Supporting Information

Fabrication of SnS₂/Mn₂SnS₄/Carbon Heterostructures for Sodium-Ion Batteries with High Initial Coulombic Efficiency and Cycling Stability

Xing Ou,^{a,§} Liang Cao,^{a,§} Xinghui Liang,^a Fenghua Zheng,^a Hong-Sheng Zheng,^b Xianfeng Yang,^c Jeng-Han Wang,^b Chenghao Yang,^{a,*} Meilin Liu^{a,d}

^a Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China

^b Department of Chemistry, National Taiwan Normal University, Taipei, 11677,
Taiwan

^c Analytical and Testing Center, South China University of Technology, Guangzhou, 510641 P. R. China

^d School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA30332-0245, USA

^{*} Corresponding author. E-mail: esyangc@scut.edu.cn (C. Yang).

[§] These authors contributed equally.

Figure S1. (a,b) SEM image and (c) XRD pattern of MnSn(OH)₆ precursors.

Figure S2. (a,b) SEM images of SMS nanoboxes.

Figure S3. XRD patterns of SMS and SMS/C.

Figure S4. XRD patterns of SnS₂ and SnS₂/C.

Figure S5. SEM images of (a) SnS₂/C and (b) SnS₂.

Figure S6. (a) Raman spectra and (b) BET results of SMS and SMS/C.

Figure S7. TGA results of SMS and SMS/C composites.

Figure S8. The XPS results of (a) S 2p and (b) N 1s spectrum of SMS/C.

Table S1. The comparison of ICEs and cycling performance among the Sn-based sulfide materials for SIBs anodes.

Sample	Cycle number	Current density (mA g ⁻¹)	Capacity retention (%)	Initial coulombic efficieency (%)	reference
SnS ₂ @Aerogel graphene	100	50	68	53.4	S1
SnS ₂ - rGO	1000	800	62.5	64	S2
SnS ₂ @N- rGO	200	500	86.7	66.5	S3
SnS ₂ @ rGO	100	200	81	81	S4
$C@SnS_2@C$	1000	5000	90.2	56	S5
MoS ₂ /SnS ₂ @rGO	200	750	87.2	84.2	S6
SnS ₂ nanosheet	300	1000	89.2	72	S7
SnS ₂ @ hollow C	100	200	87.6	74.3	S8
SnS ₂ @CoS ₂ -rGO	100	200	76	86	S9
SnS ₂ nanowall	100	500	85	75.2	S10
SMS/C	500	5000	91.3	90.8	This work

Figure S9. ICE of SMS/C electrodes with six different batteries.

Figure S10. ICE of SnS₂ electrodes with six different batteries.

Figure S11. ICE of SnS₂/C electrodes with six different batteries.

Figure S12. ICE of SMS electrodes with six different batteries.

Figure S13. The cycling performance of (a) SMS and (b) SMS/C electrodes at 0.1 A g⁻¹. (c) CV curve at initial cycle for SMS/C electrode

Figure S14. The cycling performance of (a) SMS and (b) SMS/C electrodes at 0.5 A g⁻¹.

Figure S15. The charge-discharge curves of (a) SMS/C and (b) SMS electrodes at different current density.

Figure S16. Electrochemical performance of SnS_2 electrodes: (a) First three cycle charge-discharge curves, (b) rate performance, cycling performance at rate of (c) 0.5 A g^{-1} and (d) 5 A g^{-1} .

Figure S17. (a) First three charge-discharge curves of SnS_2/C electrode. (b) Cycling performance of SnS_2/C electrode at 0.5 A g^{-1} .

Figure S18. (a) The differential charge capacity curves *versus* voltage at the various cycles for the SnS_2/C composite in 0.1-3.0 V at rate of 0.5 A g^{-1} . Reversible capacities versus cycle number of SnS_2/C composite separated into potential ranges of (b) 0.1-1.0 V, (c) 1.0-2.0 V, and (d) 2.0-3.0 V.

Figure S19. EIS measurement and the relationship plot of Z' versus $\omega^{-1/2}$ at low-frequency region for SMS and SMS/C (a,b), SnS₂ and SnS₂/C (c, d).

