b in methanol- d_4

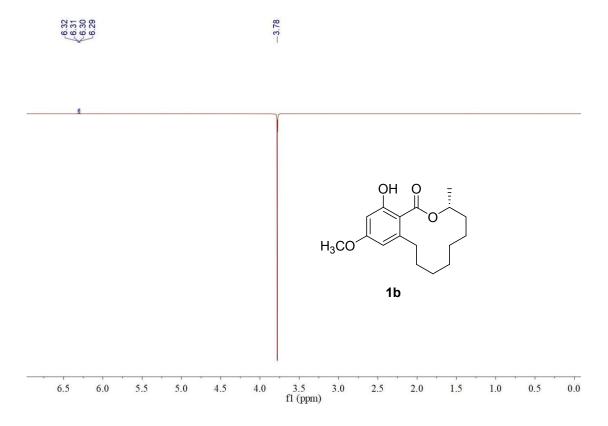


Figure S7.7. 1D NOESY spectrum of compound 1b in methanol- d_4

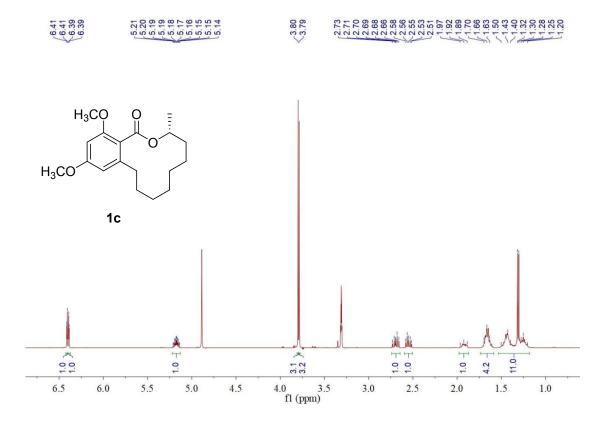


Figure S7.8. ¹H NMR spectrum of compound 1c in methanol-*d*₄

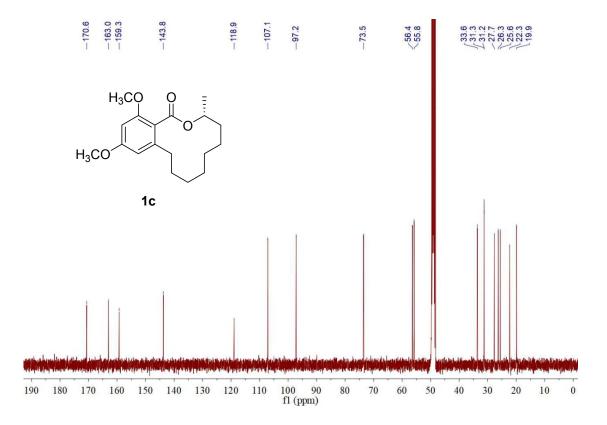


Figure S7.9. ¹³C NMR spectrum of compound 1c in methanol- d_4

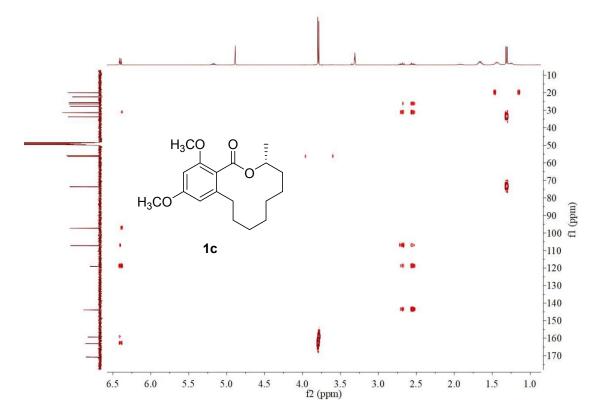


Figure S7.10. HMBC spectrum of compound 1c in methanol-d₄

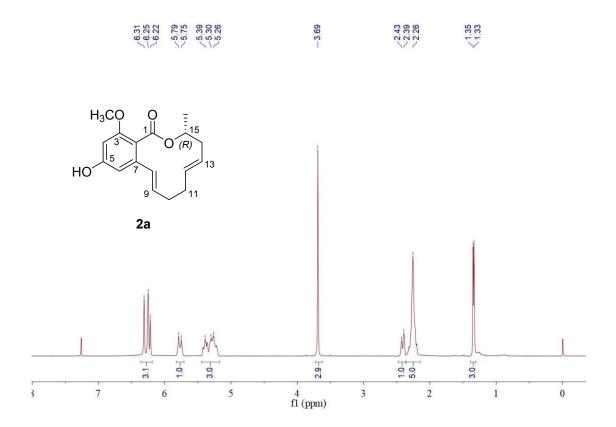


Figure S7.11. ¹H NMR spectrum of compound 2a in CDCl₃

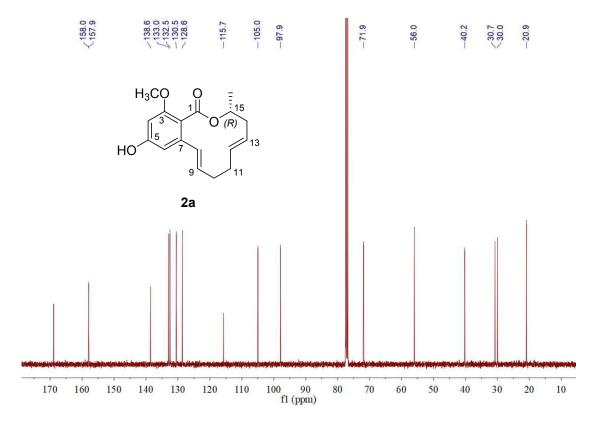


Figure S7.12. ¹³C NMR spectrum of compound 2a in CDCl₃

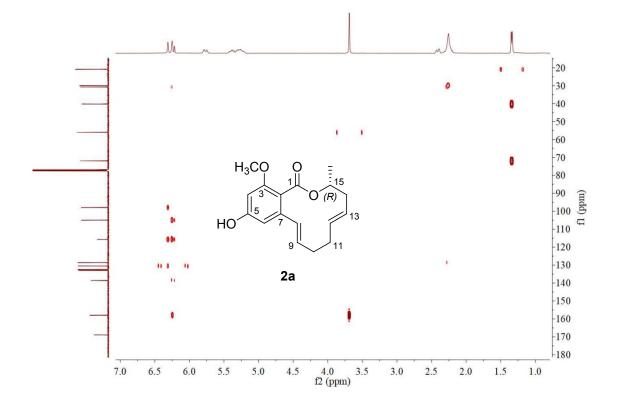


Figure S7.13. HMBC spectrum of compound 2a in CDCl₃

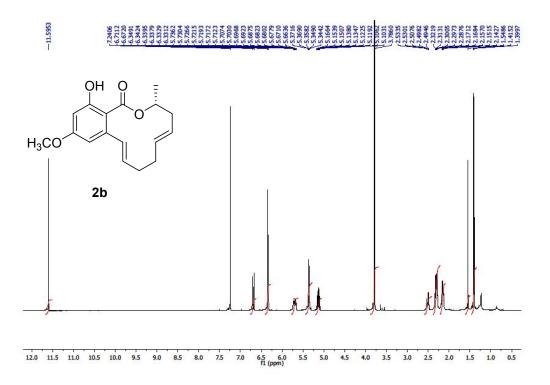


Figure S7.14. ¹H NMR spectrum of compound 2b in CDCl₃

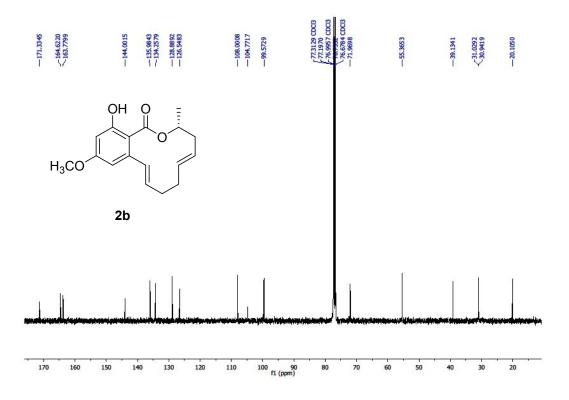


Figure S7.15. ¹³C NMR spectrum of compound 2b in CDCl₃

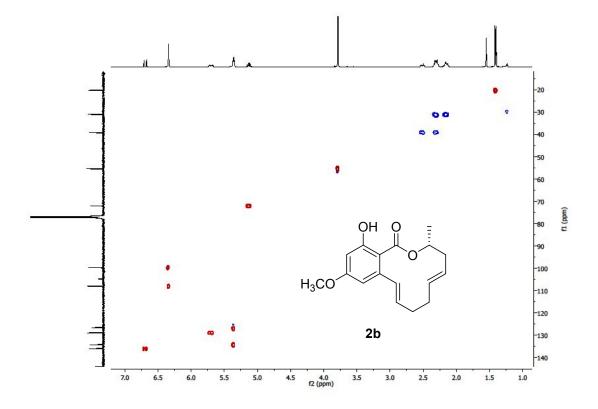


Figure S7.16. HSQC spectrum of compound 2b in CDCl3

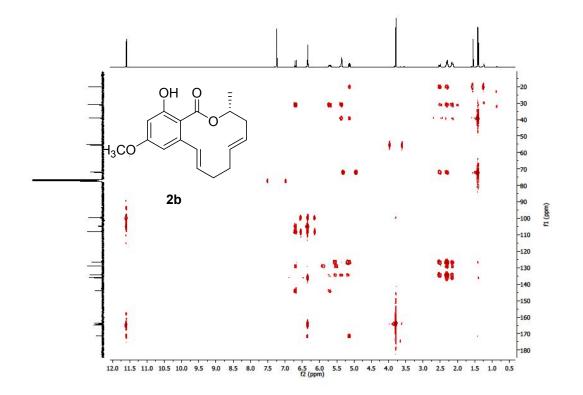


Figure S7.17. HMBC spectrum of compound 2b in CDCl₃

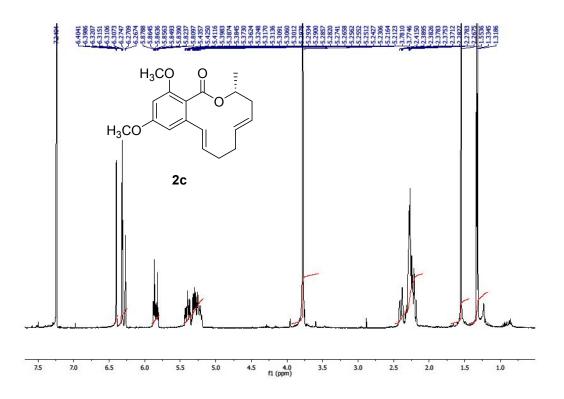


Figure S7.18. ¹H NMR spectrum of compound 2c in CDCl₃

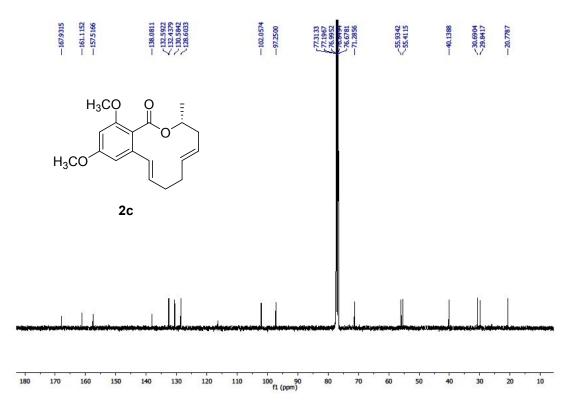


Figure S7.19. ¹³C NMR spectrum of compound 2c in CDCl₃

