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1. Tables  

Table S1 Summary of the [Sn3Se7]n
2n- layer-containing compounds in the literature and their band 

gaps and structural types. 

Compound Space group Band gap Type  Ref. 

Cs2Sn3Se7 C2/c NA I [1] 

[enH2][Sn3Se7]·0.5en Fdd2 NA II [2] 

(TMA)2Sn3Se7 P212121 2.12 eV III [3] 

(C7N4OH16)2Sn3Se7·H2 Pbca NA III [4] 

[(C2H5)3NH]2Sn3Se7·0.25H2O P21/n 2.1 eV III [5] 

(NH3(CH2)8NH3)Sn3Se7 P1̅ NA II [6] 

(NH3(CH2)10NH3)Sn3Se7 C2/c NA II [6] 

[Mn(peha)][Sn3Se7] P21/n NA III [7] 

[Fe(phen)3]n(Sn3Se7)n∙1.25nH2O R3̅c 1.97 eV II [8] 

[prmmim]2[Sn3Se7] P3221 NA II [9] 

[bmmim]2[Sn3Se7] P3221 2.2 eV II [9] 

[DBNH]2[Sn3Se7]·PEG C2/c 2.13 eV I [10] 

[DBNH]3[NH4][Sn6Se14] R3̅ 2.02 eV I [10] 

[Mn(dien)2]Sn3Se7·0.5H2O P21/n 1.89 eV III [11] 

[Fe(tatda)]Sn3Se7 P21/n 1.93 eV II [11] 

[Mn(en)2.5(en-Me)0.5][Sn3Se7] P21/c NA III [12] 

[Mn(en)3]Sn3Se7 P21/n 1.99 eV III [13] 

[Mn(dien)2]Sn3Se7·H2O P21/n 2.04 eV III [13] 

(H+-DBN)2[Sn3Se7] Cmc21 2.02 eV II [14] 

[(CH3)3N(CH2)2OH]2[Sn3Se7]∙H2O P21/n NA III [15] 

[(CH3)3N(CH2)2CH3]2[Sn3Se7] Pbca 2.35 eV III [15] 

(BuMe3N)2[Sn3Se7] C2/c NA I [16] 

 

Table S2 Summary of the Ag-Sn-Se compounds and their band gaps in the literature. 

Compound Space group Band gap Ref. 

K2Ag2SnSe4 P2/c 1.8 eV [17] 

K2Ag2Sn2Se6 P4/mcc NA [18] 

β-Ag8SnSe6 Pmn21 NA [19] 

BaAg2SnSe4 I222 0.2 eV [20] 

La3AgSnSe7 P63 NA [21] 

A3AgSn3Se8 (A = Rb, K) P4/nbm 1.8 eV [22] 

K3AgSn3Se8 P4/nbm 1.8 eV [23] 

[(Me)2NH2]0.75[Ag1.25SnSe3] P4̅21m 1.85 eV [24] 

[bmmim]7[AgSn12Se28] P1̅ 2.2 eV [25] 

(NH4)4Ag12Sn7Se22 C2/c 1.21 eV [26] 

[CH3NH3]2[H3O]Ag5Sn4Se12·C2H5OH P4̅21m 1.80 eV [27] 

 



2. Figures 

2.1 Synthesis 

Compound 1: 

 

Figure S1. Photographs of the reactants, i.e. Sn, Se, [NH2(CH3)2]Cl, urea (without N2H4·H2O), 

before and after being mixed for the synthesis of compound 1. The transforming from bulk solid 

reactants to a viscous liquid mixture after being stirred indicates the formation of [NH2(CH3)2]Cl-

urea DES. 

 

 

Figure S2. Photographs of the products obtained from the optimizing reactions for 1 with different 

N2H4·H2O:urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: 

magnified imaging of the products. 

 

 

Figure S3. Photographs of the products obtained from the optimizing reactions for 1 

(N2H4·H2O:urea = 0.58:1) performed at different temperatures. Top line: products washed by 

distilled water; bottom line: magnified imaging of the products. 

 



 
Figure S4. Powder XRD patterns for the products from optimizing reactions for 1 with different 

N2H4·H2O:urea ratio at 160 °C. 

 

 
Figure S5. Powder XRD patterns for the products obtained from the optimizing reactions for 1 

performed at different temperatures. The molar ratio of N2H4·H2O:urea for all the reactions is 0.58:1. 



