Supporting Information

Synthesis of Dibenzophospholes by Tf₂O-Mediated Intramolecular Phospha-Friedel-Crafts-Type Reaction

Kazutoshi Nishimura, Koji Hirano,* and Masahiro Miura*

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

Contents

Instrumentation and Chemicals	S 1
Experimental Procedures	S2–S3
X-Ray Analysis	S4–S5
NMR Studies for Mechanistic Discussion	S6-S10
Characterization Data for Products	S11–S52

Instrumentation and Chemicals

¹H, ¹³C{¹H}, ¹⁹F{¹H}, and ³¹P{¹H} NMR spectra were recorded at 400 MHz, 100 MHz, 162 MHz, and 162 MHz, respectively, for $CDCl_3$ and toluene- d_6 solutions. HRMS data were obtained by APCI using TOF or EI using a double focusing mass spectrometer. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck silica gel 60F₂₅₄. Silica gel (Wakosil C-200) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-6AD (pump, SHIMADZU, 3.5 mL/min CHCl₃) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line GPC H-2001 (20 x 500 mm, particle size: 15 µm) and H-2002 columns (20 x 500 mm, particle size: 15 µm) (preparative columns, Shodex, CHCl₃ eluent). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was dried on a Glass Contour Solvent dispensing system (Nikko Hansen & Co., Ltd.) prior to use. All secondary phosphine oxides 1 were synthesized from the corresponding aryl bromides and PhPCl₂ according to the literature method.¹ All reactions were carried out under nitrogen atmosphere.

¹ Kuninobu, Y.; Yoshida, T.; Takai, K. J. Org. Chem. 2011, 76, 7370.

Experimental Procedures

Synthesis of **2a** (Table 1, entry 7, 0.10 mmol scale): In a Schlenk tube with pressure resistance, [1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**1a**, 0.10 mmol, 28 mg) was placed with a magnetic stir bar under N₂. Toluene (1.5 mL) was subsequently added by a syringe. The resulting mixture was stirred until it became homogeneous solution. Tf₂O (0.12 mmol, 20 µl) was then added by a syringe. The reaction mixture was heated at 90 °C in an oil bath for 8 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with ethyl acetate (20 mL x 3). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The desired product 5-phenylbenzo[b]phosphindole 5-oxide (**2a**, 25 mg, 90%) was isolated by column chromatography on silica gel using ethyl acetate as eluent.

Figure S1. Photos of Schlenk flask used in this study: reaction set up (left); reaction progress (right).

Synthesis of **2a** (Table 1, entry 7, 1.0 mmol scale): In a Schlenk tube with pressure resistance, [1,1'-biphenyl]-2-yl(phenyl)phosphine oxide (**1a**, 1.0 mmol, 278 mg) was placed with a magnetic stir bar under N₂. Toluene (15 mL) was subsequently added by a syringe. The resulting mixture was

stirred until it became homogeneous solution. Tf₂O (1.2 mmol, 200 μ l) was then added by a syringe. The reaction mixture was heated at 90 °C in an oil bath for 8 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted three times with ethyl acetate (20 mL x 3). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The desired product 5-phenylbenzo[b]phosphindole 5-oxide (**2a**, 183 mg, 66%) was isolated by column chromatography on silica gel using ethyl acetate as eluent.

Synthesis of $2\mathbf{r}$ (Scheme 5): In a Schlenk tube with pressure resistance. (thiophene-2,5-diylbis(2,1-phenylene))bis(phenylphosphine oxide) (1r, 0.10 mmol, 48 mg) was placed with a magnetic stir bar under N₂. Toluene (1.5 mL) was subsequently added by a syringe. The resulting mixture was stirred until it became homogeneous solution. Tf₂O (0.24 mmol, 40 μ l) was then added by a syringe. The reaction mixture was heated at 90 $^{\circ}$ C in an oil bath for 24 h. After cooling, sat. NaHCO₃ aq was added. The resulting mixture was extracted eight times with chloroform (20 mL x 8). The combined organic layer was dried over Na_2SO_4 and concentrated in vacuo. The desired product 5,6-diphenyldiphosphindolo[3,2-b:2',3'-d]thiophene 5,6-dioxide (2r, 32 mg, 67% with ca. 1:1 syn/anti ratio) was isolated by column chromatography on silica gel using chloroform-methanol (10:1) as eluent.