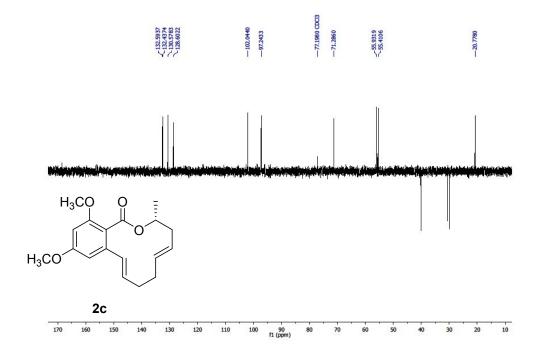


Figure S7.20. DEPT 135 spectrum of compound 2c in CDCl₃

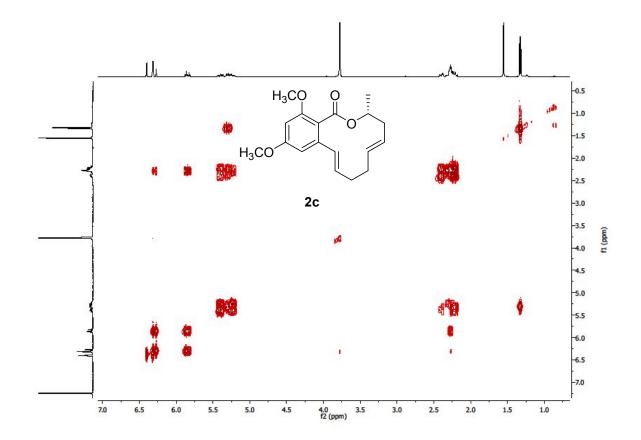


Figure S7.21. ¹H⁻¹H COSY spectrum of compound 2c in CDCl₃

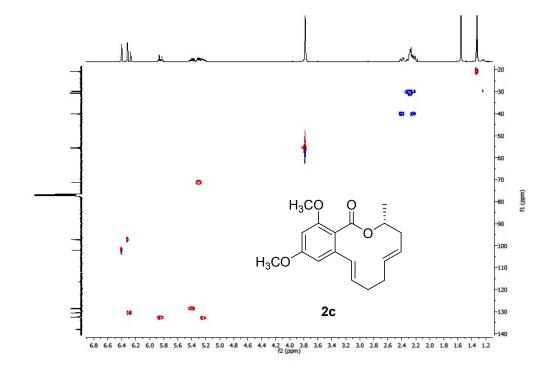


Figure S7.22. HSQC spectrum of compound 2c in CDCl₃

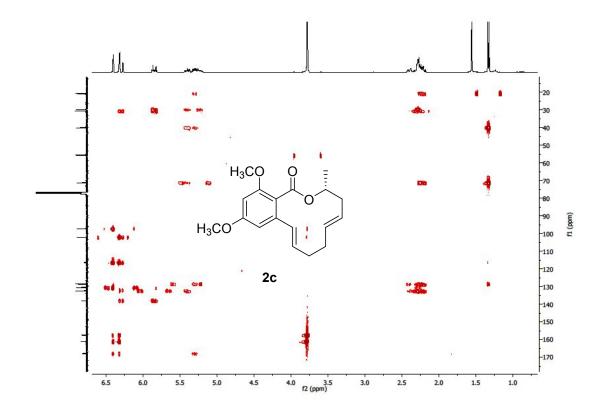


Figure S7.23. HMBC spectrum of compound 2c in CDCl3

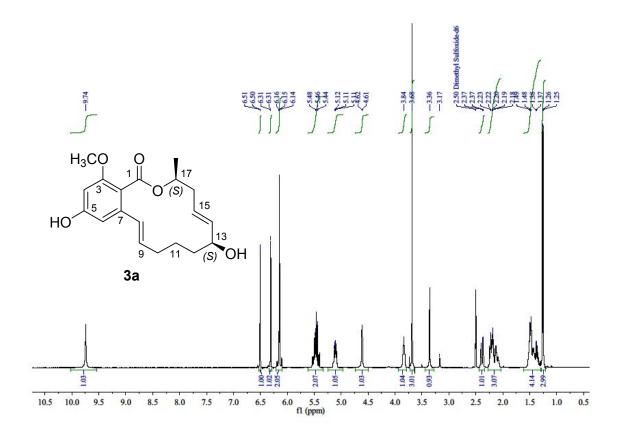


Figure S7.24. ¹H NMR spectrum of compound 3a in DMSO-*d*₆

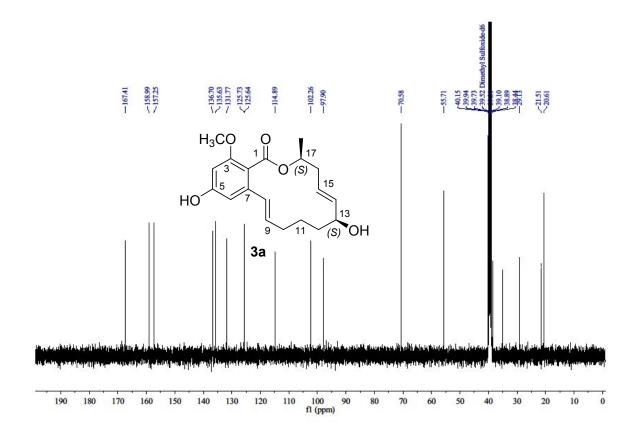


Figure S7.25. ¹³C NMR spectrum of compound 3a in DMSO-*d*₆

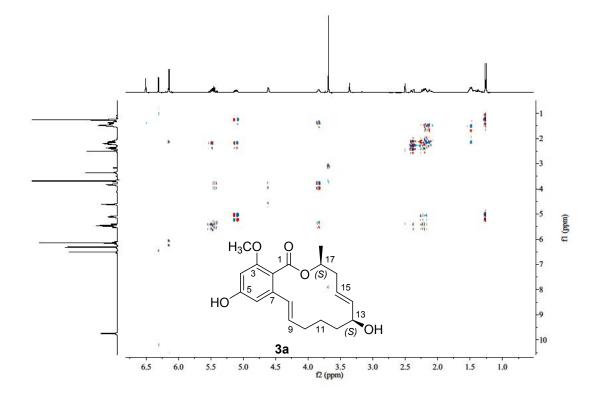


Figure S7.26. ¹H-¹H COSY spectrum of compound 3a in DMSO-*d*₆

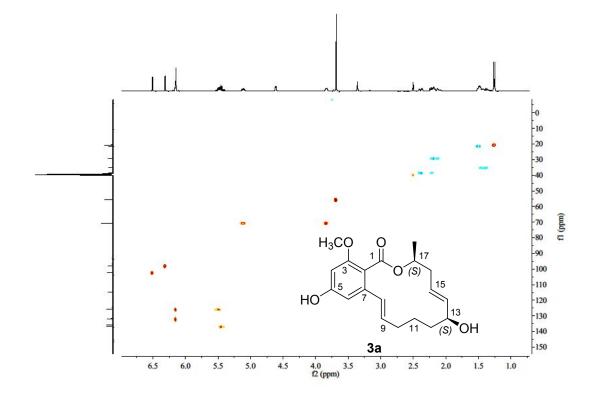


Figure S7.27. HSQC spectrum of compound 3a in DMSO-*d*₆

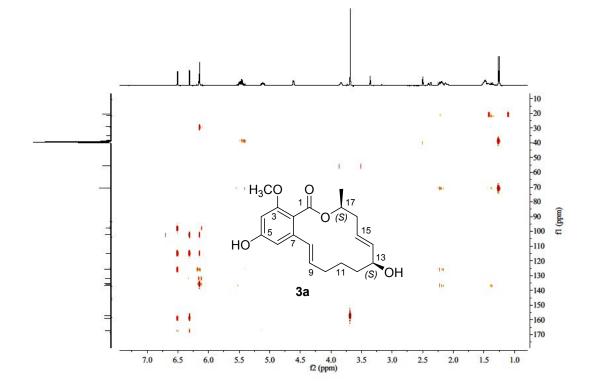


Figure S7.28. HMBC spectrum of compound 3a in DMSO-*d*₆

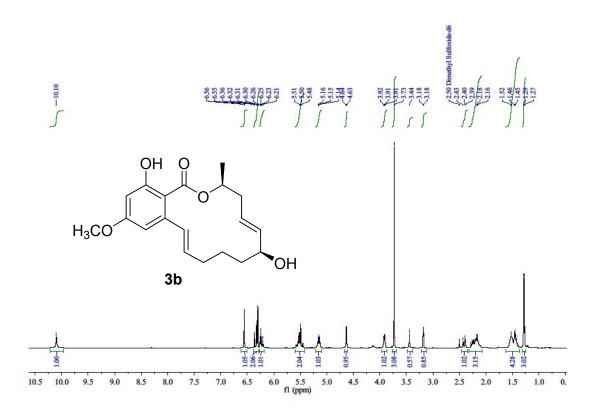


Figure S7.29. ¹H NMR spectrum of compound 3b in DMSO-*d*₆

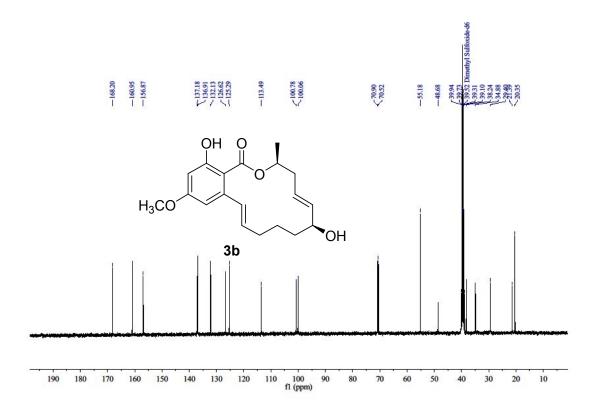


Figure S7.30. ¹³C NMR spectrum of compound 3b in DMSO-*d*₆

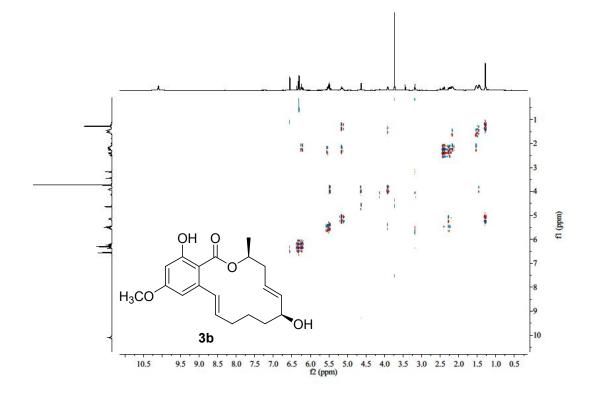


Figure S7.31. ¹H-¹H COSYspectrum of compound 3b in DMSO-*d*₆

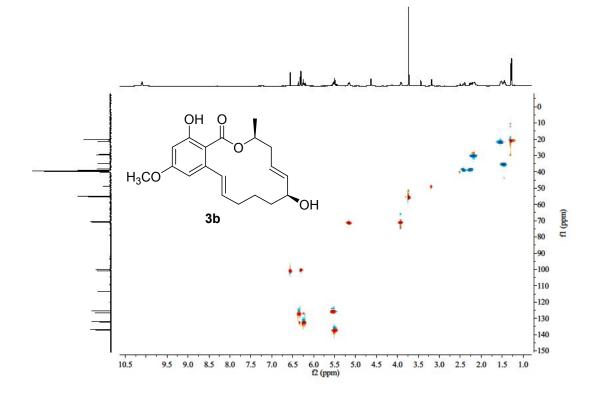


Figure S7.32. HSQC spectrum of compound 3b in DMSO-*d*₆

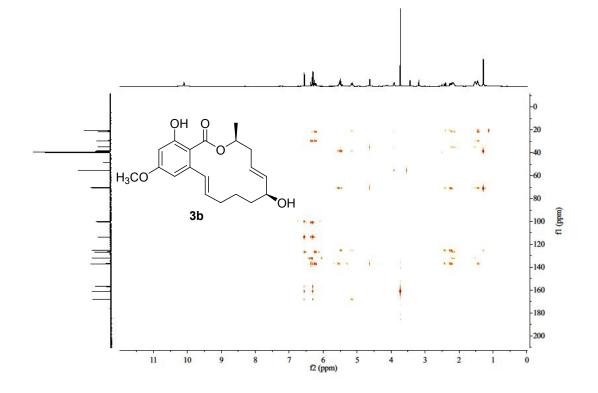


