Supporting Information for

Selenidostannates and a silver-selenidostannate synthesized in deep eutectic solvents: crystal structures and thermochromic study

Kai-Yao Wang, ^{*,†} Hua-Wei Liu,[†] Shu Zhang,[†] Dong Ding,[†] Lin Cheng,[§] Cheng Wang^{*†}

[†]Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin Key Laboratory of Advanced Functional Porous Materials, Tianjin University of Technology, Tianjin 300384, P. R. China.

[§]College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.

1. Tables

Compound	Space group	Band gap	Туре	Ref.
Cs ₂ Sn ₃ Se ₇	C2/c	NA	Ι	[1]
$[enH_2][Sn_3Se_7] \cdot 0.5en$	Fdd2	NA	II	[2]
$(TMA)_2Sn_3Se_7$	$P2_{1}2_{1}2_{1}$	2.12 eV	III	[3]
$(C_7N_4OH_{16})_2Sn_3Se_7 \cdot H_2$	Pbca	NA	III	[4]
$[(C_2H_5)_3NH]_2Sn_3Se_7 \cdot 0.25H_2O$	$P2_{1}/n$	2.1 eV	III	[5]
(NH ₃ (CH ₂) ₈ NH ₃)Sn ₃ Se ₇	$P\overline{1}$	NA	II	[6]
(NH ₃ (CH ₂) ₁₀ NH ₃)Sn ₃ Se ₇	C2/c	NA	II	[6]
[Mn(peha)][Sn ₃ Se ₇]	$P2_{1}/n$	NA	III	[7]
$[Fe(phen)_3]_n(Sn_3Se_7)_n \cdot 1.25nH_2O$	$R\overline{3}c$	1.97 eV	II	[8]
[prmmim] ₂ [Sn ₃ Se ₇]	P3221	NA	II	[9]
[bmmim] ₂ [Sn ₃ Se ₇]	P3221	2.2 eV	II	[9]
[DBNH] ₂ [Sn ₃ Se ₇]·PEG	C2/c	2.13 eV	Ι	[10]
$[DBNH]_3[NH_4][Sn_6Se_{14}]$	R3	2.02 eV	Ι	[10]
[Mn(dien) ₂]Sn ₃ Se ₇ ·0.5H ₂ O	$P2_{1}/n$	1.89 eV	III	[11]
[Fe(tatda)]Sn ₃ Se ₇	$P2_{1}/n$	1.93 eV	II	[11]
$[Mn(en)_{2.5}(en-Me)_{0.5}][Sn_3Se_7]$	$P2_{1}/c$	NA	III	[12]
$[Mn(en)_3]Sn_3Se_7$	$P2_{1}/n$	1.99 eV	III	[13]
[Mn(dien) ₂]Sn ₃ Se ₇ ·H ₂ O	$P2_{1}/n$	2.04 eV	III	[13]
$(H^+-DBN)_2[Sn_3Se_7]$	$Cmc2_1$	2.02 eV	II	[14]
$[(CH_3)_3N(CH_2)_2OH]_2[Sn_3Se_7] \cdot H_2O$	$P2_{1}/n$	NA	III	[15]
$[(CH_3)_3N(CH_2)_2CH_3]_2[Sn_3Se_7]$	Pbca	2.35 eV	III	[15]
$(BuMe_3N)_2[Sn_3Se_7]$	C2/c	NA	Ι	[16]

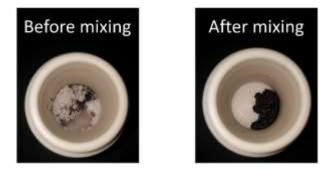
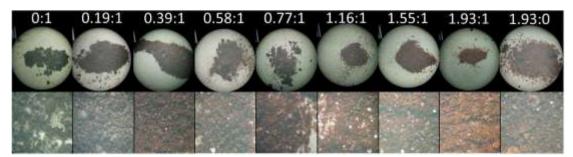
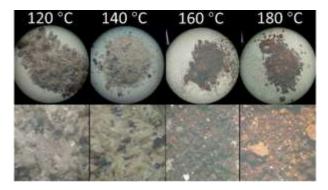
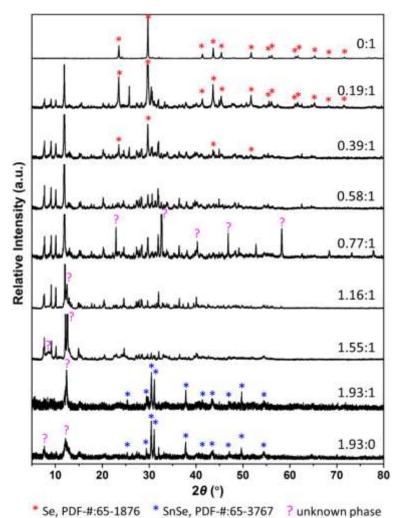