X-Ray Analysis

The X-ray quality crystals of 2n were grown from CH_2Cl_2 /hexane.

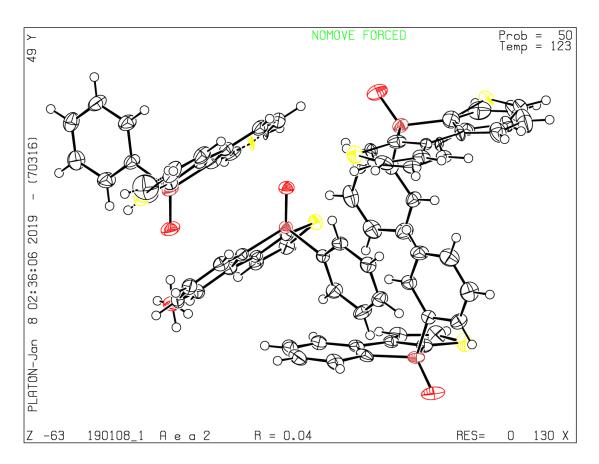
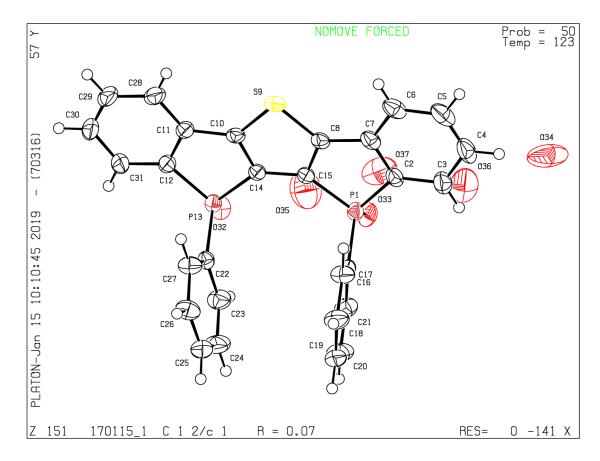



Figure S2. ORTEP drawing of 2n (CCDC 1889358).

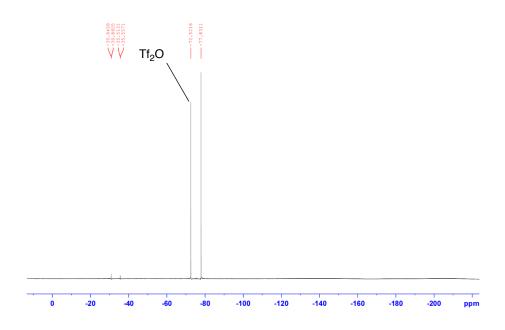

The X-ray quality crystals of *syn-* $2\mathbf{r}$ were grown from wet CHCl₃.

Figure S3. ORTEP drawing of *syn-*2r (CCDC 1891190).

NMR Studies for Mechanistic Discussion

We monitored the reaction mixture of **1a** with Tf₂O in toluene- d_8 by ${}^{19}F{}^{1}H{}$, ${}^{31}P{}^{31}P{}^{1}H{}$, and ¹H NMR (Figures S4–10). Upon treatment of **1a** with Tf₂O at room temperature, an original signal of Tf₂O (-72.5 ppm) still remained but a new signal appeared at -77.8 ppm (Figure S4). On the other hand, in the ³¹P and ³¹P{¹H} NMR the original signal of **1a** (15.7 ppm) immediately disappeared, and somewhat complicated spectra were obtained (Figures S5 and S6). The most informative signal was observed around 37–40 ppm, which may be corresponding to P–H species: the observed large coupling constant (564 Hz) was consistent with the ${}^{1}J_{P-H}$ coupling, and the ${}^{1}H$ -decoupled ${}^{31}P{}^{1}H$ NMR showed the singlet signal (Figure S5) while the doublet signal was observed in the ³¹P NMR (Figure S6). Additionally, ¹H NMR also suggested the presence of P–H bond (around 8.2 ppm signal, Figure S7). These outcomes support the presence of a five-coordinated, Tf₂O adduct A' rather than our originally proposed phosphenium cation A (Scheme S1). After heating at 90 °C, there was no significant change in ${}^{19}F{}^{1}H$ NMR (Figure S8), but in the ${}^{31}P{}^{1}H$ NMR (Figure S9) the major signal was newly observed at 57.4 ppm (Figure S9), which was completely different from the signal of final product, dibenzophosphole oxide 2a in toluene- d_8 /CDCl₃ (32.1 ppm; isolated 2a was hardly soluble in pure toluene- d_8). However, our control experiment using the isolated **2a** and TfOH showed a similar ³¹P{¹H} signal (59.8) in toluene- d_8 /CDCl₃ (Figure S10). Thus, the signal at 57.4 ppm in Figure S9 is assigned to be a complex of 2a and TfOH.