Figure S7.33. HMBC spectrum of compound 3b in DMSO-*d*₆

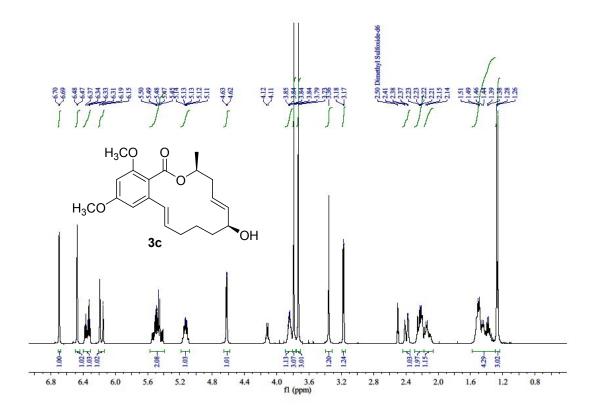


Figure S7.34. ¹H NMR spectrum of compound 3c in DMSO-*d*₆

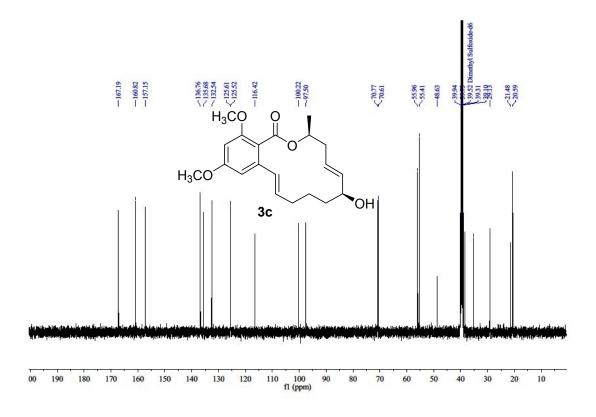


Figure S7.35. ¹³C NMR spectrum of compound 3c in DMSO-*d*₆

Figure S7.36. ¹H-¹H COSY spectrum of compound 3c in DMSO-*d*₆

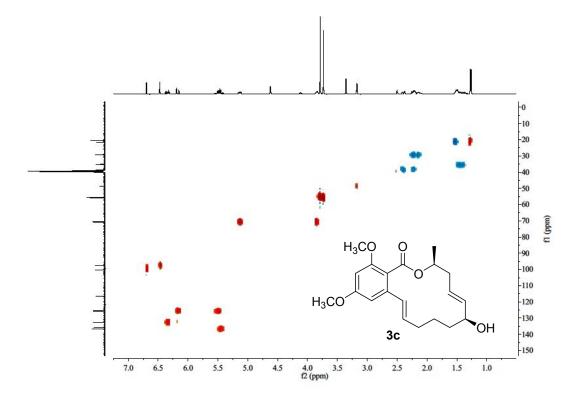


Figure S7.37. HSQC spectrum of compound 3c in DMSO-*d*₆

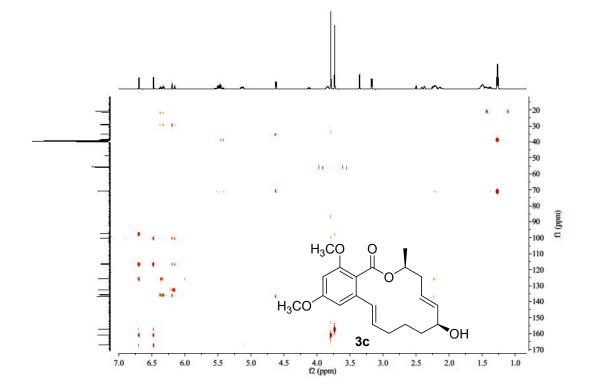


Figure S7.38. HMBC spectrum of compound 3c in DMSO-*d*₆

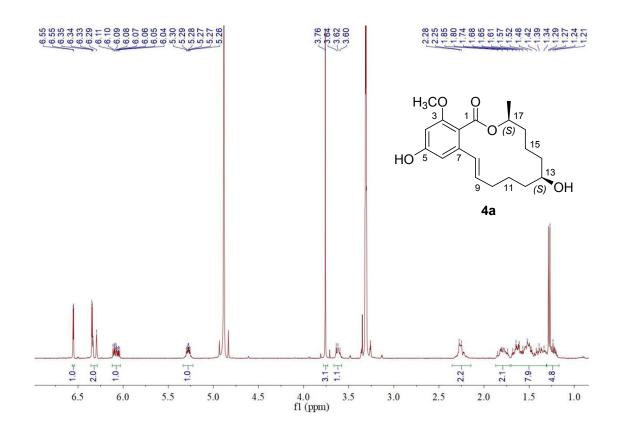


Figure S7.39. ¹H NMR spectrum of compound 4a in methanol-*d*₄

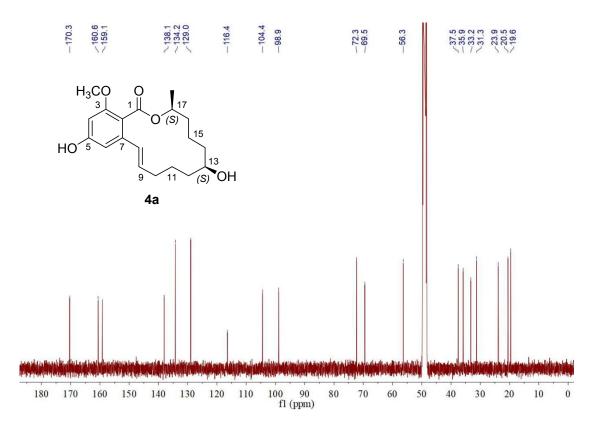


Figure S7.40. ¹³C NMR spectrum of compound 4a in methanol- d_4

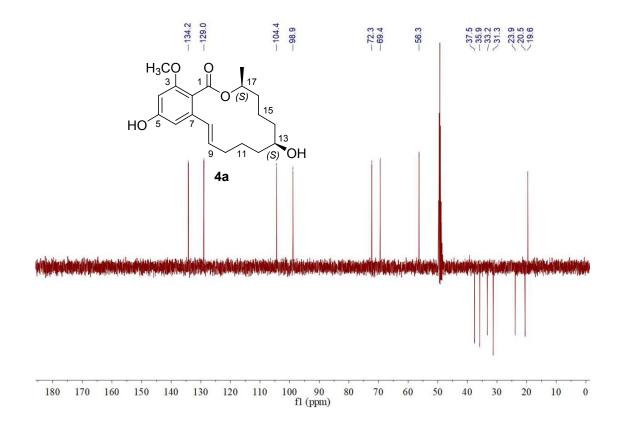


Figure S7.41. DEPT 135 spectrum of compound 4a in methanol- d_4

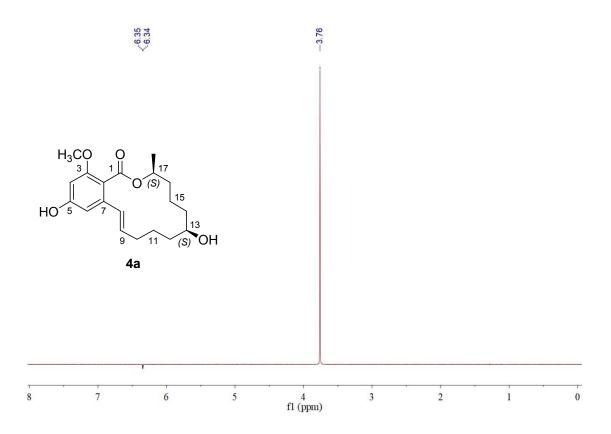


Figure S7.42. 1D NOESY spectrum of compound 4a in methanol-d₄

Figure S7.43. ¹H NMR spectrum of compound 4b in methanol-*d*₄

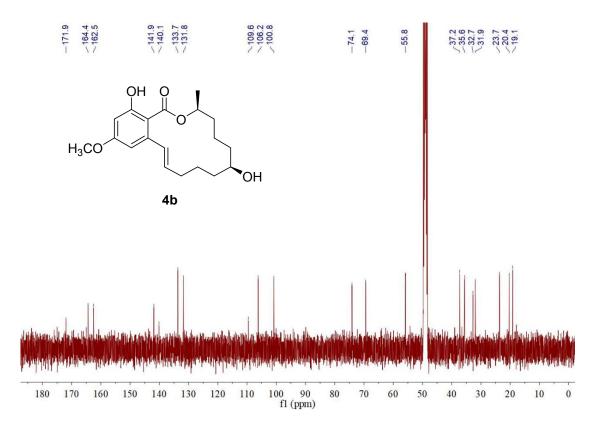


Figure S7.44. ¹³C NMR spectrum of compound 4b in methanol- d_4

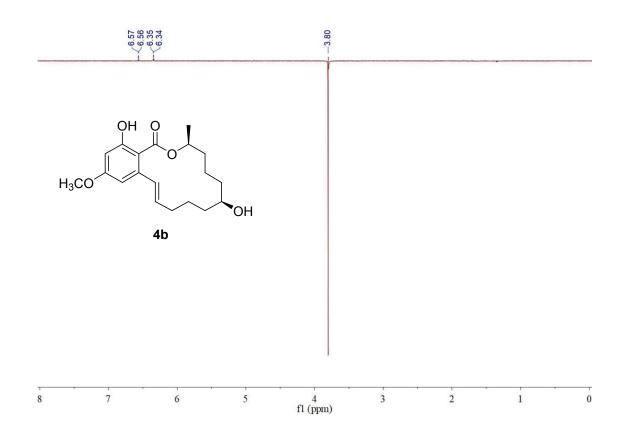


Figure S7.45. 1D NOESY NMR spectrum of compound 4b in methanol-d₄

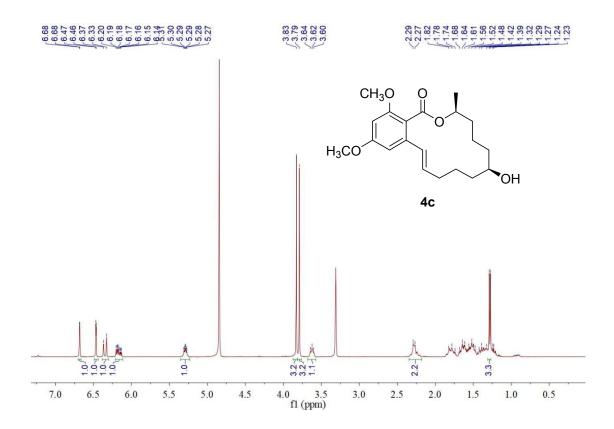


Figure S7.46. ¹H NMR spectrum of compound 4c in methanol-*d*₄

