Total Synthesis and Configurational Revision of Mozamide A – a Hydroxy-Brunsvicamide

Lukas Junk and Uli Kazmaier*

Saarland University, Organic Chemistry I, Campus, Bldg. C4.2, D-66123 Saarbrücken, Germany.

1.	Comparison of synthetic 1a - c with natural 1	S 2
2.	References	S6
3.	Copies of NMR-spectra	S7

1. Comparison of synthetic 1a – c with natural 1

In order to compare the synthetic compounds with the natural product, the NMR data of 1a - c was compared to that reported for natural 1.^[1] Tables 1 and 2 show the NMR frequencies for each proton and carbon (DMSO-d₆, 500/126 MHz, 298 K) for synthetic and natural 3. $\Delta\delta$ values were calculated by $\Delta\delta = \delta(1x) - \delta(1)$.

Table S 1. Comparison of ¹H-NMR-data of 1a, 1b and 1c with that reported for 1 (500 MHz, DMSO-d₆, δ in ppm).

	1 ^[1]	1 a	Δδ (1 – 1a)	1b (L-allo-Ile)	Δδ (1 – 1b)	1c (L-Ile)	Δδ (1 – 1c)
МеНТгр α	4.64	4.52	0.12	4.52	0.12	4.68	-0.04
MeHTrp β1	2.72	2.65	0.07	2.72	0	2.73	-0.01
МеНТгр β2	3.04	3.23	-0.19	3.07	-0.03	3.08	-0.04
Indole 1	10.6	10.58	0.02	10.55	0.05	10.55	0.05
Indole 2	6.81	6.91	-0.1	6.81	0	6.81	0
Indole 4	6.84	6.79	0.05	6.84	0	6.84	0
Indole 6	6.58	6.57	0.01	6.58	0	6.58	0
Indole 7	7.1	7.1	0	7.09	0.01	7.09	0.01
Indole OH	8.5	8.59	-0.09	8.52	-0.02	8.53	-0.03
N-CH ₃	1.85	2.37	-0.52	1.89	-0.04	1.9	-0.05
Leu a	4.24	4.35	-0.11	4.22	0.02	4.22	0.02
Leu ß	-0.46	-0.47	0.01	-0.49	0.03	-0.49	0.03
Leu β2	0.9	1.01	-0.11	0.89	0.01	0.9	0
Leu y	1.39	1.15	0.24	1.4	-0.01	1.41	-0.02
Leu δ1	0.22	0.09	0.13	0.24	-0.02	0.24	-0.02
Leu δ2	0.36	0.31	0.05	0.37	-0.01	0.37	-0.01
Leu NH	8.42	8.31	0.11	8.43	-0.01	8.43	-0.01
Val a	3.8	4.24	-0.44	3.78	0.02	3.78	0.02
Val ß	1.86	2.15	-0.29	1.91	-0.05	1.91	-0.05
Val y1	0.85	0.61	0.24	0.87	-0.02	0.87	-0.02
Val y2	0.94	0.72	0.22	0.94	0	0.94	0
Val NH	6.73	7.03	-0.3	6.74	-0.01	6.8	-0.07

Lys a	3.84	4.03	-0.19	3.86	-0.02	3.86	-0.02
Lys β	1.58	1.65	-0.07	1.56	0.02	1.56	0.02
Lys γ	1.1	1.3	-0.2	1.12	-0.02	1.11	-0.01
Lys δ	1.4	1.47	-0.07	1.4	0	1.42	-0.02
Lys ε1	2.85	2.91	-0.06	2.87	-0.02	2.87	-0.02
Lys ε2	3.59	3.27	0.32	3.6	-0.01	3.6	-0.01
Lys α-NH	6.44	6.61	-0.17	6.51	-0.07	6.51	-0.07
Lys ε-NH	7.44	7.44	0	7.46	-0.02	7.45	-0.01
Phe a	4.58	4.6	-0.02	4.58	0	4.57	0.01
Phe β1	2.71	2.86	-0.15	2.74	-0.03	2.76	-0.05
Phe β2	3.37	3.16	0.21	3.42	-0.05	3.41	-0.04
Phe o	7.08	7.16	-0.08	7.08	0	7.08	0
Phe <i>m</i>	7.21	7.28	-0.07	7.23	-0.02	7.23	-0.02
Phe p	7.17	7.2	-0.03	7.17	0	7.17	0
Phe NH	8.79	7.84	0.95	8.81	-0.02	8.81	-0.02
Ile α	4.02	4.11	-0.09	4.15	-0.13	3.97	0.05
Ile β	1.72	1.78	-0.06	1.8	-0.08	1.71	0.01
Ile γ-CH ₃	1.12	0.75	0.37	0.76	0.36	1.13	-0.01
Ile γ-CH ₂ -1	1.34	1.25	0.09	1.12	0.22	1.36	-0.02
Ile γ-CH ₂ -2	0.83	1.08	-0.25	1.27	-0.44	0.82	0.01
Ile δ-CH ₃	0.82	0.81	0.01	0.84	-0.02	0.81	0.01
Ile NH	6.3	6.2	0.1	6.24	0.06	6.29	0.01