Table S1 Summary of the $[Sn_3Se_7]_n^{2n}$ layer-containing compounds in the literature and their band gaps and structural types.

Table S2 Summary of the Ag-Sn-Se compounds and their band gaps in the literature.


Compound	Space group	Band gap	Ref.
$K_2Ag_2SnSe_4$	P2/c	1.8 eV	[17]
$K_2Ag_2Sn_2Se_6$	P4/mcc	NA	[18]
β -Ag ₈ SnSe ₆	$Pmn2_1$	NA	[19]
BaAg ₂ SnSe ₄	<i>I</i> 222	0.2 eV	[20]
La ₃ AgSnSe ₇	$P6_{3}$	NA	[21]
$A_3AgSn_3Se_8 (A = Rb, K)$	P4/nbm	1.8 eV	[22]
K ₃ AgSn ₃ Se ₈	P4/nbm	1.8 eV	[23]
$[(Me)_2NH_2]_{0.75}[Ag_{1.25}SnSe_3]$	$P\overline{4}2_1m$	1.85 eV	[24]
[bmmim]7[AgSn12Se28]	$P\overline{1}$	2.2 eV	[25]
$(NH_4)_4Ag_{12}Sn_7Se_{22}$	C2/c	1.21 eV	[26]
$[CH_3NH_3]_2[H_3O]Ag_5Sn_4Se_{12} \cdot C_2H_5OH$	$P\overline{4}2_1m$	1.80 eV	[27]

2. Figures


2.1 Synthesis Compound 1:


Figure S1. Photographs of the reactants, i.e. Sn, Se, [NH₂(CH₃)₂]Cl, urea (without N₂H₄·H₂O), before and after being mixed for the synthesis of compound **1**. The transforming from bulk solid reactants to a viscous liquid mixture after being stirred indicates the formation of [NH₂(CH₃)₂]Cl-urea DES.

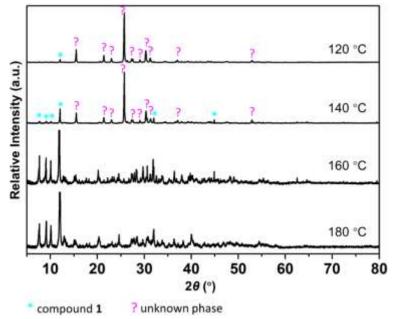

Figure S2. Photographs of the products obtained from the optimizing reactions for **1** with different N_2H_4 · H_2O :urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

Figure S3. Photographs of the products obtained from the optimizing reactions for **1** (N_2H_4 · H_2O :urea = 0.58:1) performed at different temperatures. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

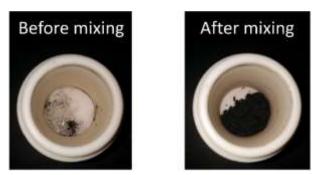


Figure S4. Powder XRD patterns for the products from optimizing reactions for 1 with different N_2H_4 ·H₂O:urea ratio at 160 °C.

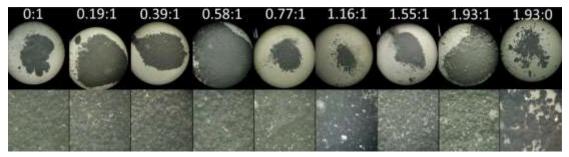
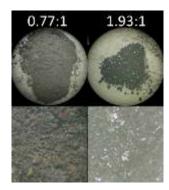


Figure S5. Powder XRD patterns for the products obtained from the optimizing reactions for **1** performed at different temperatures. The molar ratio of N_2H_4 · H_2O :urea for all the reactions is 0.58:1.