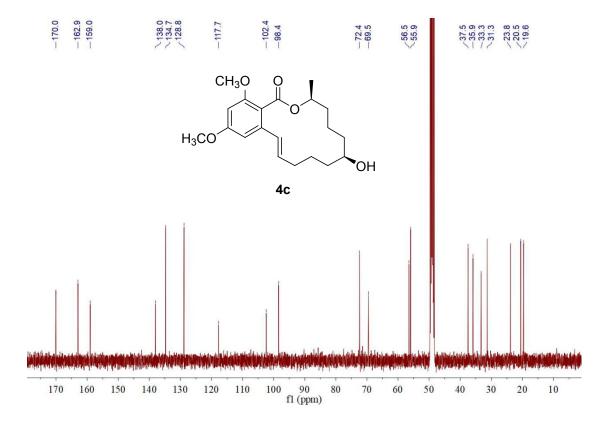


Figure S7.47. ¹³C NMR spectrum of compound 4c in methanol- d_4

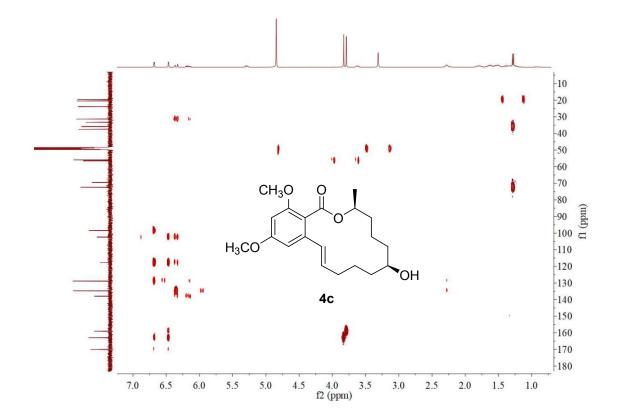


Figure S7.48. HMBC spectrum of compound 4c in methanol-d₄

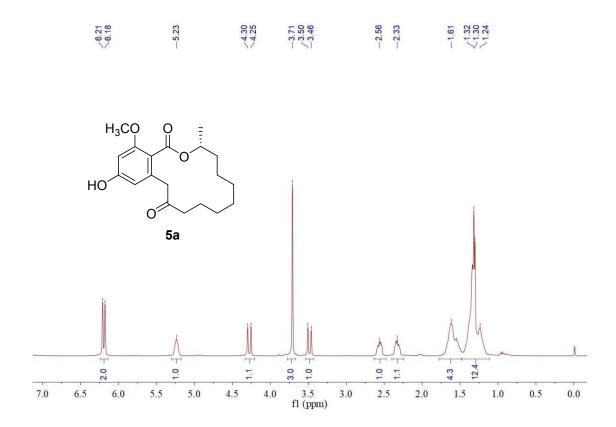


Figure S7.49. ¹H NMR spectrum of compound 5a in CDCl₃

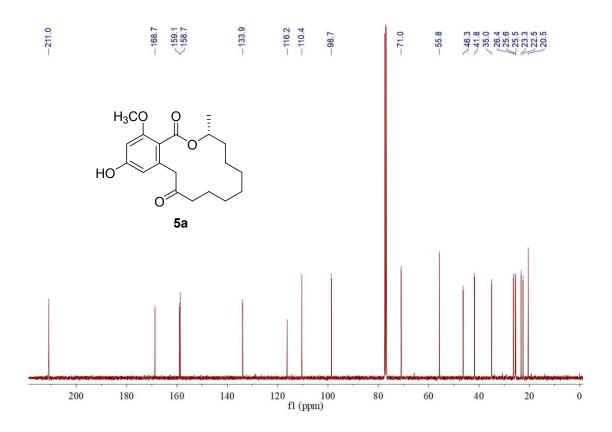


Figure S7.50. ¹³C NMR spectrum of compound 5a in CDCl₃

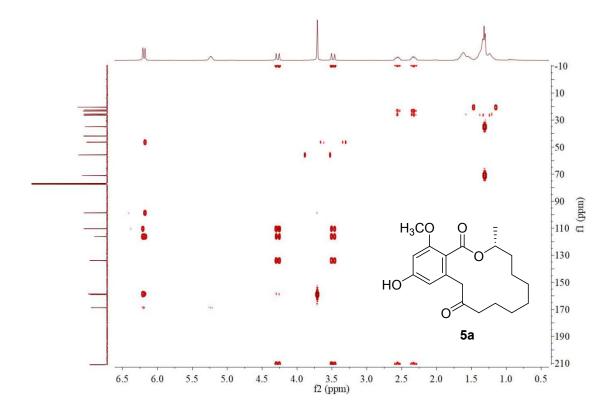


Figure S7.51. HMBC spectrum of compound 5a in CDCl₃

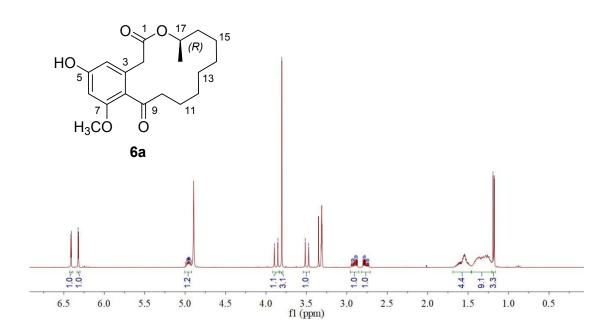


Figure S7.52. ¹H NMR spectrum of compound 6a in methanol-*d*₄

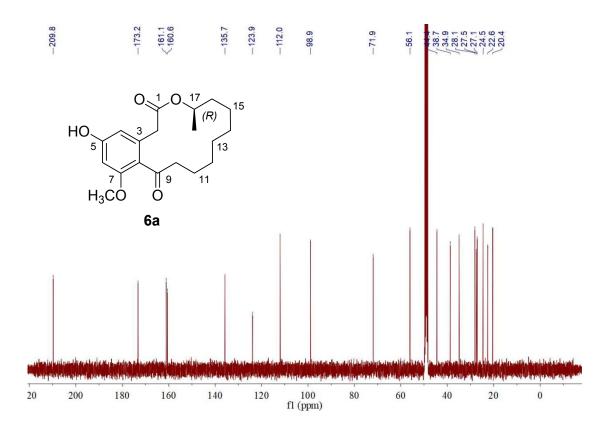


Figure S7.53. ¹³C NMR spectrum of compound 6a in methanol-*d*₄

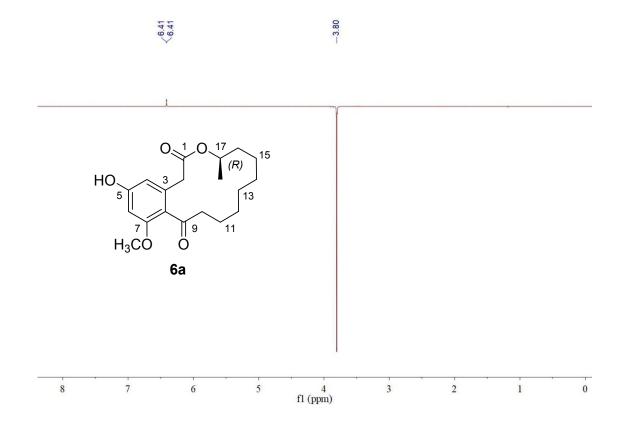


Figure S7.54. 1D NOESY spectrum of compound 6a in methanol- d_4

6.033 <th

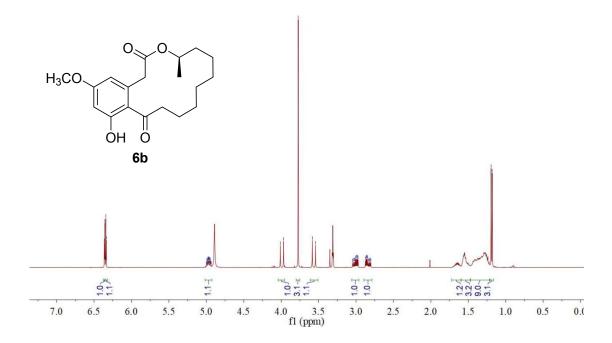


Figure S7.55. ¹H NMR spectrum of compound 6b in methanol-*d*₄

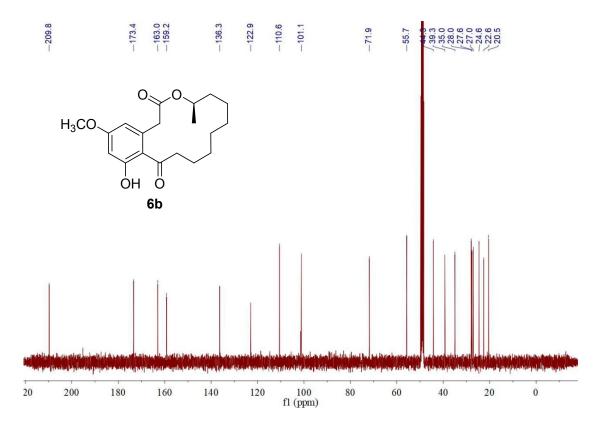


Figure S7.56. ¹³C NMR spectrum of compound 6b in methanol- d_4

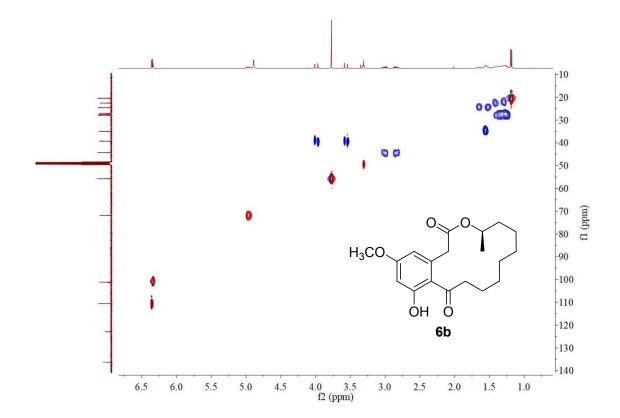


Figure S7.57. HSQC spectrum of compound 6b in methanol- d_4

Figure S7.58. HMBC spectrum of compound 6b in methanol-d₄

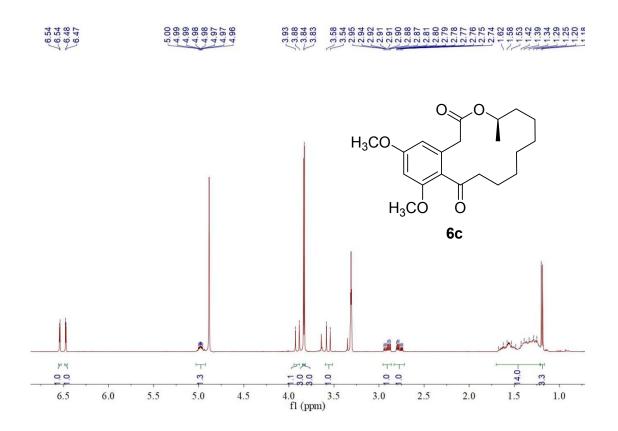


Figure S7.59. ¹H NMR spectrum of compound 6c in methanol- d_4

