Supplementary Information

Vibrational Optical Activity of Inter-Molecular, Overtone and Combination Bands: 2-Chloropropionitrile and α-Pinene

Pavel Michal,^{†*} Radek Čelechovský,[†] Michal Dudka,[†] Josef Kapitán,[†] Milan Vůjtek,[†] Marie Berešová,^{#‡} Jaroslav Šebestík,[‡] Karthick Thangavel,[‡] and Petr Bouř^{#‡*}

> [†]Department of Optics, Palacký University Olomouc, 17. listopadu 12, 77146, Olomouc, Czech Republic

[#]Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic

[‡]Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic

Content

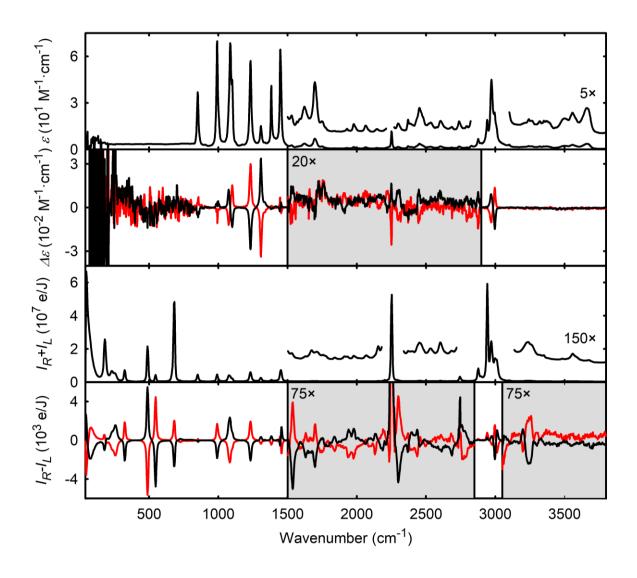

- Figure S1. Unprocessed nitrile vibrational spectra
- **Figure S2.** Unprocessed α -pinene vibrational spectra
- Figure S3. The function used for dispersion of the optimization frequency limit
- Figure S4. Dependence of the anharmonic force constants on differentiation step
- Figure S5. Nitrile Raman and ROA spectra calculated with different methods
- **Figure S6.** Calculated energy dependence of the nitrile on the Ψ angle
- **Figure S7.** Energy as a function of Ψ and ω , and distributions of cluster geometries
- **Figure S8.** Frequency shifts as dependent on Ψ and ω
- **Figure S9.** ROA intensity dependence on Ψ and ω
- Figure S10. Angular distribution in nitrile obtained by MD
- Figure S11. Example of the AIM analysis of nitrile-nitrile interactions
- Figure S12. Nitrile ROA spectra for methanol solution.
- Figure S13. Nitrile IR and VCD spectra in the anharmonic region
- **Figure S14.** Raman and ROA spectra of α -pinene, LVCI calculation included.
- **Figure S15.** α -pinene IR and VCD spectra in the anharmonic region

Table S1. Conditions of ROA measurements

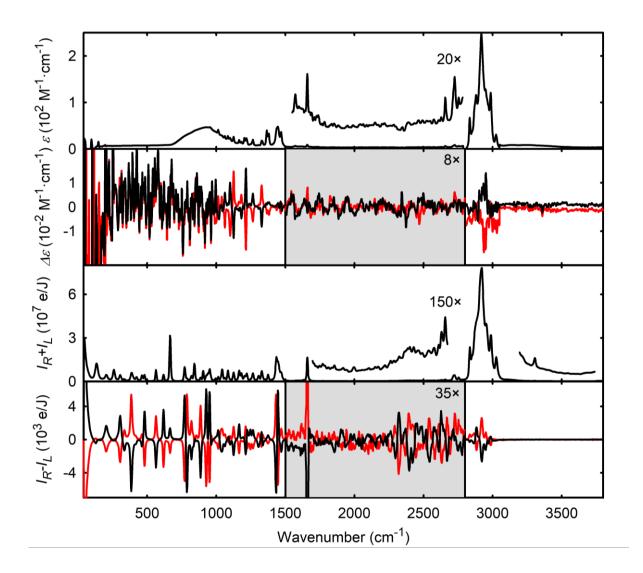
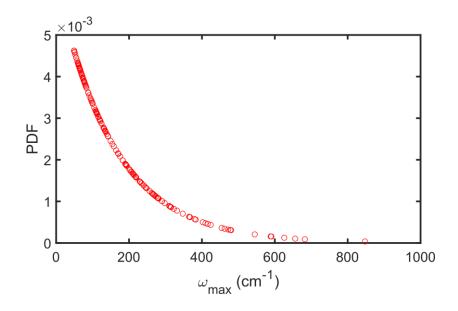