Compound 2:

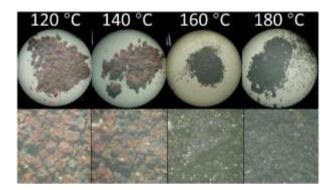

Figure S6. Photographs of the reactants, i.e. Sn, Se, [NH₃CH₂CH₃]Cl, urea (without N₂H₄·H₂O), before and after being mixed for the synthesis of compound **2**. The transforming from bulk solid reactants to a viscous liquid mixture after being stirred indicates the formation of [NH₂(CH₃)₂]Cl-urea DES.

Figure S7. Photographs of the products obtained from the optimizing reactions for **2** with different N_2H_4 · H_2O :urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

Figure S8. Photographs of the products obtained from the optimizing reactions for **2** at 160 °C in absence of $[NH_3CH_2CH_3]Cl$. The N_2H_4 · H_2O :urea molar ratios was tuned to 0.77:1 and 1.93:0 respectively. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

Figure S9. Photographs of the products obtained from the optimizing reactions for **2** $(N_2H_4 \cdot H_2O$:urea = 0.77:1) performed at different temperatures. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

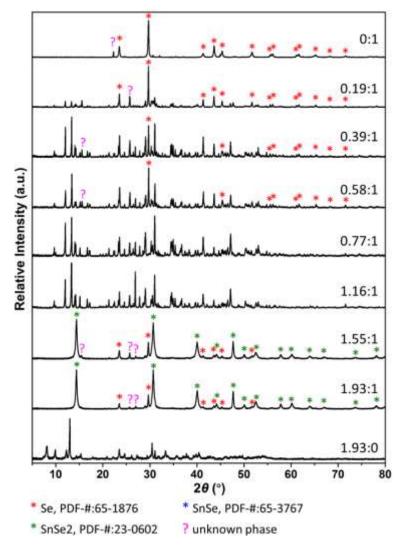
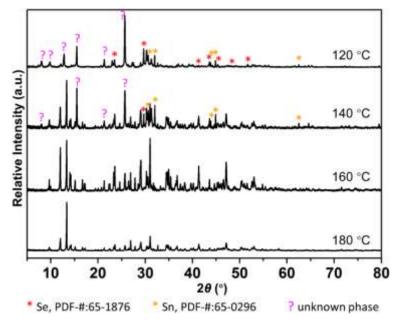



Figure S10. Powder XRD patterns for the products from optimizing reactions for 2 with different N_2H_4 ·H₂O:urea ratio at 160 °C.

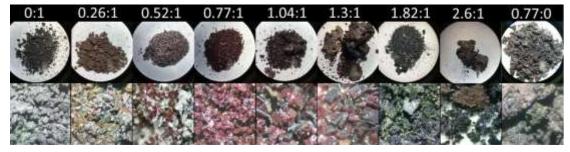
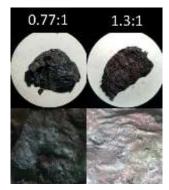


Figure S11. Powder XRD patterns for the products obtained from the optimizing reactions for **2** performed at 120-180 °C. The molar ratio of N_2H_4 ·H₂O:urea for all the reactions is 0.77:1.


Compound 4:

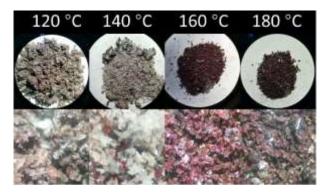

Figure S12. Photographs of the reactants, i.e. Sn, Se, [NH(CH₃)₃]Cl, urea (without N₂H₄·H₂O), before and after being mixed for the synthesis of compound **4**. The transforming from bulk solid reactants to a viscous liquid mixture after being stirred indicates the formation of [NH(CH₃)₃]Cl-urea DES.

Figure S13. Photographs of the products obtained from the optimizing reactions for **4** with different N_2H_4 · H_2O :urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

Figure S14. Photographs of the products obtained from the optimizing reactions for **4** at 160 °C in absence of $[NH_3(CH_3)_3]Cl$. The N₂H₄·H₂O:urea molar ratios was tuned to 0.77:1 and 1.3:0 respectively. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

Figure S15. Photographs of the products obtained from the optimizing reactions for **4** $(N_2H_4 \cdot H_2O$:urea = 0.77:1) performed at different temperatures. Top line: products washed by distilled water; bottom line: magnified imaging of the products.

