Supporting Information

Ba₂ScHO₃: H⁻ Conductive Layered Oxyhydride with H⁻ Site Selectivity

Fumitaka Takeiri,^{†,‡} Akihiro Watanabe,^{†,⊥} Akihide Kuwabara,[§] Haq Nawaz,^{†,‡} Nur Ika Puji Ayu,[#] Masao Yonemura,[#] Ryoji Kanno,[#] Genki Kobayashi*^{†,‡}

[†]Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan

*SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan

[⊥]Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502, Japan

[§]Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya 456-8587, Japan

[#]Neutron Science Laboratory (KENS), Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan

[#]All-Solid-State Battery Unit, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502, Japan

Table of Contents

Figure S1. Laboratory XRD profile of BaScHO₃.

Figure S2. All symmetrically independent H/O configurations in the conventional unit cell of Ba₂ScHO₃ calculated

in this study.

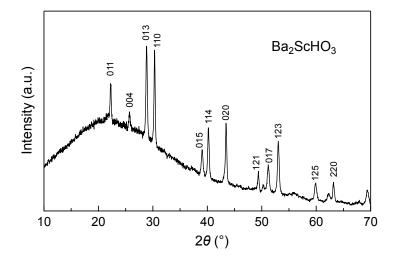

Figure S3. Optimized coordination environment of ScO₅H in the supercells of Ba₂ScO₃H.

Figure S4. XRD profile of Ba₂ScHO₃ before and after impedance measurement.

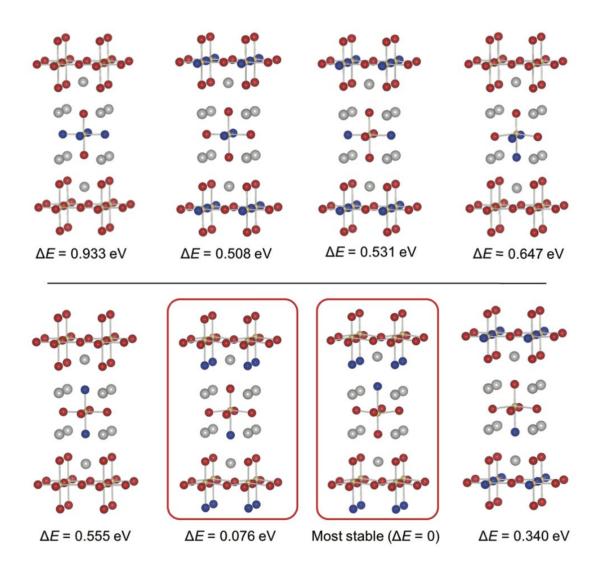
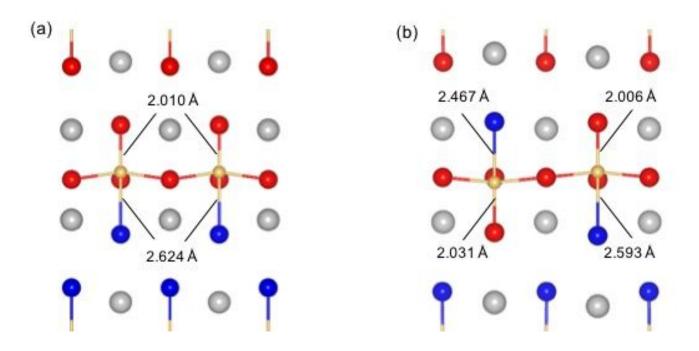
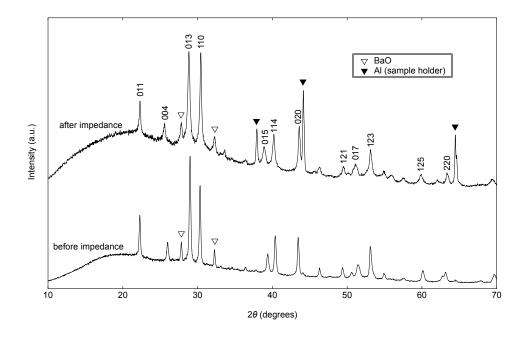

Figure S5. Impedance plot of BaScO₂H at 300 °C.

Table S1. Structural parameters of BaO and Sc₂O₃ from SXRD data.


Table S2. Structural parameters of BaScO₂H from ND data.


Figure S1. Laboratory XRD profile of BaScHO₃. The large background at lower angles was derived from the Kapton film attached to the sample holder for air-sensitive samples.

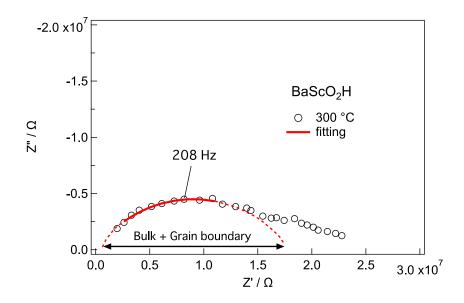

Figure S2. All symmetrically independent H/O configurations in the conventional unit cell of Ba_2ScHO_3 calculated in this study. The values of relative energies compared with the most stable configuration are shown.

Figure S3. Optimized coordination environment of ScO_5H in the supercells of Ba_2ScO_3H . Left and right images correspond to the supercells of Figures 3(a) and (b), respectively.

Figure S4. XRD profile of Ba₂ScHO₃ before and after impedance measurement. The peaks with the open and closed triangle represent those of BaO and Al (sample holder), respectively. The sample lot is different from one for Figure S1.

Figure S5. Impedance plot of BaScO₂H at 300 °C.

Atom	Site	g	x	У	Ζ	В / Ų			
Ва	4 <i>a</i>	1	0	0	0	0.4			
01	4b	1	0.5	0.5	0.5	1.0			
<i>Fm</i> –3 <i>m</i> , <i>a</i> = 5.53599(7) Å.									
Sc ₂ O ₃									
Atom	Site	g	x	У	Z	В / Ų			
Sc1	8b	1	0.25	0.25	0.25	0.5			
Sc2	24d	1	0.4649	0	0.25	0.5			
0	48e	1	0.3928	0.1528	0.3802	1.0			

Table S1. Structural parameters of BaO and Sc_2O_3 from SXRD data. BaO

la–3, *a* = 9.8484(11) Å.

 Table S2. Structural parameters of BaScO₂H from ND data.

Atom	Site	g	x	у	Z	B / Ų
Ва	1 <i>b</i>	1	0.5	0.5	0.5	0.4
Sc	1 <i>a</i>	1	0	0	0	0.70(3)
0	3d	0.667	0.5	0	0	0.83(2)
Н	3d	0.333	0.5	0	0	= <i>B</i> (O)

Pm–3*m*, *a* = 4.15254(3) Å.