Table S2. Nitrile fundamental modes

Table S3. Nitrile combination modes and overtones


Table S4. AIM topological parameters of interacting atoms in nitrile dimers

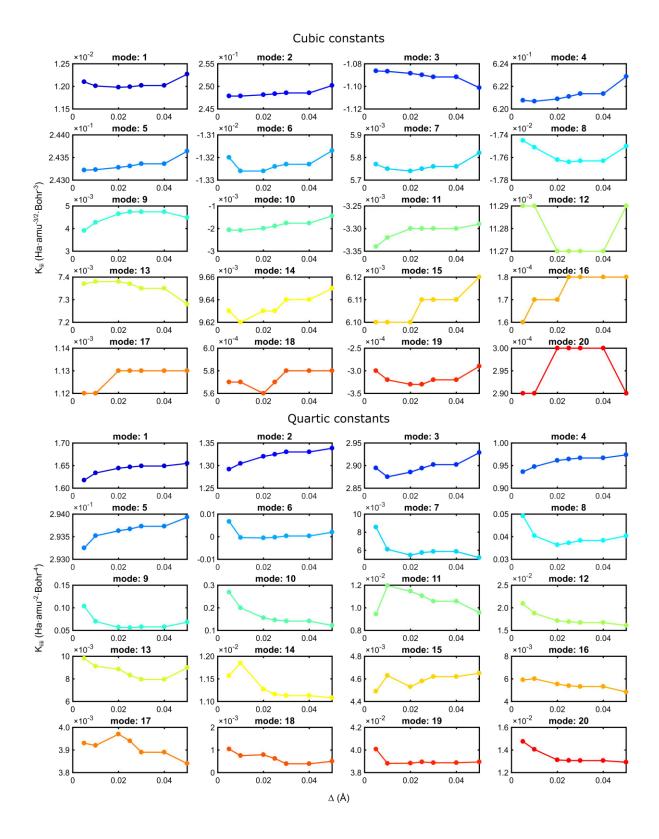
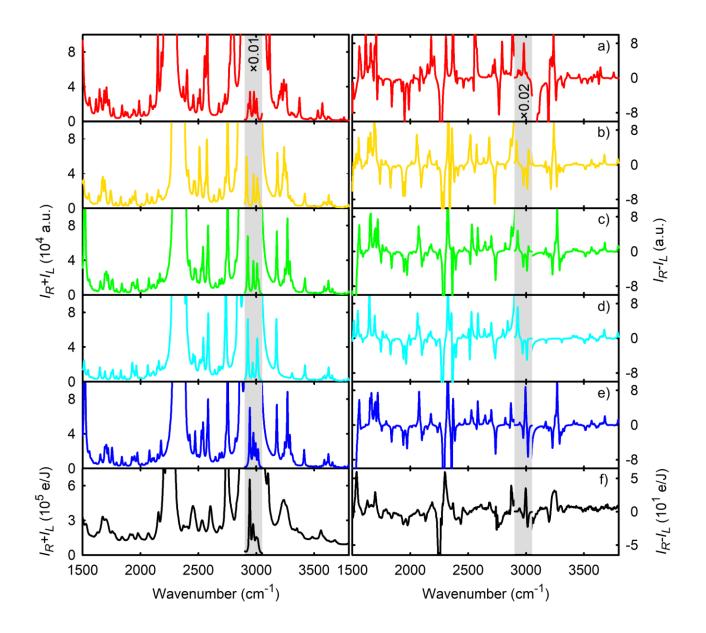
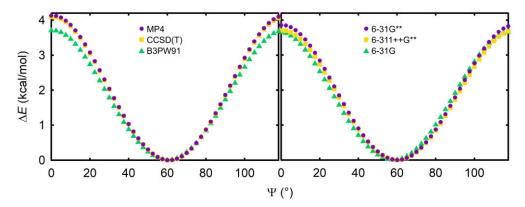
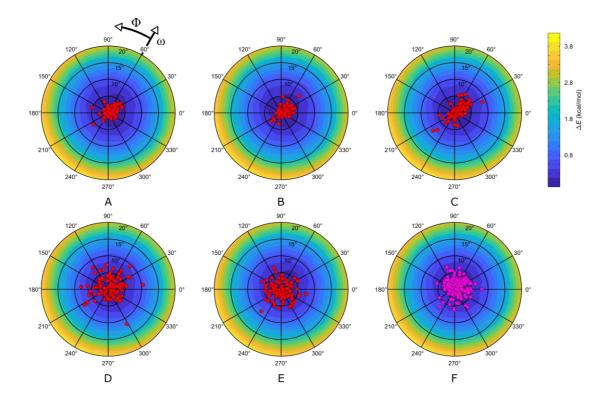
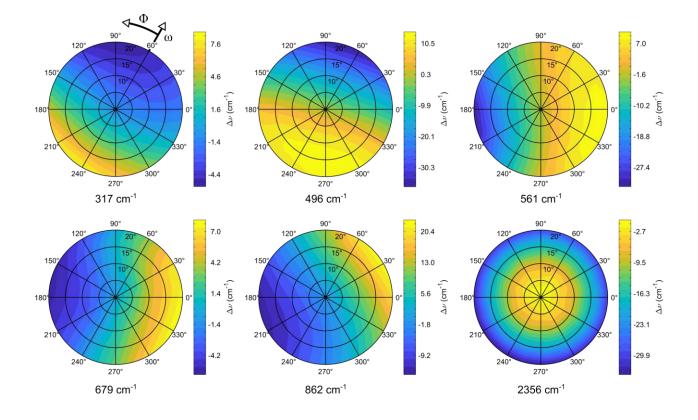

