Supporting Information

P-type Doping of Graphene with Cationic Nitrogen

Sangwoo Chae,† Gasidit Panomsuwan,‡ Maria Antoaneta Bratescu,† Katsuya Teshima,§
Nagahiro Saito*,†, ||

- [†] Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
 - Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- § Department of Materials Chemistry, Faculty of Engineering, Shinshu University, Wakasato, Nagano, 380-8553, Japan
 - Conjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

*Corresponding author: hiro@sp.material.nagoya-u.ac.jp

^{*} Surface Tension: DMF 35.2 mN/m², EMIM DCA 57.5 mN/m², Graphene 46.7 mN/m²

Figure S1. Schematic illustration of experimental setup for the solution plasma process. Note that the amount of ENIM DCA was limited to 10 wt% in this work owing to its high price. The increase of EMIM DCA amount may lead to change in properties of CNG, such as crystal structure, cationic N doping level, and N bonding configuration, which is still under progress and investigation.

Figure S2. Typical current and voltage waveforms of plasma during the synthesis of CNG.

Figure S3. Photograph of CNG with scale-up production.

Figure S4. Statistical analysis of the Raman spectra of I_{2D}/I_G of the CNG obtained from 30 random spots.

Table S1. N-doped methods and nitrogen concentration on carbon

Materials	Elemental composition (at%)			Method	Ref.	
Materials	С	0	N	Wethod	ivel.	
CNG	81.4	5.2	13.4	SP	Present work	
N-doped carbon sheet	-	-	3.1	SP	S1	
N-doped graphene oxide	-	-	6.7	Hydrothermal	S2	
N-doped graphene sheet	-	-	3.0-5.0	Thermal treatment	S3	
N-doped CNFs	-	-	5.4	Electrospinning	S4	
N-doped graphene	-	-	4.0	CVD	S5	
N-doped graphene	-	-	1.0	N ₂ H ₄ treatment	S6	

Table S2. Electrical conductivity of CNG by SP compared to other carbon materials in literature.

Materials	Туре	Doping	Surface resistance [Ω sq ⁻¹]	Hall mobility [cm² V·s-1]	Carrier concentration [cm ⁻³]	Ref.
CNG	Р	N	16.0	3.4	1.00E+19	Present work
PECVD	Р	Au	-	25	7.00E+17	S7
P-doped graphene by MBE	Р	Р	-	25	1.40E+17	S8
Graphene-GaN	Р	-	-	2.4	8.00E+17	S9
Graphene-Zinc Phosphide	Р	-	-	-	6.00E+16	S10
Graphite	Pristine	-	-	-	5.00E+18	S11

References

12558.

- (S1) Hyun, K.; Ueno, T.; Li, O. L.; Saito, N., Synthesis of Heteroatom-Carbon Nanosheets by Solution Plasma Processing Using N-Methyl-2-Pyrrolidone as Precursor. *RSC Adv.* **2016**, *6*, 6990–6996.
- (S2) Yang, J.; Jo, M. R.; Kang, M.; Huh, Y. S.; Jung, H.; Kang, Y.-M., Rapid and Controllable Synthesis of Nitrogen Doped Reduced Graphene Oxide Using Microwave-Assisted Hydrothermal Reaction for High Power-Density Supercapacitors. *Carbon* **2014**, *73*, 106–113. (S3) Qiu, Y.; Zhang, X.; Yang, S., High Performance Supercapacitors Based on Highly Conductive Nitrogen-Doped Graphene Sheets. *Phys. Chem. Chem. Phys.* **2011**, *13*, 12554-
- (S4) Huang, K.; Li, M.; Chen, Z.; Yao, Y.; Yang, X., Nitrogen-Enriched Porous Carbon Nanofiber Networks for Binder-Free Supercapacitors Obtained by Using a Reactive Surfactant as a Porogen. *Electrochim. Acta* **2015**, *158*, 306–313.
- (S5) Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. *ACS Nano* **2010**, *4*, 1321–1326.
- (S6) Wang, D.-W.; Gentle, I. R.; Lu, G. Q. M., Enhanced Electrochemical Sensitivity of PtRh Electrodes Coated with Nitrogen-Doped Graphene. *Electrochem. Commun.* **2010,** *12*, 1423–1427.
- (S7) Wang, W.; Leung, K.; Fong, W.; Wang, S.; Hui, Y.; Lau, S.; Chen, Z.; Shi, L.; Cao, C.; Surya, C., Molecular Beam Epitaxy Growth of High Quality P-Doped Sns Van Der Waals Epitaxy on a Graphene Buffer Layer. *J. Appl. Phys.* **2012**, *111*, 093520.
- (S8) Min, J.-H.; Jeong, W.-L.; Kwak, H.-M.; Lee, D.-S., High-Performance Metal Mesh/Graphene Hybrid Films Using Prime-Location and Metal-Doped Graphene. *Sci. Rep.* **2017,** *7*, 10225.

(S9) Tian, H.; Liu, Q.; Hu, A.; He, X.; Hu, Z.; Guo, X., Hybrid Graphene/Gan Ultraviolet Photo-Transistors with High Responsivity and Speed. *Opt. Express* **2018**, *26*, 5408–5415.

(S10) Vazquez-Mena, O.; Bosco, J. P.; Ergen, O.; Rasool, H. I.; Fathalizadeh, A.; Tosun, M.; Crommie, M.; Javey, A.; Atwater, H. A.; Zettl, A., Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect. *Nano Lett.* **2014**, *14*, 4280–4285.

(S11) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. *Science* **2004**, *306*, 666–669.