Supporting Information

Understanding the mobilisation of a nitrification inhibitor from novel slow release pellets, fabricated through extrusion processing with PHBV biopolymer

Authors: Ian Levett[†], Steven Pratt[†], Bogdan C. Donose[†], Richard Brackin[‡], Chris Pratt[#], Matt Redding^{*}, Bronwyn Laycock^{†, ^}

[†] School of Chemical Engineering, University of Queensland, St Lucia, QLD 4072 Australia

[‡] School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD 4072, Australia

[#] School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia

* Department of Agriculture and Fisheries (DAF), AgriScience Queensland, Wilsonton Heights, QLD 4350, Australia

[^] Corresponding author E-mail address: <u>b.laycock@uq.edu.au</u>

Table S1: Summary of the soil report provided by SWEP Analytical Laboratories, Keysborough, VIC, Australia for a soil supplied from a sugarcane field in Wangan, QLD, Australia

	-	·	Cation Balance			
TEM		RESULT				
bH(1:5 Water) bH(1:5 0.01M CaCl2)		5.5 4.91	6.5-8.0			
Electrical Conductivity EC	µS/cm	298	< 780			
OTAL SOLUBLE SALT TSS	-	983.4	< 2574			
	ppm	4.44	4 - 6			
OTAL ORGANIC MATTER % OTAL ORGANIC CARBON %		2.22	4 - 6 2 - 3			
EXCHANGEABLE CATION	S			RESULT	S DESIR	ABLE LEVEL
ALCIUM		Са	meg/100 of soil	3.08		8.05
IAGNESIUM		Mg	meq/100 of soil	1.05		1.86
ODIUM		Na	meq/100 of soil	0.05		< 0.62
OTASSIUM		K	meq/100 of soil	0.32		0.62
YDROGEN		Н	meq/100 of soil	10.1		0.02
DJ. EXCH. HYDROGEN		н	meq/100 of soil	7.88		< 1.86
		050	mag/100 of coil	14.6		
CATION EXCHANGE CAPACI ADJUSTED CEC		CEC Adj.CEC	meq/100 of soil meq/100 of soil	14.6		
ATURATION BASE PERCEN	TAGE	BSP		36		
XCHANGEABLE CATION			% OF ADJUST		DESIRABLE	
ALCIUM PERCENTAGE			24.9		65-70%	
ACCION PERCENTAGE			24.9		12-15%	
		ESP	0.4		0.5-5%	
ODIUM PERCENTAGE		LOF	2.6		3-5%	
DJ. HYDROGEN PERCENTAGE	GE		63.7		3-5% <20%	
ALCIUM / MAGNESIUM RAT	ю	Ca/Mg	2.95		2 - 4	
			Nutrient Balance	`		
TEMS			RESULT		DESIRABLE LE	VEL
				-		
VAILABLE CALCIUM	Ca	ppm	778		1843	
VAILABLE MAGNESIUM	Mg	ppm	158.4		244	
VAILABLE SODIUM	Na	ppm	14.076		< 156	
VAILABLE NITROGEN	N	ppm	80.9		102	
VAILABLE PHOSPHORUS	P	ppm	15.8		75	
	ĸ		157.17		263	
VAILABLE POTASSIUM		ppm				
VAILABLE SULPHUR	S	ppm	123		11 - 15	
VAILABLE COPPER	Cu	ppm	14.9		3	
AVAILABLE ZINC	Zn	ppm	27.6		4 - 6	
VAILABLE IRON	Fe	ppm	10		> 30	
VAILABLE MANGANESE	Mn	ppm	6		> 20	
VAILABLE COBALT	Co	ppm	2.11		0.7-0.8	
VAILABLE MOLYBDENUM	Мо	ppm	0.13		0.3-0.4	
VAILABLE BORON	В	ppm	0.29		0.6-1.0	
OTAL PHOSPHORUS	ТР	ppm	1080			
OTAL NITROGEN	TN	%	0.18			
			Biology Balance	•		
ITEM			Result	% of TA	P Desirable	% Desirable
CTIVE LACTIC ACID BACTE	RIA	cfu/g soil	120),000 38.7%	113,066	17.0%
Acti∨e Fungi		cfu/g soil	50,000			
Cellulose utilis	ers	cfu/g soil	70,000			
OTAL ACTIVE FUNGI		cfu/g soil		38.7 %	219,480	33.0%
				100 0.011		
CTIVE YEASTS		cfu/g soil		100 0.0%	106,415	16.0%
CTIVE ACTINOMYCETES		cfu/g soil	70	0,000 22.6%	139,669	21.0%
CTIVE PHOTOSYNTHETIC E	ACTERIA	cfu/g soil		100 0.0%	86,462	13.0%
Total Acti∨e Population (TAP):		cfu/g soil	310	0,200	665,092	
······································		•				
ARBON/NITROGEN RATIO				12.3	10-15	