On the basis of the above considerations, we propose the revised tentative reaction mechanism in Scheme S1b. The formed TfOH and CF_3SO_2H generally show similar signals to Tf_2O , and thus some ¹⁹F{¹H} signals around -73 ppm are always observed during the course of reaction (Figures S4 and S8). However, the present NMR studies are still preliminary, and additional efforts are necessary for conclusive mechanistic statement.

Figure S4. ¹⁹F{¹H} NMR of **1a** and Tf₂O in toluene- d_8 at rt for 10 min.

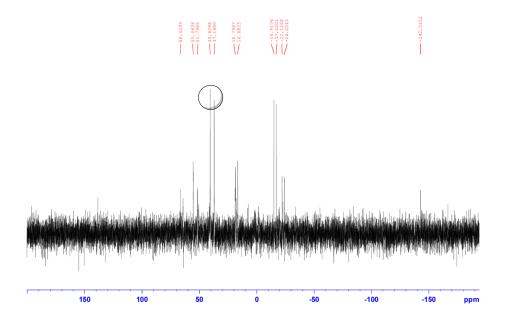
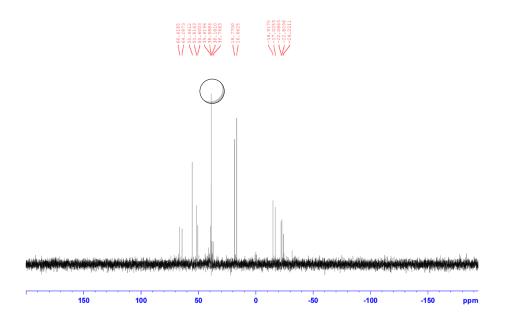
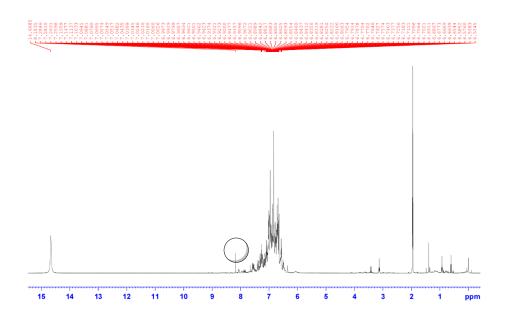




Figure S5. ³¹P NMR of 1a and Tf₂O in toluene- d_8 at rt for 10 min.

Figure S6. ³¹P{¹H} NMR of **1a** and Tf₂O in toluene- d_8 at rt for 10 min.

Figure S7. ¹H NMR of **1a** and Tf₂O in toluene- d_8 at rt for 10 min.

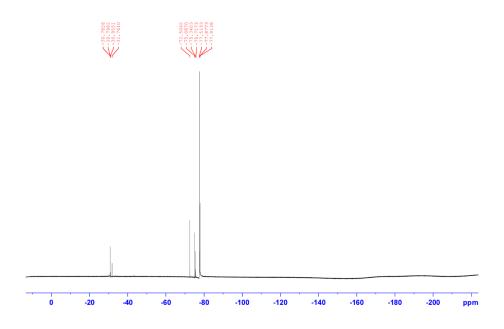


Figure S8. ¹⁹F{¹H} NMR of 1a and Tf₂O in toluene- d_8 at 90 °C for 8 h.

