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Figure S1. (a,b) SEM image and (c) XRD pattern of MnSn(OH)6 precursors.
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Figure S2. (a,b) SEM images of SMS nanoboxes.
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Figure S3. XRD patterns of SMS and SMS/C.

Figure S4. XRD patterns of SnS2 and SnS2/C.
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Figure S5. SEM images of (a) SnS2/C and (b) SnS2.

Figure S6. (a) Raman spectra and (b) BET results of SMS and SMS/C.
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Figure S7. TGA results of SMS and SMS/C composites.

Figure S8. The XPS results of (a) S 2p and (b) N 1s spectrum of SMS/C.
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Table S1. The comparison of ICEs and cycling performance among the Sn-based 

sulfide materials for SIBs anodes.

Sample
Cycle 

number

Current 

density

(mA g-1)

Capacity 

retention 

(%)

Initial 

coulombic 

efficicency

(%)

reference

SnS2@Aerogel 

graphene
100 50 68 53.4 S1

SnS2- rGO 1000 800 62.5 64 S2

SnS2@N- rGO 200 500 86.7 66.5 S3

SnS2@ rGO 100 200 81 81 S4

C@SnS2@C 1000 5000 90.2 56 S5

MoS2/SnS2@rGO 200 750 87.2 84.2 S6

SnS2 nanosheet 300 1000 89.2 72 S7

SnS2@ hollow C 100 200 87.6 74.3 S8

SnS2@CoS2-rGO 100 200 76 86 S9

SnS2 nanowall 100 500 85 75.2 S10

SMS/C 500 5000 91.3 90.8 This work
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Figure S9. ICE of SMS/C electrodes with six different batteries.
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Figure S10. ICE of SnS2 electrodes with six different batteries.
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Figure S11. ICE of SnS2/C electrodes with six different batteries.
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Figure S12. ICE of SMS electrodes with six different batteries.
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Figure S13. The cycling performance of (a) SMS and (b) SMS/C electrodes at 0.1 A 

g-1. (c) CV curve at initial cycle for SMS/C electrode
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Figure S14. The cycling performance of (a) SMS and (b) SMS/C electrodes at 0.5 A 

g-1.

Figure S15. The charge-discharge curves of (a) SMS/C and (b) SMS electrodes at 

different current density.
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Figure S16. Electrochemical performance of SnS2 electrodes: (a) First three cycle 

charge-discharge curves, (b) rate performance, cycling performance at rate of (c) 0.5 A 

g-1 and (d) 5 A g-1. 

Figure S17. (a) First three charge-discharge curves of SnS2/C electrode. (b) Cycling 

performance of SnS2/C electrode at 0.5 A g-1.
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Figure S18. (a) The differential charge capacity curves versus voltage at the various 

cycles for the SnS2/C composite in 0.1-3.0 V at rate of 0.5 A g-1. Reversible capacities 

versus cycle number of SnS2/C composite separated into potential ranges of (b) 0.1-1.0 

V, (c) 1.0-2.0 V, and (d) 2.0-3.0 V.
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Figure S19. EIS measurement and the relationship plot of Z’ versus ω-1/2 at low-

frequency region for SMS and SMS/C (a,b), SnS2 and SnS2/C (c, d). 

Equation S1:

   (S1)𝐷𝑁𝑎 + =
𝑅2𝑇2

2𝑛4𝐹4𝐴2𝐶2𝜎2
𝑤

Equation S2:

   (S2)𝑍′ = 𝑅Ω + 𝑅ct𝜎 ―1/2
𝑤

Where R, T, F, n, A, C and  are the gas constant, the absolute temperature, the 𝜎𝑤

surface area of the electrode, the Faraday’s constant, the number of electrons per 

molecule during oxide, the insertion/extraction Na+ concentration in the anode material 

and the Warburg factor, respectively.
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Table S2. Fitting result of EIS in Figure S20 with the equivalent circuit proposed.

