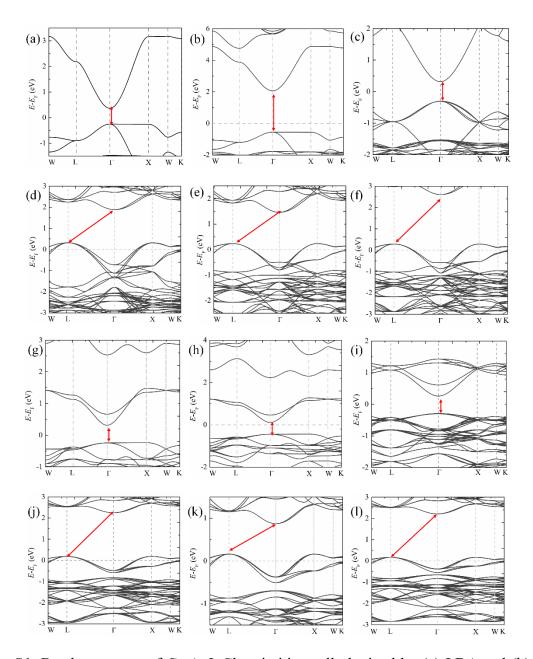
Supporting Information

Potential Applications of Halide Double Perovskite Cs_2AgInX_6 (X = Cl, Br) in Flexible Optoelectronics: Unusual Effects of Uniaxial Strains


Zhao Zhang, Jie Su^{*}, Jie Hou, Zhenhua Lin, Zhaosheng Hu, Jingjing Chang^{*}, Jincheng Zhang, and Yue Hao

China State Key Discipline Laboratory of Wide Band Gap Semiconductor Tecchnology, Shaanxi Joint Key Laboratory of Graphene, Advanced Interdisciplinary Research Center for Flexible Electronics, School of Microelectronics, Xidian University, Xi'an, 710071, China.

*E-mail: sujie@xidian.edu.cn; jjingchang@xidian.edu.cn

Table S1. Lattice constants (a=b=c) (in unit of Å) obtained by different methods, and bond lengths (in unit of Å), elastic constants (in unit of N/m) and band gaps (in unit of eV) calculated by LDA method for Cs_2AgInX_6 (X= Cl, Br). For comparison, the values calculated from previous studies and experiments are also listed.

	Lattice constant						Bond length		Elastic	Band
									constant	gap
	LDA	Experiment	HSE	PBE	PW91	PBE0	In-X	Ag-X		
Cs ₂ AgInCl ₆	10.22,	10.47	10.621	10.65 ¹	10.65	10.68	2.51	2.59	71.02	0.65,
	10.2^{1}									2.1-3.3 ¹
Cs2AgInBr6	11.43,									0.58
	11.16 ² ,		11.20^{4}	11.60	11.60	11.58	2.81	2.90	67.73	1.5 ² ,
	11.20 ³									1.33 ³

Figure S1. Band structures of Cs₂AgInCl₆ primitive cell obtained by (a) LDA and (b) HSE functionals, respectively. Band structures of Cs₂AgInCl₆ unit-cell obtained by (c) LDA, (d) GGA-PBE, (e) PBE0, (f) GGA-PW91 methods, respectively. Band structures of Cs₂AgInBr₆ primitive cell obtained by (g) LDA and (h) HSE functionals, respectively. Band structures of Cs₂AgInBr₆ unit-cell obtained by (i) LDA, (j) GGA-PBE, (k) PBE0, (l) GGA-PW91 methods, respectively.