Figure S1. Experimental IR, VCD, Raman and ROA raw spectra of (R-red, S-black) 2-chloropropionitrile; regions of overtone and combination modes are enlarged.

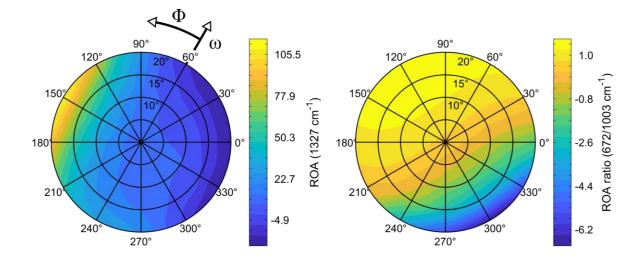
Figure S2. Experimental IR, VCD, Raman and ROA raw spectra of ((+)-red, (-)-black) $)-\alpha$ -pinene; regions of overtone and combination modes are enlarged.

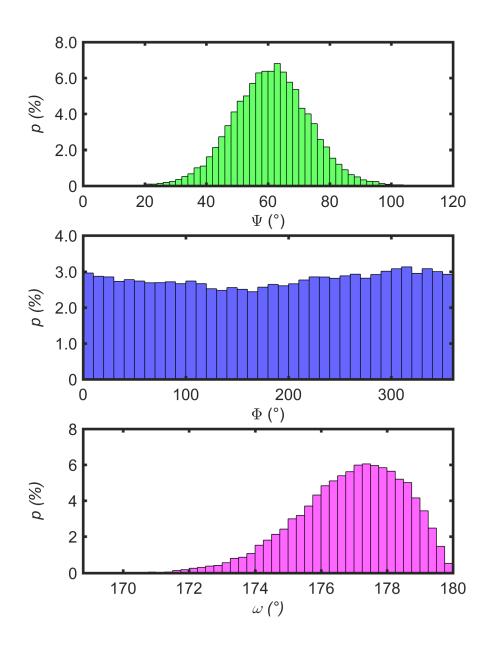
Figure S3. Random exponential function used for the optimization frequency limit for 200 nitrile clusters.