Figure S7.60. ¹³C NMR spectrum of compound 6c in methanol- d_4

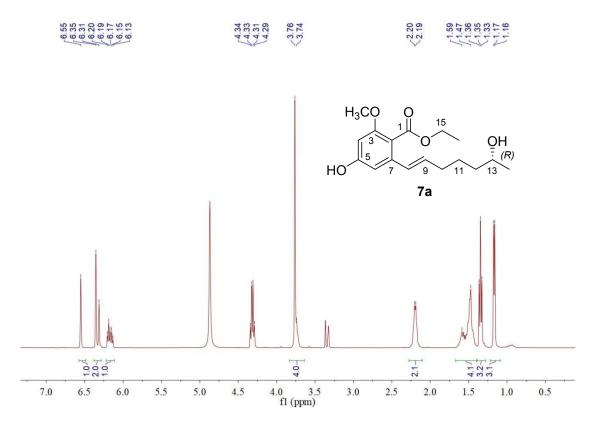


Figure S7.61. ¹H NMR spectrum of compound 7a in methanol-*d*₄

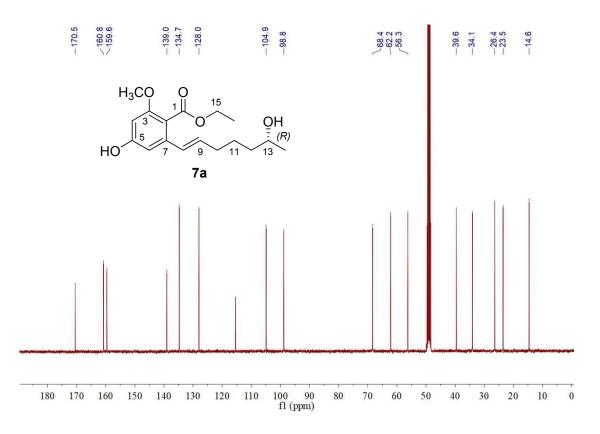


Figure S7.62. ¹³C NMR spectrum of compound 7a in methanol- d_4

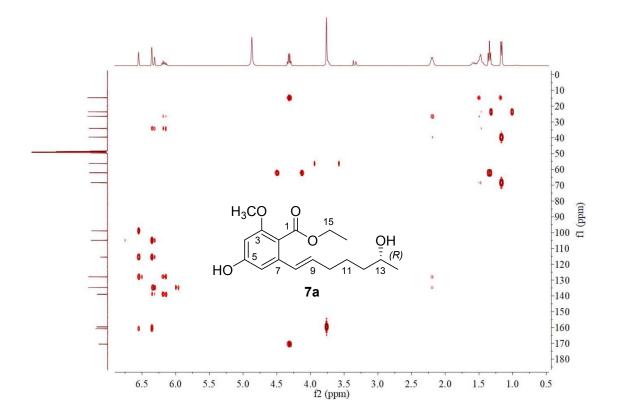


Figure S7.63. HMBC spectrum of compound 7a in methanol- d_4

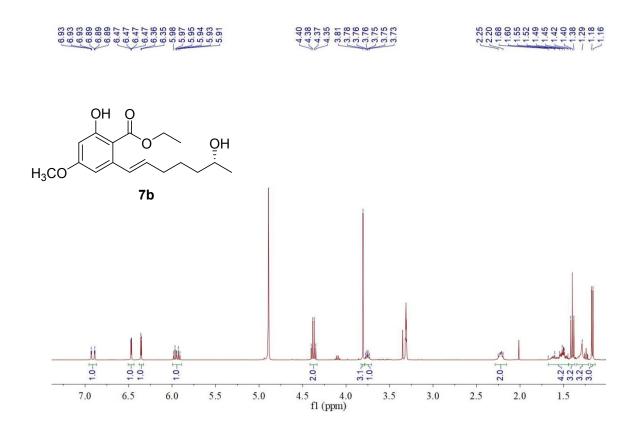


Figure S7.64. ¹H NMR spectrum of compound 7b in methanol-*d*₄

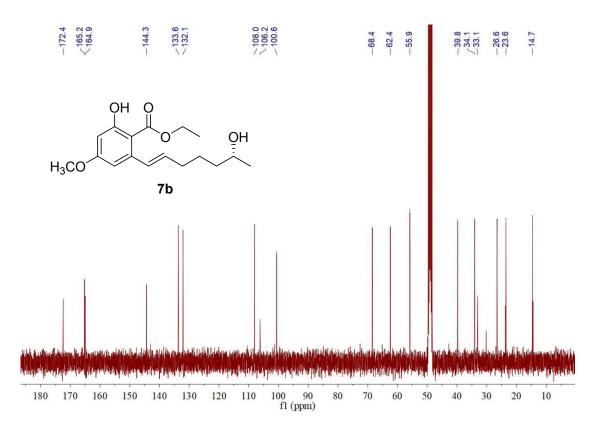


Figure S7.65. ¹³C NMR spectrum of compound 7b in methanol- d_4

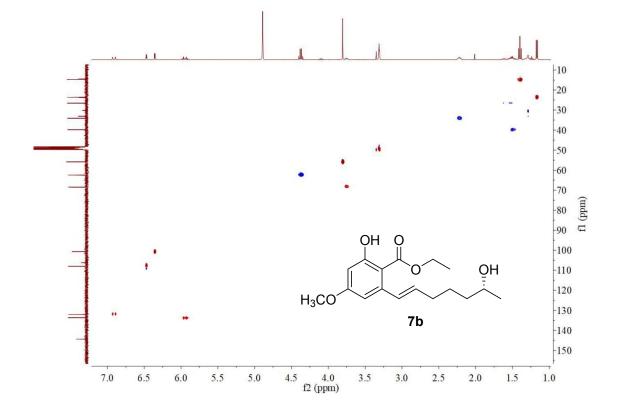


Figure S7.66. HSQC spectrum of compound 7b in methanol- d_4

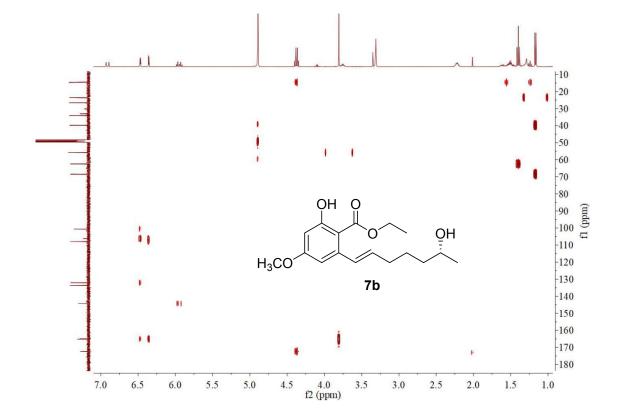


Figure S7.67. HMBC spectrum of compound 7b in methanol- d_4

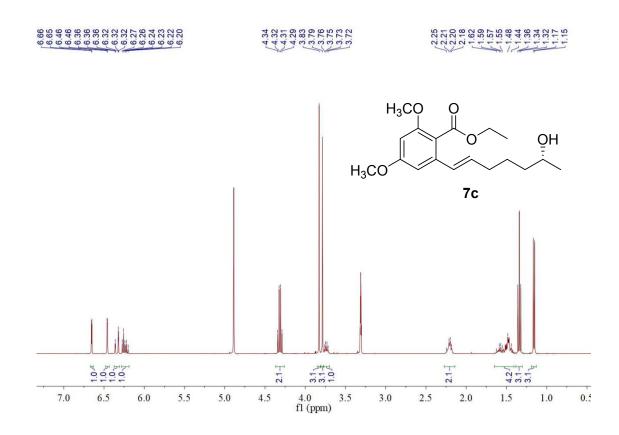


Figure S7.68. ¹H NMR spectrum of compound 7c in methanol-*d*₄

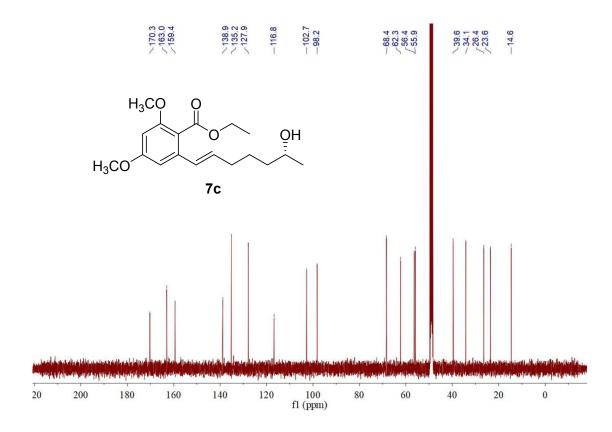


Figure S7.69. ¹³C NMR spectrum of compound 7c in methanol- d_4

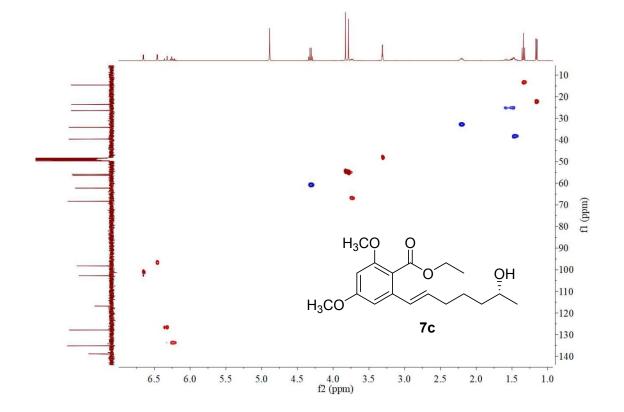


Figure S7.70. HSQC spectrum of compound 7c in methanol- d_4

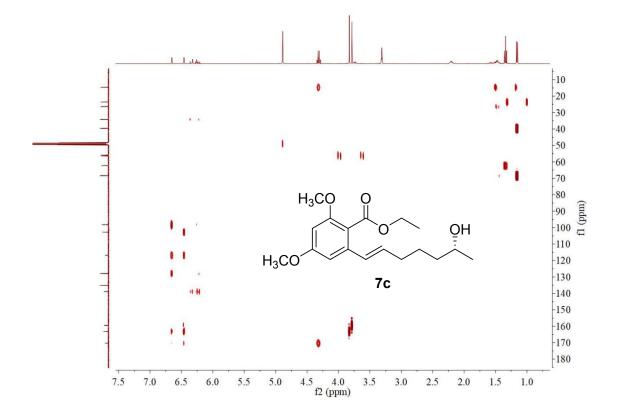


Figure S7.71. HMBC spectrum of compound 7c in methanol-d₄

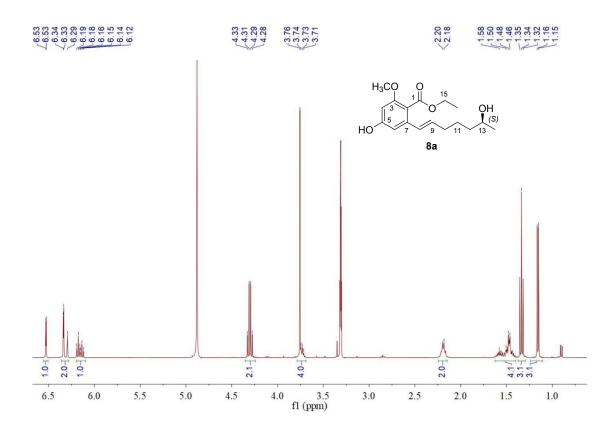


Figure S7.72. ¹H NMR spectrum of compound 8a in methanol-*d*₄

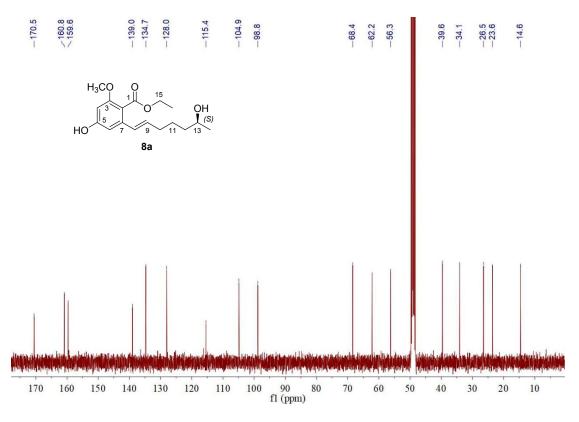