Samples Rs(Ω) Rct(Ω) σ(Ωcm2 s-1/2) DNa
+(cm2 s-1)

SMS 8.731 56.26 739.5 9.28×10-16

SMS/C 8.645 12.33 290.6 6.01×10-15

SnS2 8.756 19.41 6.2 1.65×10-17

SnS2/C 10.7 27.21 81.8 2.87×10-15

 

Figure S20. (a,c) The CV curves of SMS/C and SMS electrodes at different scan rates 

from 0.2 to 5 mV s-1. (b,d) The capacity contribution of SMS/C and SMS electrodes at 

different scan rates. (c,f) The capacity contribution of SMS/C and SMS at a specific 

scan rate of 1 mV s-1.
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Figure S21. Ex-situ TEM results of SMS/C electrode at different charge-discharge 

states (A1-A3, 0.8 V; B1-B3, 0.1 V; C1-C3, 1.5 V; D1-D3, 3.0 V).
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Figure S22. Ex-situ XPS measurement of SMS/C electrode at different charge-

discharge states.

According to the ex-situ XPS results, the peak of Sn 3d5/2 of SMS/C electrode shifts to 

lower binding position during the discharge process, indicating the reduction reaction 

from Sn4+ to metallic Sn0. In the coresponding charge process, the peak of Sn 3d5/2 

reture back to the high binding position, which closes to the prinsite state, suggesting 

the highly reversibility for the conversion reaction from Sn0 to Sn-S-Mn sulfide. 
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Figure S23. Ex-situ TEM and HRTEM images, and schematic illustration during long-

term cycling for the (a) SMS/C, (b) pristine SMS and (c) SnS2/C electrodes after 100 

cycles.
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Figure S24. Energetic result of Na+ adsorption (Eads, ΔE and Ea) for SnS2@Mn2SnS4 

and pure SnS2. (Na+: large yellow sphere. Sn: grey; sphere. S: small yellow sphere. Mn: 

purple sphere).



S22

SnS2 SnS2@Mn2SnS4

Na+ in Oh Na+ in Td Na+ in Oh Na+ in Td

Side
view 1

Side
view 2

Top
view

Botto
m view

Figure S25. Charge density analysis of SnS2@Mn2SnS4 and pure SnS2.

Both SnS2 and Mn2SnS4 shows similar charge density distribution that shows Na+ with 

six bonds (each 3 in top and bottom) in Oh site and four bonds in Td site and explains 

the similar adsorption energies of them.
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Figure S26. Na2S adsorption in the tunnel for SnS2@Mn2SnS4 and pure SnS2.
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Figure S27. Na2S adsorption on the surface for SnS2@Mn2SnS4 and pure SnS2.

Table S3. Coordinate change for Na+ adsorption in the tunnel.

SnS2@Mn2SnS4
SnS2

Oh Td Oh Td

Coordinate change in x 0.01 0.01 0.01 -0.01

Coordinate change in y -0.05 -0.13 0.10 0.02

Coordinate change in z 0.55 0.58 3.77 1.55
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Figure S28. The full cell performances of SMS/C electrode. (Na3V2(PO4)3 active 

material as counter electrode)

Based on the aforementioned results, the full cells with self-synthesized Na3V2(PO4)3 

(NVP) as the cathode were assembled, whose electrochemical property was presented 

in Figure S28a, further verifying the performance of SMS/C composite. The initial 

charge and discharge capacities are about 810.5 and 544.2 mAh g-1, respectively, with 

an initial coulombic efficiency of 67.14%. In addition, after 100 cycles at a current 

density of 500 mA g-1, the full cell of SMS/C can deliver a reverse capacity of 295 mAh 

g-1, as shown in Figure S28b. Compared with the excellent initial coulombic efficiency 

of SMS/C half cell, the initial coulombic efficiency of SMS/C full cell is relative lower, 

which may attribute to the irreversible electrochemical reactions. Moreover, the 

electrolyte of full cell is not matched well with the both cathode and anode, causing a 

relative higher consume of Na+ in formation of SEI on the both surface of anode and 

cathode.S11,S12
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