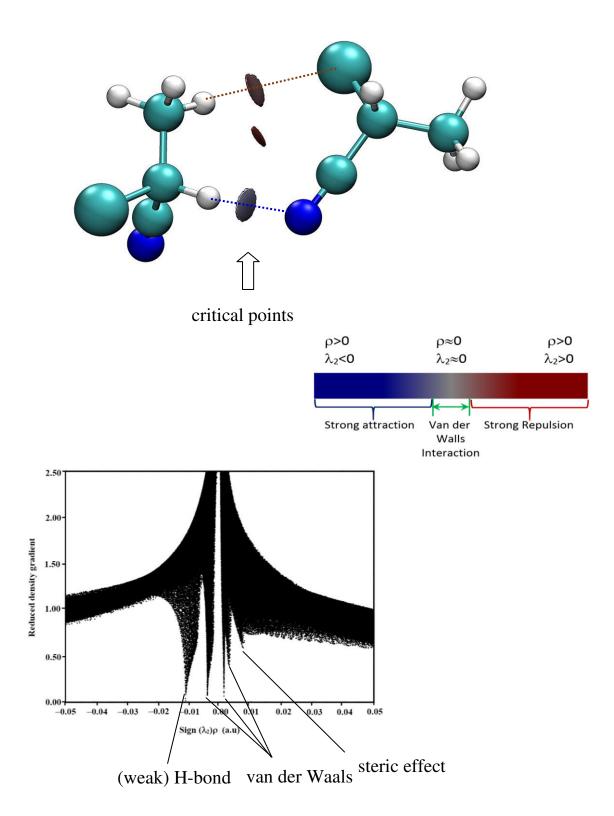
Figure S4. Dependence of calculated cubic and quartic diagonal normal mode nitrile force constants on the size of the numerical differentiation step.

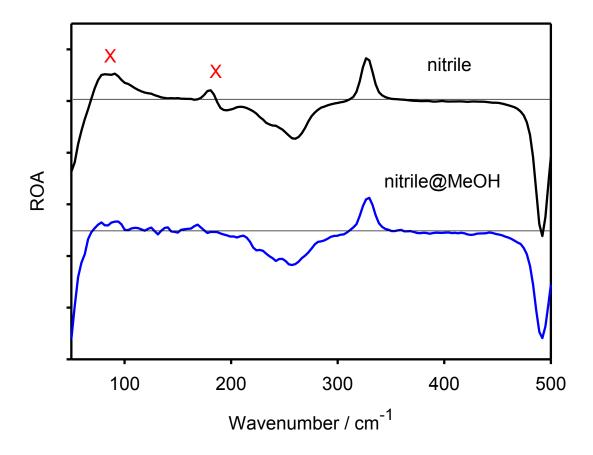




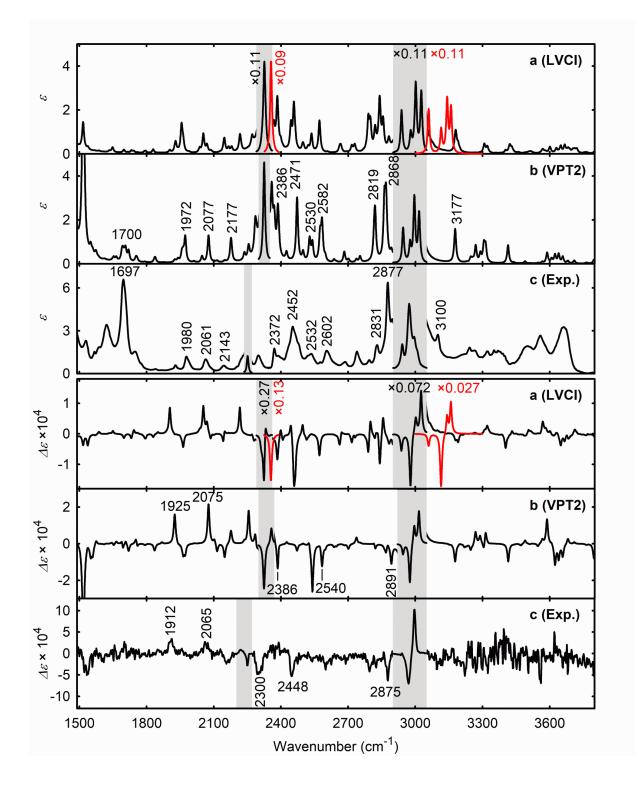

Figure S5. Nitrile Raman and ROA spectra within 1490-3800 cm⁻¹ calculated using different methods: 6311G basis set (a), 6-311G^{**} basis set (b), 6-311++G^{**} basis set (c-e), all mode calculations (a-c, e) and with modes 1-4 frozen (d), and the GVPT2 (a-d) and VPT2 (e) approaches, (f) is the experiment.