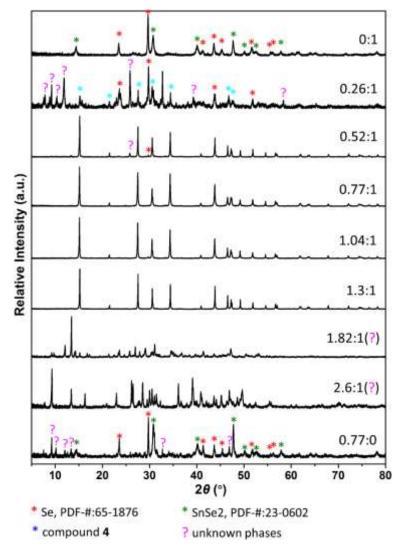
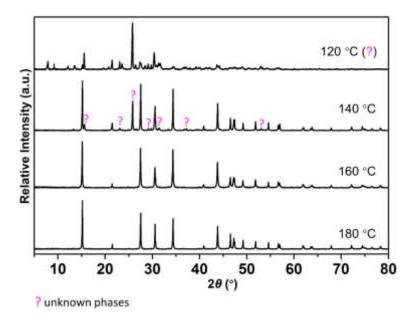
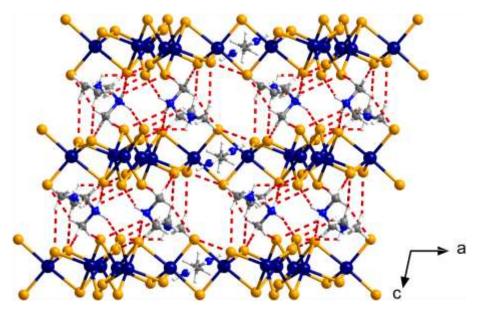




Figure S16. Powder XRD patterns for the products from optimizing reactions for 4 with different N_2H_4 ·H₂O:urea ratio at 160 °C.

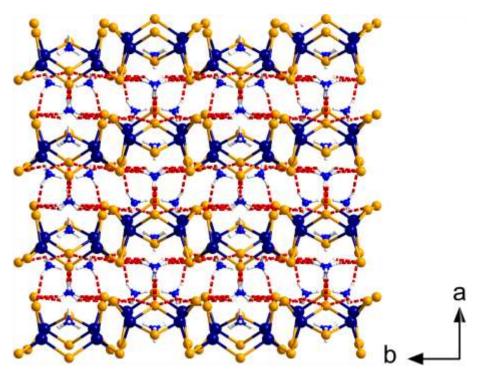


Figure S17. Powder XRD patterns for the products obtained from the optimizing reactions for **4** performed at 120-180 °C. The molar ratio of N_2H_4 · H_2O :urea for all the reactions is 0.77:1.

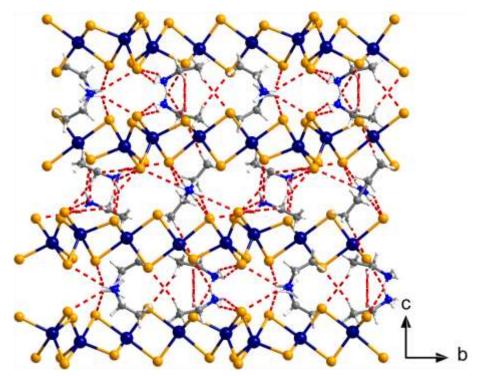

2.2 Structures

Figure S18. 3D supramolecular framework of **1** along the *b* axis (dashed lines represent the N– $H\cdots$ Se and C– $H\cdots$ Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), C (gray), H (white).

Figure S19. 3D supramolecular framework of **2** along the *c* axis (dashed lines represent the N– $H\cdots$ Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), H (white).

Figure S20. 3D supramolecular framework of **3** along the *a* axis (dashed lines represent the N– $H\cdots$ Se and C– $H\cdots$ Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), C (gray), H (white).

Figure S21. 3D supramolecular framework of 4 along the c axis. H atoms are omitted for clarity. Color code: Sn (dark blue), Ag (tan), Se (light orange), N (blue), C (gray).