Figure S7.73. ¹³C NMR spectrum of compound 8a in methanol-*d*₄

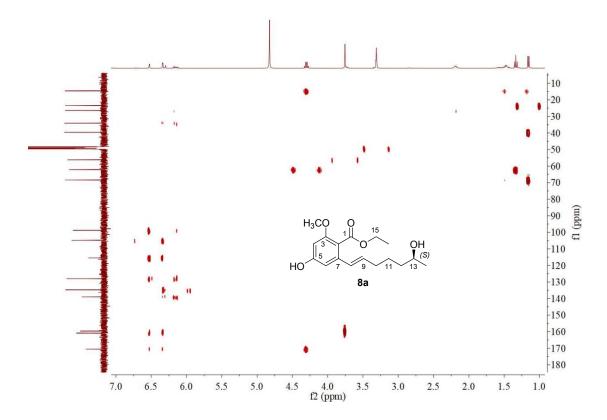


Figure S7.74. HMBC NMR spectrum of compound 8a in methanol-d₄

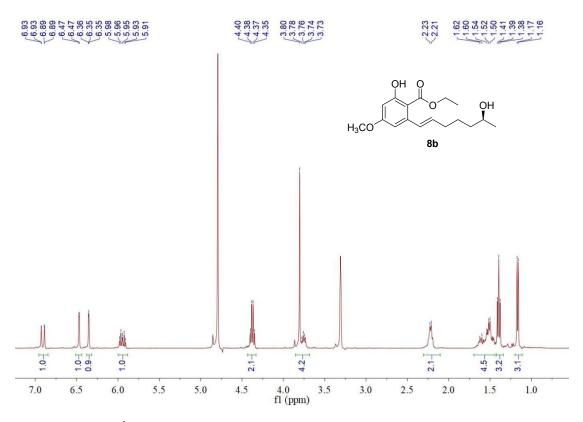


Figure S7.75. ¹H NMR spectrum of compound 8b in methanol-*d*₄

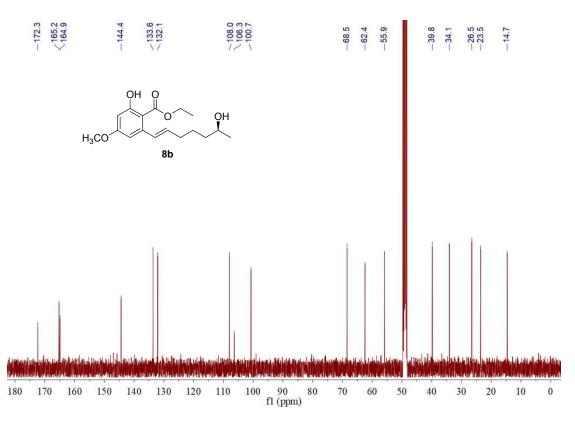


Figure S7.76. ¹³C NMR spectrum of compound 8b in methanol- d_4

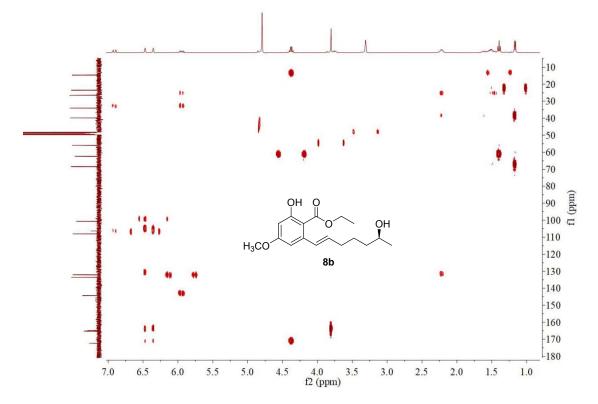


Figure S7.77. HMBC spectrum of compound 8b in methanol-d₄

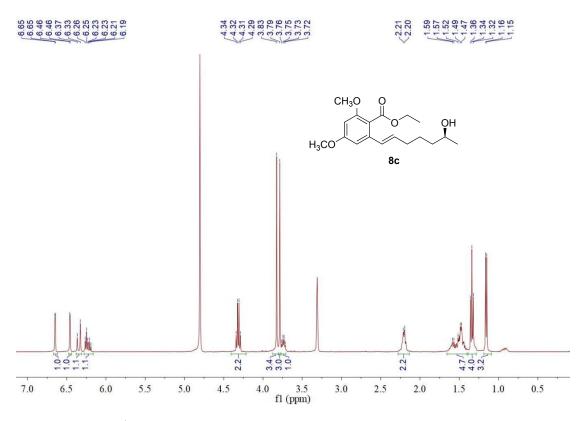


Figure S7.78. ¹H NMR spectrum of compound 8c in methanol-*d*₄

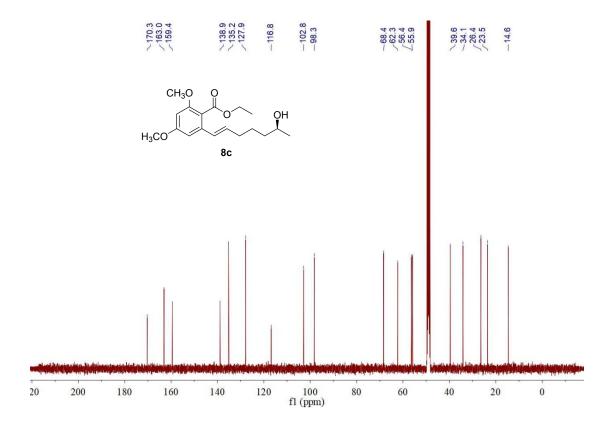


Figure S7.79. ¹³C NMR spectrum of compound 8c in methanol- d_4

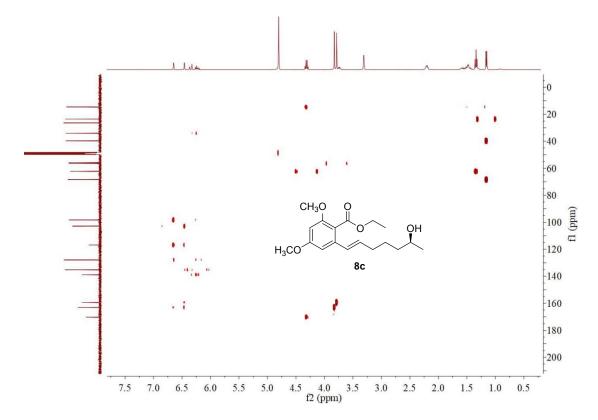
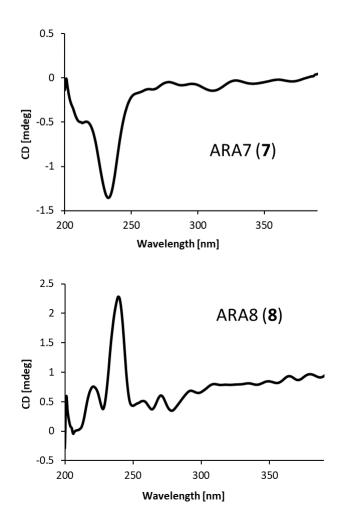



Figure S7.80. HMBC spectrum of compound 8c in methanol-d₄

4 SI References.

- Xu, Y.; Zhou, T.; Espinosa-Artiles, P.; Tang, Y.; Zhan, J.; Molnár, I. Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in *Saccharomyces cerevisiae*. ACS Chem. Biol. 2014, 9, 1119–1127.
- 2. Reeves, C. D.; Hu, Z.; Reid, R.; Kealey, J. T. Genes for biosynthesis of the fungal polyketides hypothemycin from *Hypomyces subiculosus* and radicicol from *Pochonia chlamydosporia*. *Appl. Environ. Microbiol.* **2008**, *74*, 5121–5129.