Table S 2. Comparison ¹³C{¹H} NMR-data of **1a**, **1b** and **1c** with that reported for **1** (126 MHz, DMSO-d₆, δ in ppm).

	1 ^[1]	1a	Δδ (1 – 1a)	1b (L-allo-Ile)	Δδ (1 – 1b)	2c (L-Ile)	Δδ (1 – 1c)
MeHTrp CO	169.9	169	0.9	169.9	0	169.9	0
MeHTrp α	60.7	61.4	-0.7	60.7	0	60.8	-0.1
MeHTrp β	22.3	23.6	-1.3	22.3	0	22.3	0
Indole 2	124.2	124.2	0	124.2	0	124.2	0
Indole 3	108.6	108.5	0.1	108.6	0	108.6	0
Indole 4	102.2	101.6	0.6	102.2	0	102.2	0
Indole 5	150.3	150.7	-0.4	150.4	-0.1	150.4	-0.1
Indole 6	111.3	111.5	-0.2	111.3	0	111.3	0
Indole 7	111.6	111.9	-0.3	111.6	0	111.6	0
Indole 3a	127.9	127.6	0.3	127.9	0	127.9	0
Indole 7a	130.4	130.6	-0.2	130.4	0	130.5	-0.1
N-CH ₃	27.6	29	-1.4	27.6	0	27.6	0
Leu CO	172.2	172.6	-0.4	172.3	-0.1	172.2	0
Leu a	47.3	45.5	1.8	47.2	0.1	47.3	0
Leu ß	37	39.1	-2.1	37.1	-0.1	37.1	-0.1
Leu y	23.1	23	0.1	23.1	0	23.1	0
Leu δ1	19.5	19	0.5	19.5	0	19.5	0
Leu $\delta 2$	22.3	22.7	-0.4	22.6	-0.3	22.6	-0.3

Val CO	172.3	170.4	1.9	172.3	0	172.3	0
Val a	56.7	56.1	0.6	57.8	-1.1	57.8	-1.1
Val β	29.9	30.8	-0.9	30	-0.1	30	-0.1
Val y1	18.8	16	2.8	18.9	-0.1	18.9	-0.1
Val y2	18.9	19	-0.1	19	-0.1	19	-0.1
Lys CO	172	172.4	-0.4	172.1	-0.1	172	0
Lys a	56.7	53.3	3.4	54.4	2.3	54.5	2.2
Lys β	31.5	30.8	0.7	31.6	-0.1	31.6	-0.1
Lys γ	20.2	21.4	-1.2	20.2	0	20.2	0
Lys δ	28.3	27.7	0.6	28.4	-0.1	28.4	-0.1
Lys ε	39	38.6	0.4	38.4	0.6	38.4	0.6
Phe CO	170.1	170.3	-0.2	170.8	-0.7	170.8	-0.7
Phe a	54.4	54.4	0	54.5	-0.1	54.5	-0.1
Phe β	39	37.6	1.4	37.7	1.3	37.7	1.3
Phe <i>i</i>	138.4	137.7	0.7	138.4	0	138.4	0
Phe o	128.8	129.1	-0.3	128.9	-0.1	128.9	-0.1
Phe <i>m</i>	128.3	128.2	0.1	128.3	0	128.3	0
Phe p	126.1	126.3	-0.2	126.1	0	126.1	0
Urea CO	157.3	157.4	-0.1	157.6	-0.3	157.3	0
Ile CO	173.8	174.8	-1	174.5	-0.7	173.9	-0.1
Ile α	57.7	55.3	2.4	55.2	2.5	57.1	0.6
Ile β	37.7	37.1	0.6	36.7	1	36.9	0.8
Ile γ-CH ₂	24.6	25.9	-1.3	26	-1.4	24.6	0
Ile δ-CH ₃	11.5	11.8	-0.3	11.7	-0.2	11.5	0
Ile γ-CH ₃	15.7	14.7	1	14.8	0.9	15.8	-0.1