NMS (for methanotrophs)								
Composition per liter								
Agar	12.5	g						
MgSO ₄ .7H ₂ O	1.0	g						
KNO ₃	1.0	g						
Na ₂ HPO ₄ .H ₂ O	0.7	g						
KH ₂ PO ₄	0.3	g						
CaCl ₂ .6H ₂ O	0.2	g						
Ferric ammonium EDTA	4.0	g						
Trace elements solution	0.5	ml						
pH 6.8 ± 0.2 at 25°C								
Trace elements solution								
Disodium EDTA	0.5	g						
FeSO ₄ .7H ₂ O	0.2	g						
H ₃ BO ₃	0.03	g						
CoCl ₂ .6H ₂ O	0.02	g						
ZnSO ₄ .7H ₂ O	0.01	mg						
MnCl ₂ .4H ₂ O	3.0	mg						
Na ₂ MoO ₄ .2H ₂ O	3.0	mg						
NiCl ₂ .6H ₂ O	2.0	mg						
CaCl ₂ .2H ₂ O	1.0	mg						
Preparation of trace elements solution:								
Add components to distilled/deionized water and bring volume to 1 L. Mix thoroughly.								
Preparation of medium:								
Add components to distilled/deionized water and bring volume to 1 L. Mix thoroughly. Gently heat and bring to boilling. Adjust pH to 6.8. Distribute into tubes or flasks. Autoclave for 15 min at 121°C. Pour into sterile Petri dishes or leave in tubes.								

Table S2: Nutrient media used for leaching columns containing biologically active soil. The bulk nutrient media was diluted 1:100 with deionised water and pre-warmed to 30 °C before it was added to the column.

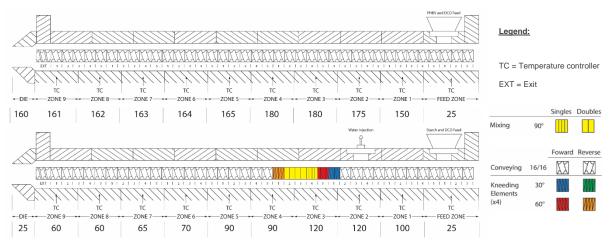


Figure S1: Extruder schematic illustrating the screw profile and temperature for each zone (shown along the bottom) used during the processing of DCD with A) PHBV and B) PS. Material flows from right to left. The starch is plasticized within the extruder with water injected in zone 2 with a peristaltic pump to make a 60: 40 water: starch weight ratio. Kneading and mixing zones in zones 3, 4 and 5 aid the hydration and plasticization of the of the starch molecules. The mixing section included a 30° and a 60° kneading section, followed by four single and four double mixing screw elements and finally a 60° reverse kneading element.

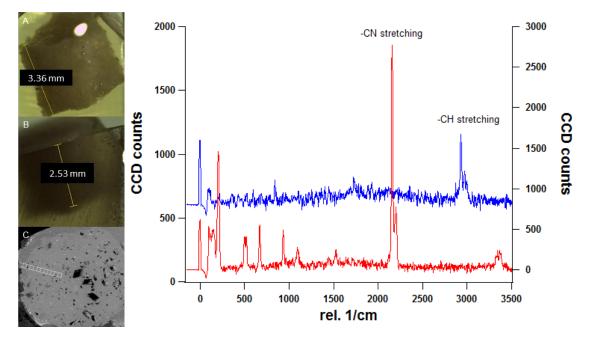


Figure S2: Left - an example of a DCD-PHBV pellet embedded in resin A) before and B) after microtoming. C) is a top view backscattered SEM micrograph of the embedded, microtomed pellet, showing the region of interest (ROI) where the 12 optical images and Raman maps were acquired from. The ROI started at the outer edge and progressively moved toward the centre of the pellet. Right - Raman signature of DCD (red/lower spectrum, right y-axis) and PHBV (blue/upper spectrum, left y-axis) calculated from the microtomed pellet. Raman maps were acquired on an Alpha 300 Raman/AFM (WITec GmbH, Ulm, Germany) equipped with a frequency-doubled continuous-wave Nd:YAG laser to obtain a 532 nm excitation line through a collar corrected objective (Nikon 40X, N.A. 0.6, CFI S Plan Fluor ELWD objective). The back-scattered Raman signal was collected with a 100 µm optical fiber, employing an Andor Raman spectrometer (600 grooves per mm grating) with an electron-multiplier charge-coupled device (EMCCD) spectroscopic detector. Raman maps were generated by binning the CN vibration mode at 2154 rel. cm⁻¹.

