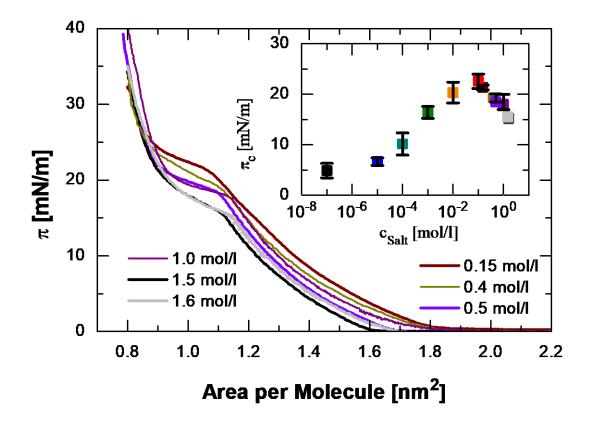
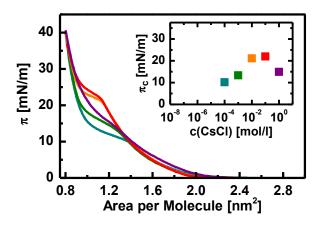
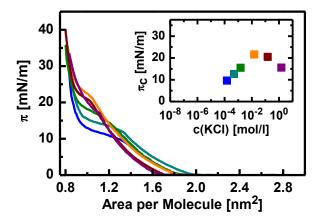
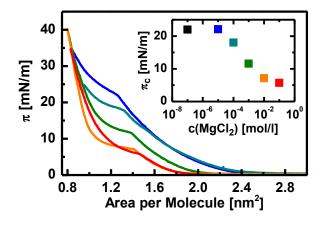
Supporting Information

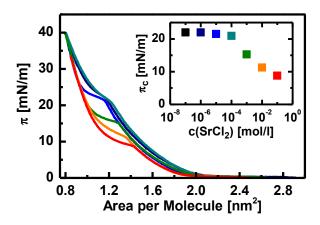
Interactions of mono- and divalent cations with cardiolipin monolayers

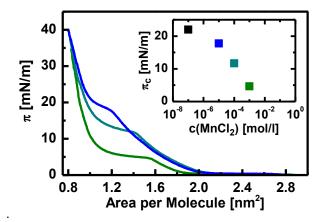
Renko Kensbock, Heiko Ahrens, Christiane A. Helm*

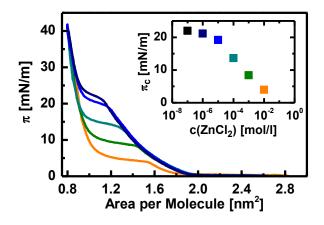
Institut für Physik, Universität Greifswald, Felix-Hausdorff-Straße 6, D-17487 Greifswald, Germany


Figure S1. TMCL monolayer on subphases containing different NaCl concentrations above 0.1 mol/l (pH = 5.8 and at 25 °C). With increase of the NaCl concentration, the transition surface pressure π_c decreases. In the inset, the dependence of the surface transition pressures π_c on the NaCl concentration is shown. For each NaCl concentration, different monolayers were prepared and isotherms were measured. Up to eight different monolayers were prepared. Thus, the standard deviation of π_c for each NaCl concentration in the subphase was determined.


Figure S2. TMCL monolayer on subphases containing different CsCl concentrations. All isotherms were measured at pH = 5.8 and at 25 °C. In dependence of the CsCl concentration, the transition surface pressure π_c increases up to about 0.1 mol/l of c(CsCl), then it decreases.


Figure S3. TMCL monolayer on subphases containing different KCl concentrations. All isotherms were measured at pH = 5.8 and at 25 °C. The transition surface pressure π_c increases up to about 0.1 mol/l of KCl, then it decreases.


Figure S4. TMCL monolayer on subphases containing different MgCl₂ concentrations and 0.15 mol/l NaCl. All isotherms were measured at pH = 5.8, 25 °C. The transition surface pressure π_c decreases with increasing MgCl₂ concentration. The black dot indicates a measurement on a solution containing only 0.15 mol/l NaCl, no MgCl₂.

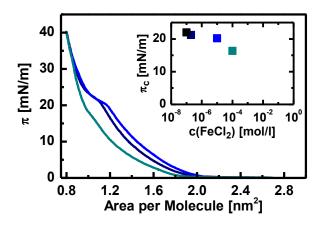

Figure S5. TMCL monolayer on subphases containg different $SrCl_2$ concentations and 0.15 mol/l NaCl . All isotherms were measured at pH = 5.8, 25 °C. The transition surface pressure π_c decreases with increasing $SrCl_2$ concentration The black dot indicates a measurement on a solution containing only 0.15 mol/l NaCl, no $SrCl_2$

Figure S6. TMCL monolayer on subphases containing different MnCl₂ concentrations and 0.15 mol/l NaCl. All isotherms were measured at pH = 5.8, 25 °C. The transition surface pressure π_c decreases with increasing MnCl₂ concentration. The black dot indicates a measurement on a solution containing only 0.15 mol/l NaCl, no MnCl₂.

Figure S7. TMCL monolayer on subphases containing different ZnCl₂ concentrations and 0.15 mol/l NaCl. All isotherms were measured at pH = 5.8, 25 °C. The transition surface pressure π_c decreases with increasing ZnCl₂ concentration. The black dot indicates a measurement on a solution containing only 0.15 mol/l NaCl, no ZnCl₂...

Figure S8. TMCL monolayer on subphases of different FeCl₂ and constant NaCl (0.15 mol/l) concentrations. All isotherms were measured at pH = 5.8, 25 °C and with fixed 0.15 mol/l NaCl. The transition surface pressure π_c decreases with increasing FeCl₂ concentration. Black indicates a 0.15 mol/l NaCl measurement without any FeCl₂ added.