Figure S6. Calculated nitrile energy dependence on the Ψ angle (cf. **Figure 1**), calculated at different levels, left: MP4, CCSD(T) and B3PW91 with 6-311++G**/ (ACN), right: B3PW91 calculation in three basis sets.


Figure S7. DFT energy as a function of the Φ and 180° - ω angles, and distributions of nitrile geometries in 200 clusters obtained from MD partially optimized with various values of the normal mode frequency limit (A: 40 cm⁻¹, B: 150 cm⁻¹, C: 225 cm⁻¹, D: 390 cm⁻¹, E: no optimization, F: exponential distribution within 50-900 cm⁻¹, see **Figure S2**).


Figure S8. Frequency shift (Δ /cm⁻¹) of selected nitrile normal modes, from values for the equilibrium geometry, plotted as a function of the Φ and 180° - ω angles.


Figure S9. ROA intensity of the 1327 cm⁻¹ nitrile mode (left), and intensity ratio of the 672 and 1003 cm⁻¹ modes as dependent on the Φ and 180° - ω angles.


Figure S10. Angle distributions of the nitrile characteristic angles obtained during the free molecular dynamics run (1 ns).

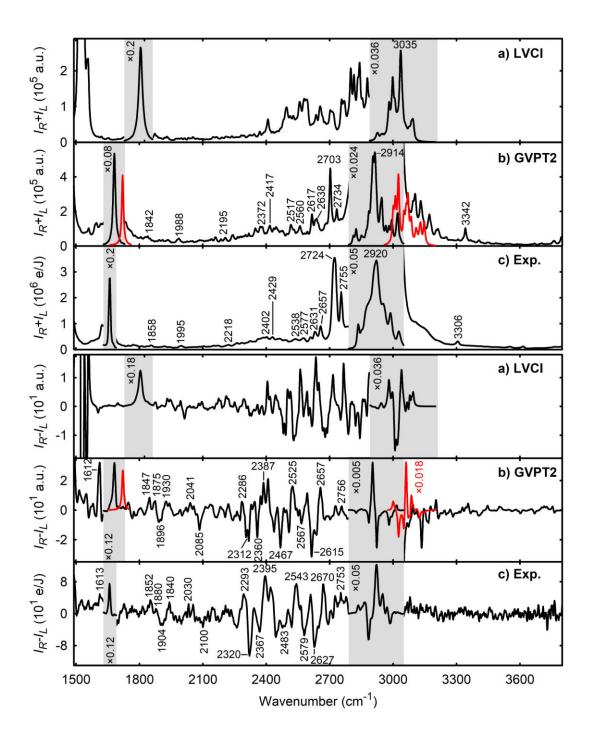

Figure S11. Example of the AIM analysis of nitrile-nitrile interactions (dimer number 9 in **Table S4**). Top – reduced density gradient (RDG) in critical points, bottom – RDG vs. signed density AIM graph.

Figure S12. Nitrile ROA spectra in the low-frequency region, for pure liquid (top) and its about 10 % solution in methanol (bottom). Clearly vanishing bands are marked by the red crosses.

Figure S13. Nitrile IR and VCD spectra within 1490-3800 cm⁻¹ calculated using the limited vibrational configuration interaction (a) and vibrational second order perturbation (b) methods, and experiment (c). For the C=N and CH stretching spectra calculated at the harmonic level are plotted by the red line. The ε and $\Delta \varepsilon$ units are L·mol⁻¹·cm⁻¹.

Figure S14. Raman and ROA spectra of α -pinene, plotted within 1490–3800 cm⁻¹, as calculated using the limited vibrational configuration interaction (a), generalized vibrational second order perturbation calculus (b), and the experiment (c). For the fundamental C=N and CH stretching signal, spectral shapes calculated at the harmonic level are plotted by the red line. These signals in the gray areas are plotted in a different scale. LVCI spectra above 3100 cm⁻¹ were not calculated.