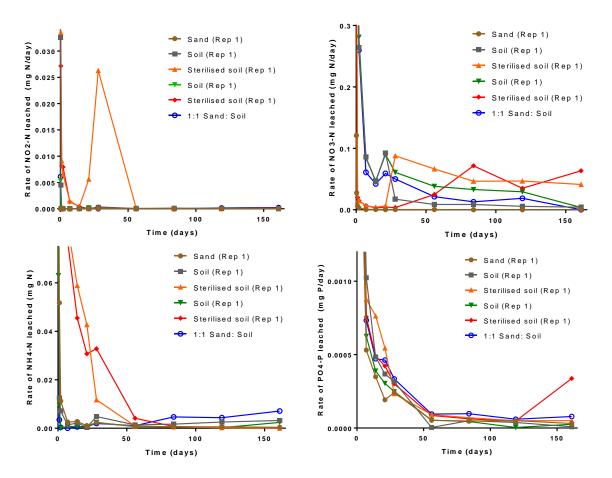


Figure S3: The rate of leaching of nitrite (NO_2^-) , top left, nitrate (NO_3^-) , top right, ammonia (NH_4^+) , bottom left and phosphate (PO_4^-) , bottom right, from the incubation columns calculated from FIA results.

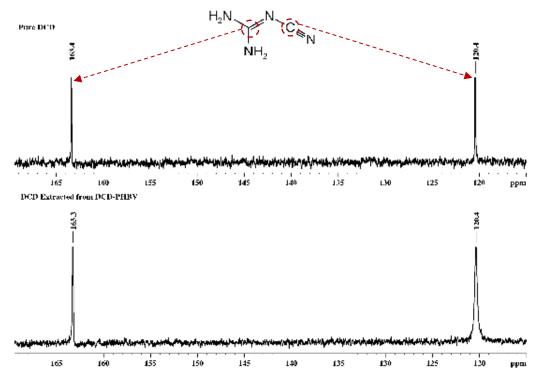


Figure S4: ¹³C-NMR of pure DCD (top) and DCD extracted from an extruded DCD-PHBV pellet (bottom).

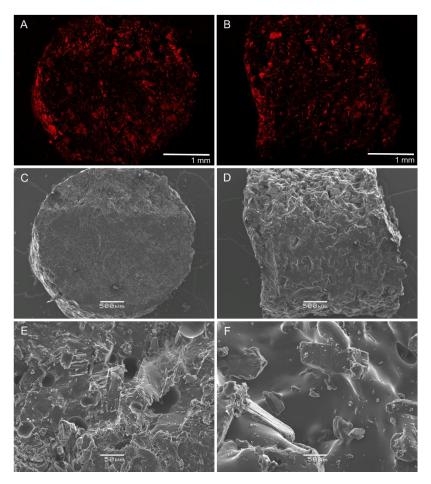


Figure S5: EDX nitrogen map overlays (A and B) and SEM micrographs at 100X (C and D) and 300X (E and F) magnification of the transverse (A, C and E) and lateral (B, D and E) face of a DCD-PHBV pellet. Red regions on the EDX indicates domains rich in nitrogen associated with dicyandiamide crystals.

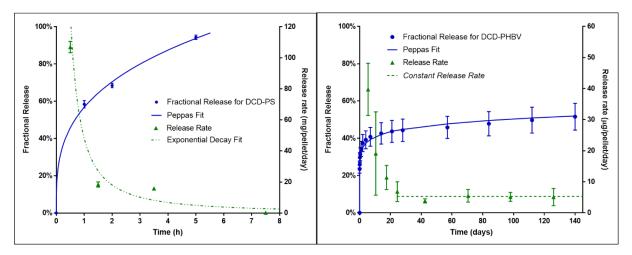


Figure S6: Fractional release and release rate of DCD from DCD-PS pellets (left) and DCD-PHBV (right) into DI water. Data points are the mean of three triplicates with error bars representing one standard deviation from the mean.

Table S3: Results from fitting the Korsmeyer-Peppas equation to the aqueous release data.

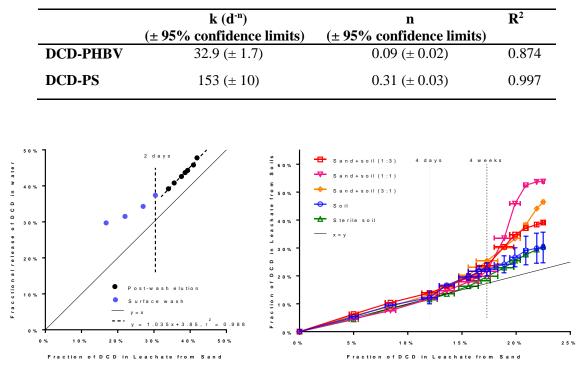


Figure S7: Left - fractional release data for water plotted against sand, with a linear regression fitted to the postsurface wash data. Data points in blue represent time points of 5 h, 10 h, 1 d and 2 d, while data points in black correspond to time points from 4 d out to 12 weeks. Right - the post-surface wash (after 10 h incubation) fraction of DCD accounted for in the leachate for sand plotted against soil and sand: soil mixtures of 1:3, 1:1 and 3:1. Error bars show one standard deviation from the mean.