- Xie, L.; Zhang, L.; Wang, C.; Wang, X.; Xu, Y.-M.; Yu, H.; Wu, P.; Li, S.; Han, L.; Gunatilaka, A. L.; Wei, X.; Lin, M.; Molnár, I.; Xu, Y. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. *Proc. Natl. Acad. Sci. U.S.A.* 2018, *115*, E4980– E4989.
- Bai, J.; Lu, Y.; Xu, Y.-M.; Zhang, W.; Chen, M.; Lin, M.; Gunatilaka, A. L.; Xu, Y.; Molnár, I. Diversity-oriented combinatorial biosynthesis of hybrid polyketide scaffolds from azaphilone and benzenediol lactone biosynthons. *Org. Lett.* 2016, *18*, 1262–1265.
- Xu, Y.; Zhou, T.; Zhang, S.; Espinosa-Artiles, P.; Wang, L.; Zhang, W.; Lin, M.; Gunatilaka, A. L.; Zhan, J.; Molnár, I. Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. *Proc. Natl. Acad. Sci. U.S.A.* 2014, *111*, 12354– 12359.
- Xu, Y.; Zhou, T.; Zhou, Z.; Su, S.; Roberts, S. A.; Montfort, W. R.; Zeng, J.; Chen, M.; Zhang, W.; Lin, M.; Zhan, J.; Molnár, I. Rational reprogramming of fungal polyketide first-ring cyclization. *Proc. Natl. Acad. Sci. U.S.A.* 2013, *110*, 5398–5403.
- Xu, Y.; Zhou, T.; Zhang, S.; Xuan, L. J.; Zhan, J.; Molnár, I. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. *J. Am. Chem. Soc.* 2013, *135*, 10783–10791.
- Wang, S.; Xu, Y.; Maine, E. A.; Wijeratne, E. K.; Espinosa-Artiles, P.; Gunatilaka, A. L.; Molnár, I. Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from *Chaetomium chiversii*. *Chem. Biol.* 2008, *15*, 1328–1338.