Equation S1:

$$D_{Na^+} = \frac{R^2 T^2}{2n^4 F^4 A^2 C^2 \sigma_w^2}$$
 (S1)

Equation S2:

$$Z' = R_{\Omega} + R_{\rm ct} \sigma_w^{-1/2} \qquad (S2)$$

Where R, T, F, n, A, C and σ_w are the gas constant, the absolute temperature, the surface area of the electrode, the Faraday's constant, the number of electrons per molecule during oxide, the insertion/extraction Na⁺ concentration in the anode material and the Warburg factor, respectively.

Table S2. Fitting result of EIS in Figure S20 with the equivalent circuit proposed.

Samples	$R_s(\Omega)$	$R_{ct}(\Omega)$	σ (Ω cm ² s ^{-1/2})	D _{Na} +(cm ² s ⁻¹)
SMS	8.731	56.26	739.5	9.28×10 ⁻¹⁶
SMS/C	8.645	12.33	290.6	6.01×10^{-15}
SnS_2	8.756	19.41	6.2	1.65×10^{-17}
SnS ₂ /C	10.7	27.21	81.8	2.87×10^{-15}

Figure S20. (a,c) The CV curves of SMS/C and SMS electrodes at different scan rates from 0.2 to 5 mV s⁻¹. (b,d) The capacity contribution of SMS/C and SMS electrodes at different scan rates. (c,f) The capacity contribution of SMS/C and SMS at a specific scan rate of 1 mV s⁻¹.

Figure S21. *Ex-situ* TEM results of SMS/C electrode at different charge-discharge states (A1-A3, 0.8 V; B1-B3, 0.1 V; C1-C3, 1.5 V; D1-D3, 3.0 V).

Figure S22. *Ex-situ* XPS measurement of SMS/C electrode at different charge-discharge states.

According to the ex-situ XPS results, the peak of Sn 3d_{5/2} of SMS/C electrode shifts to lower binding position during the discharge process, indicating the reduction reaction from Sn⁴⁺ to metallic Sn⁰. In the coresponding charge process, the peak of Sn 3d_{5/2} reture back to the high binding position, which closes to the prinsite state, suggesting the highly reversibility for the conversion reaction from Sn⁰ to Sn-S-Mn sulfide.

Figure S23. *Ex-situ* TEM and HRTEM images, and schematic illustration during long-term cycling for the (a) SMS/C, (b) pristine SMS and (c) SnS₂/C electrodes after 100 cycles.

Figure S24. Energetic result of Na^+ adsorption (E_{ads} , ΔE and Ea) for $SnS_2@Mn_2SnS_4$ and pure SnS_2 . (Na^+ : large yellow sphere. Sn: grey; sphere. S: small yellow sphere. Mn: purple sphere).

Figure S25. Charge density analysis of SnS₂@Mn₂SnS₄ and pure SnS₂.

Both SnS_2 and Mn_2SnS_4 shows similar charge density distribution that shows Na^+ with six bonds (each 3 in top and bottom) in Oh site and four bonds in Td site and explains the similar adsorption energies of them.

Figure S26. Na₂S adsorption in the tunnel for SnS₂@Mn₂SnS₄ and pure SnS₂.

Figure S27. Na_2S adsorption on the surface for $SnS_2@Mn_2SnS_4$ and pure SnS_2 .

Table S3. Coordinate change for Na⁺ adsorption in the tunnel.

	SnS ₂ @Mn ₂ SnS ₄		SnS ₂	
	Oh	Td	Oh	Td
Coordinate change in x	0.01	0.01	0.01	-0.01
Coordinate change in y	-0.05	-0.13	0.10	0.02
Coordinate change in z	0.55	0.58	3.77	1.55

Figure S28. The full cell performances of SMS/C electrode. $(Na_3V_2(PO_4)_3$ active material as counter electrode)