It can be found that the band structures of Cs2AgInX6 (X=Cl, Br) calculated by

GGA-PBE, GGA-91, PBE0 methods show indirect band gap characters, which is inconsistent with previous reports ^{1,4,5}. That is because band edges of Cs_2AgInX_6 (X=Cl, Br) are sensitive to the lattice constants (such phenomenon is analyzed in detail in the following section) which are difficult to be accurately obtained by these methods, as listed in Table S1. While the band structures of Cs_2AgInX_6 (X=Cl, Br) perovskite obtained by LDA and HSE corrected methods ^{1,4,5} are similar, except for the band gaps, suggesting that LDA method is sufficient to understand the electronic properties of Cs_2AgInX_6 (X=Cl, Br) perovskite. Thus, the physical properties, except for the band gap, of Cs_2AgInX_6 (X=Cl, Br) in the following section are calculated by LDA method.

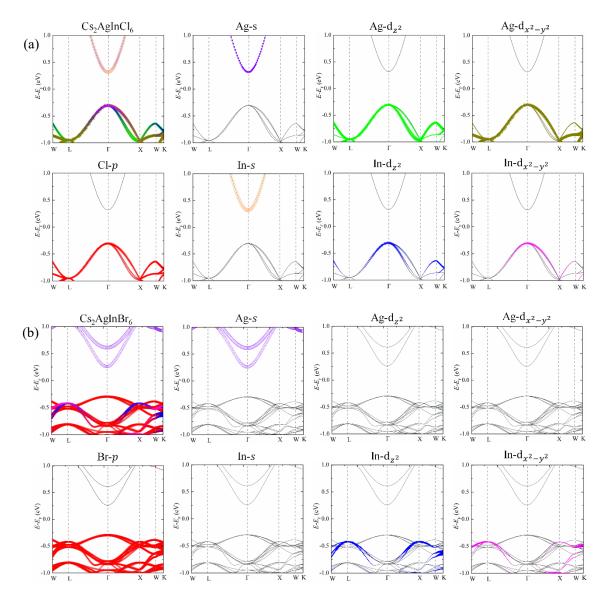
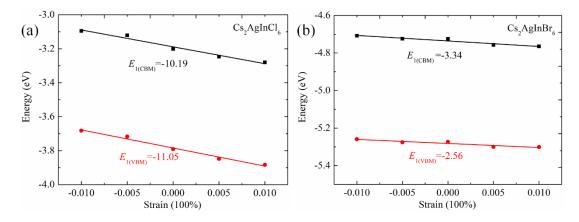



Figure S2. Orbital-projected band structures for (a) pure $Cs_2AgInCl_6$ and (b) pure $Cs_2AgInBr_6$. The vertical color belt represents the strength of corresponding orbital contributions.

Figure S3. Energy shifts of CBM and VBM of (a) Cs₂AgInCl₆ and (b) Cs₂AgInBr₆ under strains, respectively. The slopes of these lines are the corresponding deformation potentials.

References

- Volonakis, G.; Haghighirad, A. A.; Milot, R. L.; Sio, W. H.; Filip, M. R.; Wenger, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J.; Giustino, F. Cs₂InAgCl₆: A New Lead-Free Halide Double Perovskite with Direct Band Gap. *J. Phys. Chem. Lett.* 2017, 8, 772–778.
- Zhao, X.-G.; Yang, D.; Sun, Y.; Li, T.; Zhang, L.; Yu, L.; Zunger, A. Cu–In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725.
- (3) Volonakis, G.; Giustino, F. Surface Properties of Lead-Free Halide Double Perovskites:
 Possible Visible-Light Photo-Catalysts for Water Splitting. *Appl. Phys. Lett.* 2018, *112*, 243901.
- (4) Xu, J.; Liu, J.-B.; Liu, B.-X.; Huang, B. Intrinsic Defect Physics in Indium-Based
 Lead-Free Halide Double Perovskites. J. Phys. Chem. Lett. 2017, 8, 4391–4396.
- Li, T.; Zhao, X.; Yang, D.; Du, M.-H.; Zhang, L. Intrinsic Defect Properties in Halide
 Double Perovskites for Optoelectronic Applications. *Phys. Rev. Appl.* 2018, 10, 041001.