2.3 Characterizations

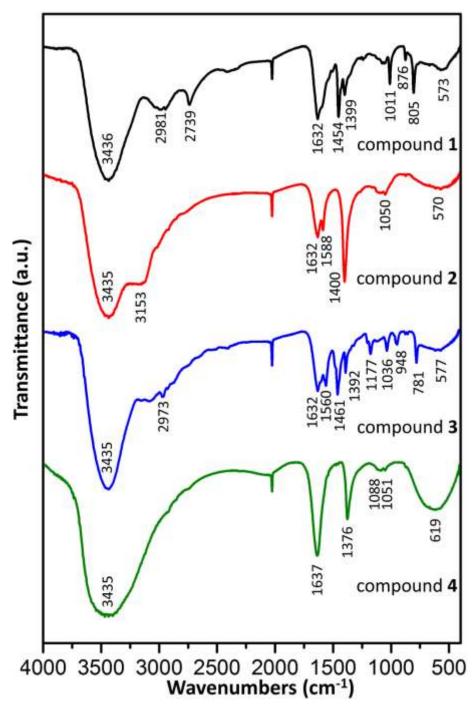
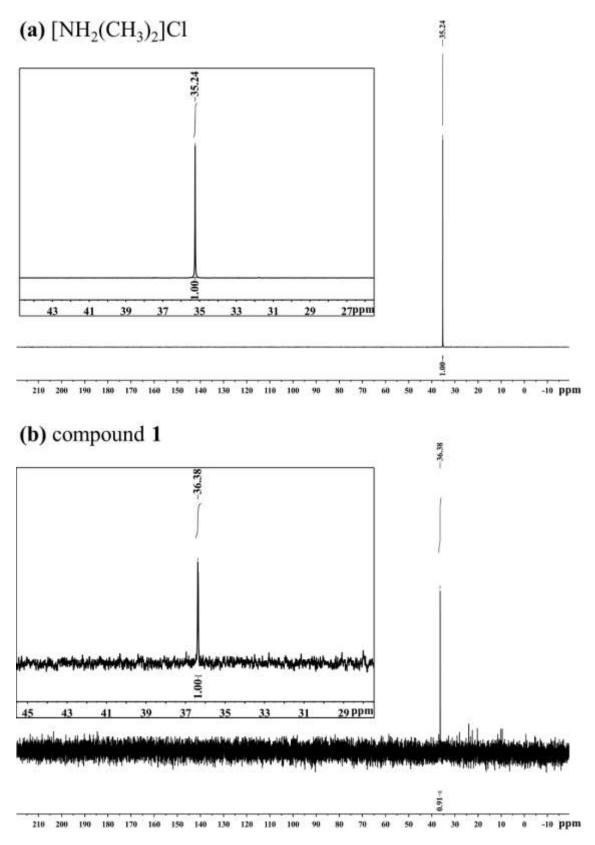



Figure S22. FTIR spectra of compounds 1-4 measured at room temperature on KBr pellets.

Figure S23. ¹³C NMR spectra of (a) $[NH_2(CH_3)_2]Cl$ and (b) compound **1** dissolved in N_2H_4 · H_2O (98%)/D₂O recorded at room temperature.

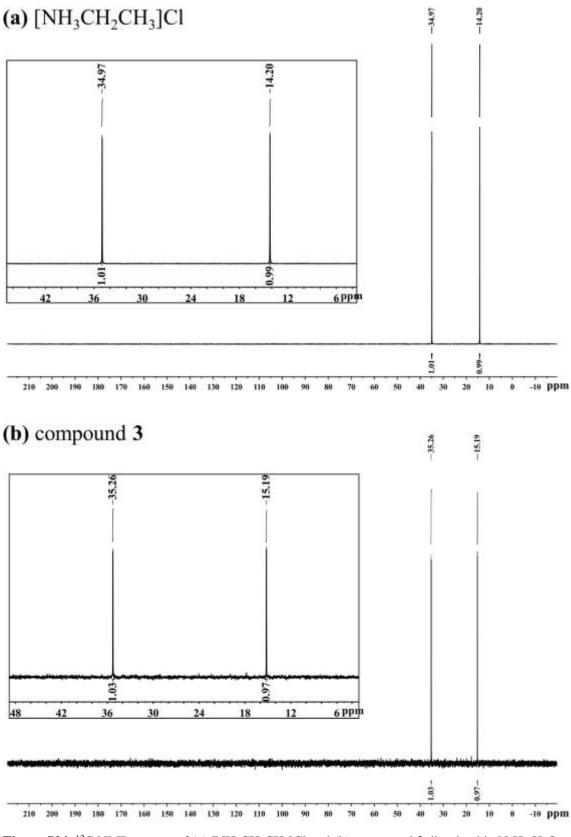


Figure S24. ¹³C NMR spectra of (a) $[NH_3CH_2CH_3]Cl$ and (b) compound 3 dissolved in N_2H_4 · H_2O (98%)/D₂O recorded at room temperature.