- Ma, S. M.; Li, J. W.-H.; Choi, J. W.; Zhou, H.; Lee, K. M.; Moorthie, V. A.; Xie, X.; Kealey, J. T.; Silva, N. A. D.; Vederas, J. C.; Tang, Y. Complete reconstitution of a highly reducing iterative polyketide synthase. *Science*. 2009, *326*, 589–592.
- 10. Gietz, R. D.; Woods, R. A. Genetic transformation of yeast. *Biotechniques.* 2001, *30*, 816-+.
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T. G.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic. Acids Res.* 2014, *42*, W252–258.
- Singh, S.; Chang, A.; Goff, R. D.; Bingman, C. A.; Grüschow, S.; Sherman, D. H.; Phillips, G. N., Jr.; Thorson, J. S. Structural characterization of the mitomycin 7-*O*-methyltransferase. *Proteins.* 2011, 79, 2181–2188.
- 13. Holm, L.; Laakso, L. M. Dali server update. *Nucleic. Acids Res.* 2016, 44, W351–355.
- Gaffoor, I.; Brown, D. W.; Plattner, R.; Proctor, R. H.; Qi, W.; Trail, F. Functional analysis of the polyketide synthase genes in the filamentous fungus *Gibberella zeae* (anamorph *Fusarium graminearum*). *Eukaryot Cell.* 2005, *4*, 1926-1933.

Kim, Y. T.; Lee, Y. R.; Jin, J.; Han, K. H.; Kim, H.; Kim, J. C.; Lee, T.; Yun, S. H.; Lee, Y. W. Two different polyketide synthase genes are required for synthesis of zearalenone in *Gibberella zeae*. *Mol Microbiol.* 2005, *58*, 1102-1113.