Compound 2: 

 

Figure S6. Photographs of the reactants, i.e. Sn, Se, [NH3CH2CH3]Cl, urea (without N2H4·H2O), 

before and after being mixed for the synthesis of compound 2. The transforming from bulk solid 

reactants to a viscous liquid mixture after being stirred indicates the formation of [NH2(CH3)2]Cl-

urea DES. 

 

 

Figure S7. Photographs of the products obtained from the optimizing reactions for 2 with different 

N2H4·H2O:urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: 

magnified imaging of the products. 

 

 

Figure S8. Photographs of the products obtained from the optimizing reactions for 2 at 160 °C in 

absence of [NH3CH2CH3]Cl. The N2H4·H2O:urea molar ratios was tuned to 0.77:1 and 1.93:0 

respectively. Top line: products washed by distilled water; bottom line: magnified imaging of the 

products. 

 



 

Figure S9. Photographs of the products obtained from the optimizing reactions for 2 

(N2H4·H2O:urea = 0.77:1) performed at different temperatures. Top line: products washed by 

distilled water; bottom line: magnified imaging of the products. 

 

 

Figure S10. Powder XRD patterns for the products from optimizing reactions for 2 with different 

N2H4·H2O:urea ratio at 160 °C. 

 



 

Figure S11. Powder XRD patterns for the products obtained from the optimizing reactions for 2 

performed at 120-180 °C. The molar ratio of N2H4·H2O:urea for all the reactions is 0.77:1. 



Compound 4: 

 

 

Figure S12. Photographs of the reactants, i.e. Sn, Se, [NH(CH3)3]Cl, urea (without N2H4·H2O), 

before and after being mixed for the synthesis of compound 4. The transforming from bulk solid 

reactants to a viscous liquid mixture after being stirred indicates the formation of [NH(CH3)3]Cl-

urea DES. 

 

 

Figure S13. Photographs of the products obtained from the optimizing reactions for 4 with different 

N2H4·H2O:urea molar ratios at 160 °C. Top line: products washed by distilled water; bottom line: 

magnified imaging of the products. 

 

 

Figure S14. Photographs of the products obtained from the optimizing reactions for 4 at 160 °C in 

absence of [NH3(CH3)3]Cl. The N2H4·H2O:urea molar ratios was tuned to 0.77:1 and 1.3:0 

respectively. Top line: products washed by distilled water; bottom line: magnified imaging of the 

products. 



 

Figure S15. Photographs of the products obtained from the optimizing reactions for 4 

(N2H4·H2O:urea = 0.77:1) performed at different temperatures. Top line: products washed by 

distilled water; bottom line: magnified imaging of the products. 

 

 

Figure S16. Powder XRD patterns for the products from optimizing reactions for 4 with different 

N2H4·H2O:urea ratio at 160 °C. 

 

 



 

Figure S17. Powder XRD patterns for the products obtained from the optimizing reactions for 4 

performed at 120-180 °C. The molar ratio of N2H4·H2O:urea for all the reactions is 0.77:1.



2.2 Structures 

 

 

Figure S18. 3D supramolecular framework of 1 along the b axis (dashed lines represent the N−

H···Se and C−H···Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), C 

(gray), H (white). 

 

 

Figure S19. 3D supramolecular framework of 2 along the c axis (dashed lines represent the N−

H···Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), H (white). 

 

 



 

Figure S20. 3D supramolecular framework of 3 along the a axis (dashed lines represent the N−

H···Se and C−H···Se hydrogen bonds). Color code: Sn (dark blue), Se (light orange), N (blue), C 

(gray), H (white). 

 

 
Figure S21. 3D supramolecular framework of 4 along the c axis. H atoms are omitted for clarity. 

Color code: Sn (dark blue), Ag (tan), Se (light orange), N (blue), C (gray). 

 



2.3 Characterizations 

 

Figure S22. FTIR spectra of compounds 1-4 measured at room temperature on KBr pellets.



 

Figure S23. 13C NMR spectra of (a) [NH2(CH3)2]Cl and (b) compound 1 dissolved in N2H4·H2O 

(98%)/D2O recorded at room temperature. 

 



 

Figure S24. 13C NMR spectra of (a) [NH3CH2CH3]Cl and (b) compound 3 dissolved in N2H4·H2O 

(98%)/D2O recorded at room temperature. 



 

Figure S25. Powder XRD patterns for the TG residues of 1-4. 

 

 

Figure S26. UV-vis reflectance spectra of compounds 1-4.
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