Supporting Information

Enhanced performances of PbS quantum dots modified MoS₂ composite for NO₂ detection at room temperature

 $\textit{Xin Xina, Yong Zhanga, *, Xiaoxiao Guana, Juexian Caoa, *, Wenli Lia, Xia Longa, Xin Tana, *$

^a School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China

^b Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University,

Xiangtan 411105, PR China

*Corresponding author:

E-mail address: zhangyong@xtu.edu.cn (Y. Zhang)

jxcao@xtu.edu.cn (J. Cao)

Tel.: +86 731 58292197; Fax: +86 731 58292468

Figure S1. Dynamic response-recovery curves of pure PbS gas sensor at different NO₂ concentrations. The inset shows the response and recovery times of pure PbS gas sensor at different NO₂ concentrations.

Figure S2. Response-recovery curves of MoS₂/PbS gas sensor at 100 ppm NO₂ under different humidity conditions.

Figure S3. Recovery times of MoS₂ and MoS₂/PbS gas sensors at different NO₂ concentrations.

Figure S4. Dynamic response and recovery curves of (a) MoS₂ and (b) MoS₂/PbS gas sensors between air and 100 ppm NO₂ for three cycles.

Figure S5. Long-term stabilities of MoS_2 and MoS_2/PbS gas sensors after exposing to the air. The inset shows the responses of MoS_2 and MoS_2/PbS gas sensors to NO_2 for 15 days.

Table S1. The recovery ratios of MoS_2 and MoS_2/PbS gas sensors at different NO_2 concentrations.

	5 ppm	10 ppm	20 ppm	50 ppm	100 ppm	200 ppm
MoS ₂ gas sensor	100%	98%	94%	70%	50%	34%
MoS ₂ /PbS gas sensor	100%	100%	100%	100%	100%	99%