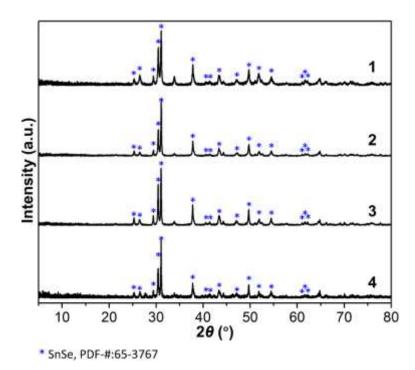


Figure S25. Powder XRD patterns for the TG residues of 1-4.

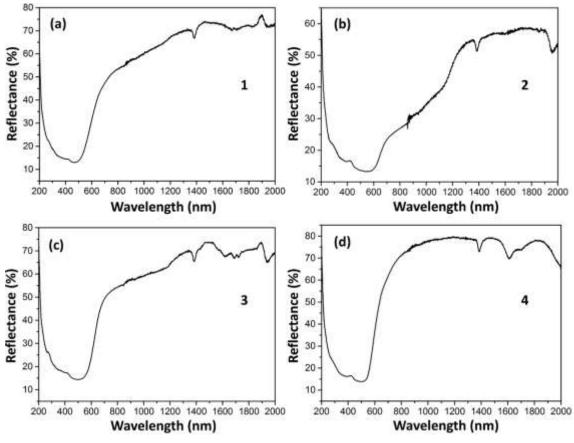


Figure S26. UV-vis reflectance spectra of compounds 1-4.

References:

- W. S. Sheldrick, H.-G. Braunbeck, Preparation and crystal structure of Cs₂Sn₃Se₇, a cesium selenostannate(IV) with pentacoordinated Tin, *Z. Naturforsch. B* 1990, 45, 1643-1646.
- [2] W. S. Sheldrick, H. G. Braunbeck, Preparation and crystal structure of ethylenediammonium selenostannates(IV) and [2SnSe₂·en]_∞, Z. Anorg. Allg. Chem.1993, 619, 1300-1306.
- [3] H. Aizari, G. A. Ozin, R. L. Bedard, S. Petrov, D. Young, Synthesis and Compositional Tuning of the Band Properties of Isostructural TMA-SnS_xSe_{1-x}-1 Nanoporous Materials, *Adv. Mater*. 1995, 7, 370-374.
- [4] J. B. Parise, Y. Ko, K. Tan, D. M. Nellis, S. Koch, Structural evolution from tin sulfide (selenide) layered structures to novel 3- and 4-connected tin oxy-sulfides, *J. Solid State Chem.* 1995, 117, 219-228.
- [5] A. Fehlker, R. Blachnik, Synthesis, structure, and properties of some selenidostannates. II. [(C₂H₅)₃NH]₂Sn₃Se₇·0.25H₂O und [(C₃H₇)₂NH₂]₄Sn₄Se₁₀·4H₂O, *Z. Anorg. Allg. Chem.* 2001, 627, 1128-1134.
- [6] S. Lu, Y. Ke, J. Li, S. Zhou, X. Wu, W. Du, Solvothermal synthesis and structure of two 2D tin-selenides with long alkyldiamine NH₂(CH₂)_nNH₂ (n = 8, 10), *Struc. Chem.* 2003, 14, 637-642.
- [7] G.-H. Xu, C. Wang, P. Guo, Poly[[(pentaethylenehexamine)manganese(II)] [hepta-μ-selenidotritin(IV)]]: a tin–selenium net with remarkable flexibility, *Acta Cryst. C* 2009, 65, m171-m173.
- [8] G.-N. Liu, G.-C. Guo, M.-J. Zhang, J.-S. Guo, H.-Y. Zeng, J.-S. Huang, Different effects of a cotemplate and [(transition-metal)(1,10-phenanthroline)_m]²⁺ (m = 1-3) complex cations on the self-assembly of a series of hybrid selenidostannates showing combined optical properties of organic and inorganic components, *Inorg. Chem.* 2011, 50, 9660-9669.
- [9] J.-R. Li, W.-W. Xiong, Z.-L. Xie, C.-F. Du, G.-D. Zou, X.-Y. Huang, From selenidostannates to silver-selenidostannate: structural variation of chalcogenidometallates synthesized in ionic liquids, *Chem. Comm.* 2013, 49, 181-183
- [10] W.-W. Xiong, J. Miao, K. Ye, Y. Wang, B. Liu, Q. Zhang, Threading chalcogenide layers with polymer chains, *Angew. Chem. Int. Ed.* 2015, 54, 546-550.
- [11] J. Lu, Y. Shen, F. Wang, C. Tang, Y. Zhang, D. Jia, Solvothermal syntheses and characterizations of selenidostannate salts of transition metal complex cations: conformational flexibility of the lamellar [Sn₃Se₇²⁻]_n Anion, *Z. Anorg. Allg. Chem.* 2015, 641, 561-567.
- [12] S. Santner, S. Dehnen, $[M_4Sn_4Se_{17}]^{10-}$ cluster anions (M = Mn, Zn, Cd) in a Cs⁺ environment and as ternary precursors for ionothermal treatment, *Inorg. Chem.* 2015, 54, 1188-1190.
- [13] C.-F. Du, J.-R. Li, M.-L. Feng, G.-D. Zou, N.-N. Shen, X.-Y. Huang, Varied forms of lamellar [Sn₃Se₇]_n²ⁿ⁻ anion: the competitive and synergistic structure-directing effects of metal-amine complex and imidazolium cations, *Dalton Trans.* 2015, 44, 7364-7372.
- [14] D. D. Hu, Y. Y. Zhang, H. J. Yang, J. Lin, T. Wu, Structural transformation of selenidostannates from 1D to 0D and 2D via a stepwise amine-templated assembly strategy, *Dalton Trans.* 2017, 46, 7534-7539.
- [15] K.-Y. Wang, D. Ding, S. Zhang, Y. Wang, W. Liu, S. Wang, S.-H. Wang, D. Liu, C. Wang,