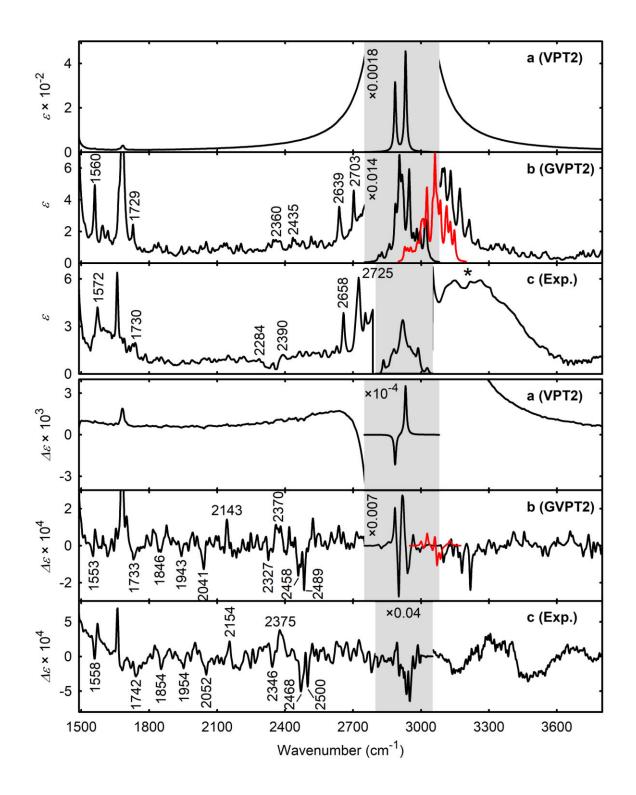


Figure S15. (+)- α -pinene IR and VCD spectra within 1490-3800 cm⁻¹ calculated using vibrational second order perturbation before (a) and after including corrections to resonances (b), and experiment (c). For the CH stretching spectra calculated at the harmonic level are plotted by the red line. The ε and $\Delta \varepsilon$ units are L·mol⁻¹·cm⁻¹. Above 3100 cm⁻¹ the experimental spectrum is hampered by BaF₂ absorption (marked by the asterisk, *), impossible to subtract.

Table S1. Laser power on the sample (*P*) and total accumulation time (*t*) used for ROA measurement. Weak combination and overtone bands of the nitrile were measured using different conditions (P^* , t^*). Reported spectra are normalized to unit excitation energy obtained as a product of the power and acquisition time.

solvent	enantiomer	<i>P</i> / mW	<i>t /</i> h	<i>P</i> */mW	<i>t</i> */h
2-chloropropionitrile	R	83	9.7	340	29.7
2-emotopropropromune	S	83	13.2	340	55.2
a pinono	R	102	4.1	-	-
α-pinene	S	68	9.8	-	-

		Anharmonic		
Mode	Harmonic	(VPT2)	EXP	Туре
1	3159	3016	3013	asymmetric CH ₃ stretching
2	3142	2995	2997	asymmetric CH ₃ stretching
3	3115	2971	2976	αCH stretching
4	3059	2945	2943	symmetric CH ₃ stretching
5	2356	2325	2252	CN stretching
6	1476	1438	1456	CH ₃ scissoring
7	1469	1439	1445	CH ₃ scissoring
8	1403	1384	1383	CH ₃ umbrella motion
9	1329	1300	1307	CH bending
10	1254	1264	1232	CH bending
11	1112	1104	1100	CC stretching
12	1091	1090	1077	CC stretching
13	1003	989	991	CC stretching
14	862	853	851	CH ₃ wagging, CCN bending
15	679	664	681	CH3 wagging, CCN bending, CCl stretching
16	561	571	547	CCN bending to CH ₃
17	496	494	489	CCN bending perpendicular to CH ₃
18	317	313	324	CCCl bending, CCCN torsional twisting
19	266	273	250	CH ₃ rotation
20	227	252	231	CH ₃ rotation and, CCCN torsional twisting
21	173	176	181	CCN bending to CH ₃ , CH ₃ rocking

<u>**Table S2.**</u> Nitrile, assignment of fundamental modes, frequencies in cm^{-1} .