Figure S 1. $\Delta\delta({}^{1}H)$ values of 1a - c compared to 1. (DMSO-d₆, 500 MHz, $\Delta\delta$ in ppm, MeHTrp: *N*-Methyl-5-hydroxytryptophan).

Figure S 2. $\Delta\delta(^{13}C)$ values of 1a - c compared to 1. (DMSO-d₆, 126 MHz, $\Delta\delta$ in ppm, MeHTrp: *N*-Methyl-5-hydroxytryptophan).

Figure S1 shows the $\Delta\delta$ values of **1a** (blue), **1b** (red) and **1c** (green) as a bar diagram. For **1a**, strong deviances can be found for almost every amino acid. In **1b** these deviances are very small except in the Ile part. **1c** shows a good accord to **1** in the whole ¹H-NMR-spectrum. We assume that **1a** takes on a different conformation compared to the natural product. Cyclic precursors **10a**, **11a** and **12a** also show two stable conformations in their NMR spectra. At 373 K, only signal broadening and no coalescence was observed for these molecules.

The spectral data of **1b** and **1c** only differ in the Ile-part. **1b** shows significant deviances $((\Delta \delta (\text{Ile-}\gamma\text{-CH}_2\text{-}2)) = -0.44 \text{ ppm})$, whereas the deviances for **1c** are below 0.1 ppm in the whole spectrum.

The comparison of ¹³C-NMR spectra (Figure S2) shows the same trends as observed for the ¹H-NMR spectra: **1a** shows strong deviances for almost every amino acid, **1b** and **1c** are quite similar, they only differ in the Isoleucin-units. **1c** shows the best accordance to the natural product. Several outliers (Val- α , Lys- α , Phe-CO and Phe- β) can be found. We cannot offer an explanation for these since no copies of ¹H and ¹³C-NMR spectra of natural **1** are available. However, for Val- α and Lys- α the same value of $\delta = 56.7$ ppm was reported, indicating possible copy-paste-errors.

Based on this analysis of NMR spectra we propose the natural structure of 1 to be that of 1c.

2. References

[1] E. W. Schmidt, M. K. Harper, D. J. Faulkner, Mozamides A and B, cyclic peptides from a *Theonellid* sponge from Mozambique. *J. Nat. Prod.* **1997**, *60*, 779–782.

3. Copies of NMR-spectra

¹H-NMR of 4a

¹H-NMR of 4b

¹H-NMR of 6a

¹H-NMR of 6b

¹H-NMR of 6c

¹H-NMR of 7a

¹³C-NMR of 7a

¹H-NMR of 7b

¹³C-NMR of 7b

¹H-NMR of 7c

¹³C-NMR of 7c

¹H-NMR of 8a

¹H-NMR of 8b

¹³C-NMR of 8b

¹H-NMR of 8c

¹H-NMR of 9a

¹H-NMR of 9b

¹H-NMR of 9c

¹H-NMR of E

¹H-NMR of 10a

¹³C-NMR of 10a

¹H-NMR of 10b

¹H-NMR of 10c

¹H-NMR of 11a

¹H-NMR of 11b

¹H-NMR of 11c

¹H-NMR of 12a

¹³C-NMR of 12a

¹H-NMR of 12b

¹H-NMR of 12c

¹³C-NMR of 12c

¹H-NMR of 13b

¹³C-NMR of 13b

¹H-NMR of 13c

¹³C-NMR of 13c

¹H-NMR of 1a

¹H-NMR of 1b

ppm 220

¹H-NMR of 1c

¹H-¹H-COSY-NMR of 1c

¹H-¹³C-HSQCed of 1c

¹H-¹³C-HMBC of 1c