Preparation of thermochromic selenidostannates in deep eutectic solvents, *Chem. Commun.*, 2018, 54, 4806-4809.

- [16] K.-W. Kim, M.-Y. Heo Z. Kristallogr.-New Cryst. Struct. 2018, 233, 255-257.
- [17] X. Chen, X. Y. Huang, A. H. Fu, J. Li, L.-D. Zhang, H.-Y. Guo Chem. Mater., 2000, 12, 2385-2391.
- [18] H. Guo, Z. Li, L. Yang, P. Wang, X. Huang, J. Li Acta Crystallogr. C: Cryst. Struct. Commun., 2001, 57, 1237-1238.
- [19] L. D. Gulay, I. D. Olekseyuk, O. V. Parasyuk J. Alloys Compd., 2002, 339, 113-117.
- [20] A. Assoud, N. Soheilnia, H. Kleinke Chem. Mater., 2005, 17, 2255-2261.
- [21] M. Daszkiewicz, L. D. Gulay, A. Pietraszko, V. Y. Shemet J. Solid State Chem., 2007, 180, 2053-2060.
- [22] M. Ji, M. Baiyin, S. Ji, Y. An Inorg. Chem. Commun., 2007, 10, 555-557.
- [23] H. G. Yao, R.-C. Zhang, S.-H. Ji, M. Ji, Y. L. An, G. L. Ning *Inorg. Chem. Commun.*, 2010, 13, 1296-1298.
- [24] J.-R. Li, X.-Y. Huang, Dalton Trans., 2011, 40, 4387-4390.
- [25] J.-R. Li, W.-W. Xiong, Z.-L. Xie, C.-F. Du, G.-D. Zou, X.-Y. Huang, *Chem. Commun.*, 2013, 49, 181-183.
- [26] K.-Z. Du, X.-H. Qi, M.-L. Feng, J.-R. Li, X.-Z. Wang, C.-F. Du, G.-D. Zou, M. Wang, X.-Y. Huang *Inorg. Chem.*, 2016, 55, 5110-5112.
- [27] B. Zhang, M.-L. Feng, J. Li, Q.-Q. Hu, X.-H. Qi, X.-Y. Huang Cryst. Growth Des., 2017, 17, 1235-1244.