	Calculated	Experimental
Modes	(VPT2)	(Raman)
21+8; 20+9; 16+13	1560	1530
16+11; 15+13; 16+12	1653	1630
20+6; 20+7; 18+8; 2x14; 19+6; 19+7	1704	1674; 1700
18+6; 18+7; 15+11; 15+12; 17+10	1754	1757
16+10; 14+13	1839	1840
15+10; 17+6; 17+7; 14+11; 14+12; 16+8; 15+9	1925; 1945	1912; 1931
2x13	1973	1978
13+11; 13+12	2077	2068
2x11; 2x12; 11+12	2177	2155
13+6;13+7	2424	2385
11+8; 12+8	2472	2453
12+6; 11+6; 11+7; 12+7; 2x10	2527; 2540	2532
10+9; 20+5; 19+5; 2x9	2583	2603
10+8; 9+8; 10+6; 10+7	2648; 2682; 2702	2685
2x8	2753	2745
8+6; 8+7	2820	2830
2x7; 2x6	2865	2877
21+2; 14+5; 21+1; 20+4	3177	3100
19+4; 19+3; 19+2; 19+1; 20+3; 20+2; 20+1; 18+4;		
18+3; 18+2; 18+1; 13+5	3269	3238
11+5; 12+5	3413	3351
9+5	3623	3358

<u>Table S3.</u> Nitrile, frequencies (cm⁻¹) of combination modes and overtones.

<u>**Table S4.**</u> AIM topological parameters of interacting atoms in 14 nitrile dimers. The intermolecular threshold was 0.01 kcal/mol, electron density (ρ) and Laplacian ($\Delta \rho$) are in atomic units.

Dimer	Critical points ($\nabla \rho = 0$)					
number	Atoms	Distance (Å)	ρ	Δho		
	C-Cl	1.8324	0.1653	-0.185		
	C-N	1.1526	0.4792	0.301		
1	C-C	1.4908	0.2559	-0.648		
	C-H	1.0900	0.4792	-1.000		
	C5…H17	4.7417	1.76×10^{-4}	7.57×10 ⁻⁴		
1	Cl9…H18	4.8686	1.67×10^{-4}	6.54×10 ⁻⁴		
	Cl9…H11	4.6185	1.91×10 ⁻⁴	7.01×10 ⁻⁴		
	Cl14…H2	2.8821	6.00×10 ⁻³	2.10×10 ⁻²		
2	H16…N4	3.3554	1.72×10^{-3}	5.76×10 ⁻³		
	H8…Cl14	2.9977	5.21×10 ⁻³	1.77×10^{-2}		
3	H7…H16	2.7502	2.30×10 ⁻³	7.87×10 ⁻³		
	H18…Cl9	3.3750	2.14×10^{-3}	7.67×10 ⁻³		
4	Cl14…Cl9	4.1806	2.26×10^{-3}	6.29×10 ⁻³		
5	Cl9…Cl14	4.1894	1.83×10^{-3}	5.39×10 ⁻³		
6	N15…N4	4.8218	2.42×10^{-4}	9.67×10 ⁻⁴		
	C5…Cl14	4.0798	2.06×10^{-3}	6.25×10 ⁻³		
7	H2…Cl14	3.5624	1.74×10^{-3}	5.66×10 ⁻³		
8	N4…C12	3.2145	5.79×10 ⁻³	1.88×10^{-2}		
	H11…N4	2.3913	1.08×10^{-2}	3.40×10^{-2}		
9	H16…Cl9	3.1998	3.90×10^{-3}	1.29×10^{-2}		
	H18…N4	3.7215	7.83×10^{-4}	2.77×10 ⁻³		
10	N4…Cl14	4.6051	6.82×10^{-4}	2.31×10 ⁻³		
11	Cl9…N15	4.4090	8.43×10 ⁻⁴	2.87×10^{-3}		
12	Cl9…N15	4.9235	3.43×10 ⁻⁴	1.24×10^{-3}		
	H6…H16	3.0306	1.32×10^{-3}	4.43×10 ⁻³		
13	$H7 \cdots Cl14$	3.0265	4.95×10^{-3}	1.65×10^{-2}		
	N4…N15	3.5535	4.14×10^{-3}	1.27×10^{-2}		
14	N15…Cl9	3.5070	5.25×10^{-3}	1.61×10^{-2}		
14	H6…Cl14	2.6718	1.02×10^{-2}	3.54×10^{-2}		
	Cl9…Cl14	4.0496	3.05×10 ⁻³	8.88×10 ⁻³		