Based on the aforementioned results, the full cells with self-synthesized Na₃V₂(PO₄)₃ (NVP) as the cathode were assembled, whose electrochemical property was presented in Figure S28a, further verifying the performance of SMS/C composite. The initial charge and discharge capacities are about 810.5 and 544.2 mAh g⁻¹, respectively, with an initial coulombic efficiency of 67.14%. In addition, after 100 cycles at a current density of 500 mA g⁻¹, the full cell of SMS/C can deliver a reverse capacity of 295 mAh g⁻¹, as shown in Figure S28b. Compared with the excellent initial coulombic efficiency of SMS/C half cell, the initial coulombic efficiency of SMS/C full cell is relative lower, which may attribute to the irreversible electrochemical reactions. Moreover, the electrolyte of full cell is not matched well with the both cathode and anode, causing a relative higher consume of Na⁺ in formation of SEI on the both surface of anode and cathode. S11,S12

Reference

- (S1) Fan, L.; Li, X.; Song, X.; Hu, N.; Xiong, D.; Koo, A.; Sun, X. Promising Dual-Doped Graphene Aerogel/SnS₂ Nanocrystal Building High Performance Sodium Ion Batteries. *ACS Appl. Mater. Interfaces* **2018**, *10*, 2637-2648.
- (S2) Tao, S.; Wu, D.; Chen, S.; Qian, B.; Chu, W.; Song, L. A Versatile Strategy for Ultrathin SnS₂ Nanosheets Confined in a N-Doped Graphene Sheet Composite for High Performance Lithium and Sodium-Ion Batteries. *Chem. Commun.* **2018**, *54*, 8379-8382. (S3) Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Layered SnS₂-Reduced Graphene Oxide Composite-a High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material. *Adv. mater.* **2014**, *26*, 3854-3859. (S4) Zhang, Y.; Zhu, P.; Huang, L.; Xie, J.; Zhang, S.; Cao, G.; Zhao, X. Few-Layered
- SnS₂ on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability. *Adv. Funct. Mater.* **2015,** *25*, 481-489.
- (S5) Qin, J.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; Li, Q.; Li, J.; He, C. Sandwiched C@SnO₂@C Hollow Nanostructures as an Ultralong-Lifespan High-Rate Anode Material for Lithium-Ion and Sodium-Ion Batteries. *J. Mater. Chem. A* **2017**, *5*, 10946-10956.
- (S6) Jiang, Y.; Guo, Y.; Lu, W.; Feng, Z.; Xi, B.; Kai, S.; Zhang, J.; Feng, J.; Xiong, S. Rationally Incorporated MoS₂/SnS₂ Nanoparticles on Graphene Sheets for Lithium-Ion and Sodium-Ion Batteries. *ACS Appl. Mater. interfaces* **2017**, *9*, 27697-27706.
- (S7) Wang, Y.; Zhou, J.; Wu, J.; Chen, F.; Li, P.; Han, N.; Huang, W.; Liu, Y.; Ye, H.;

- Zhao, F.; Li, Y. Engineering SnS₂ Nanosheet Assemblies for Enhanced Electrochemical Lithium and Sodium Ion Storage. *J. Mater. Chem. A* **2017**, *5*, 25618-25624.
- (S8) Liu, Y.; Yu, X.-Y.; Fang, Y.; Zhu, X.; Bao, J.; Zhou, X.; Lou, X. W. Confining SnS₂ Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. *Joule* **2018**, 2, 1-11.
- (S9) Wang, X.; Li, X.; Li, Q.; Li, H.; Xu, J.; Wang, H.; Zhao, G.; Lu, L.; Lin, X.; Li, H.; Li, S. Improved Electrochemical Performance Based on Nanostructured SnS₂@CoS₂-rGO Composite Anode for Sodium-Ion Batteries. *Nano-Micro Letters* **2018**, *10*, 46.
- (S10) Zhou, P.; Wang, X.; Guan, W.; Zhang, D.; Fang, L.; Jiang, Y. SnS₂ Nanowall Arrays toward High-Performance Sodium Storage. *ACS Appl. Mater. interfaces* **2017**, *9*, 6979-6987.
- (S11) Huang, Y.; Zheng, Y.; Li, X.; Adams, F.; Luo, W.; Huang, Y.; Hu, L. Electrode Materials of Sodium-Ion Batteries toward Practical Application. *ACS Energy Letters* **2018**, *3*, 1604-1612.
- (S12) Ren, W.; Zhu, Z.; An, Q.; Mai, L. Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials. *Small* **2017**, *13*, 1604181.