Supporting Information ## Enhanced performances of PbS quantum dots modified MoS₂ composite for NO₂ detection at room temperature $\textit{Xin Xina, Yong Zhanga, *, Xiaoxiao Guana, Juexian Caoa, *, Wenli Lia, Xia Longa, Xin Tana, *$ ^a School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, PR China ^b Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, PR China *Corresponding author: E-mail address: zhangyong@xtu.edu.cn (Y. Zhang) jxcao@xtu.edu.cn (J. Cao) Tel.: +86 731 58292197; Fax: +86 731 58292468 **Figure S1.** Dynamic response-recovery curves of pure PbS gas sensor at different NO₂ concentrations. The inset shows the response and recovery times of pure PbS gas sensor at different NO₂ concentrations. **Figure S2.** Response-recovery curves of MoS₂/PbS gas sensor at 100 ppm NO₂ under different humidity conditions. Figure S3. Recovery times of MoS₂ and MoS₂/PbS gas sensors at different NO₂ concentrations. **Figure S4.** Dynamic response and recovery curves of (a) MoS₂ and (b) MoS₂/PbS gas sensors between air and 100 ppm NO₂ for three cycles. **Figure S5.** Long-term stabilities of MoS_2 and MoS_2/PbS gas sensors after exposing to the air. The inset shows the responses of MoS_2 and MoS_2/PbS gas sensors to NO_2 for 15 days. **Table S1.** The recovery ratios of MoS_2 and MoS_2/PbS gas sensors at different NO_2 concentrations. | | 5 ppm | 10 ppm | 20 ppm | 50 ppm | 100 ppm | 200 ppm | |----------------------------------|-------|--------|--------|--------|---------|---------| | MoS ₂ gas sensor | 100% | 98% | 94% | 70% | 50% | 34% | | MoS ₂ /PbS gas sensor | 100% | 100% | 100% | 100% | 100% | 99% |