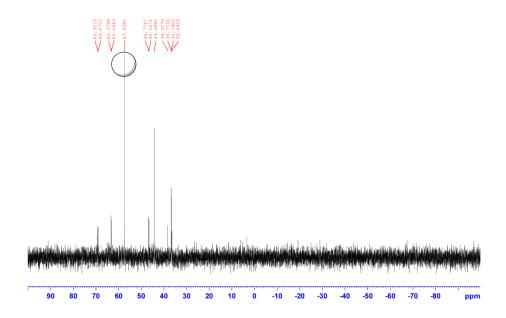
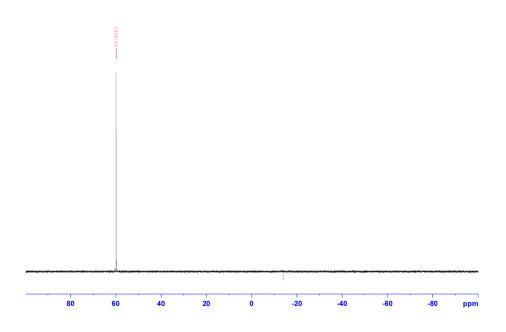
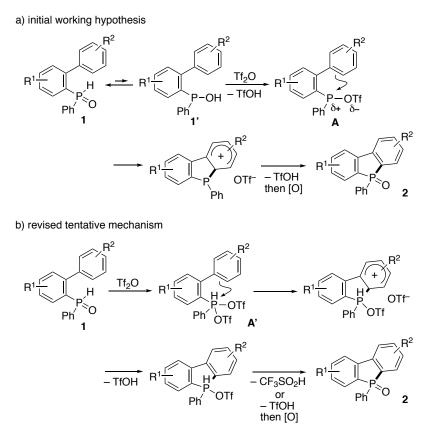
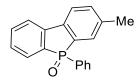
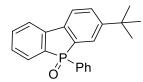




Figure S9. ³¹P{¹H} NMR of 1a and Tf₂O in toluene- d_8 at 90 °C for 8 h.

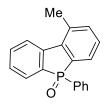
Figure S10. ³¹P{¹H} NMR of **2a** and Tf₂O in toluene- d_8 at rt for 30 min.

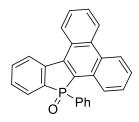

Scheme S1. Initial Working Hypothesis (a) and Revised Tentative Mechanism (b).


Characterization Data for Products

¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra for all compounds are attached in the last part.

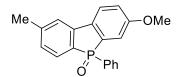
The products **2a**, **2d**, **2e**, **2f**, **2g**, **2k**, **2l**, and **2n** are known, and their spectra data were in agreement with the reported values.^{1,2}


3-Methyl-5-phenylbenzo[*b*]**phosphindole 5-oxide (2b)**: 22 mg (75%); white solid; m.p. 144-145 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.36 (s, 3H), 7.32-7.42 (m, 4H), 7.47-7.58 (m, 3H), 7.63-7.72 (m, 4H), 7.56 (dd, J = 7.7, 2.9, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 21.45 (1C), 121.01 (d, J = 10.2 Hz, 1C), 121.17 (d, J = 10.8 Hz, 1C), 128.84 (d, J = 12.5 Hz, 2C), 129.12 (d, J = 11.0 Hz, 1C), 129.99 (d, J= 9.5 Hz, 1C), 130.48 (d, J = 9.6 Hz, 1C), 131.17 (d, J = 102.3 Hz, 1C), 131.19 (d, J = 10.9 Hz, 2C), 132.23 (d, J = 2.9 Hz, 1C), 132.87 (d, J = 106.4 Hz, 1C), 133.10 (d, J = 105.9 Hz, 1C), 133.46 (d, J = 2.1 Hz, 1C), 134.26 (d, J = 2.1 Hz, 1C), 139.32 (d, J = 21.7 Hz, 1C), 139.87 (d, J = 11.3 Hz, 1C), 142.14 (d, J = 21.6 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 33.68; HRMS (EI⁺) m/z (M⁺) calcd for C₁₉H₁₅OP: 290.0861, found: 290.0860.

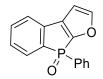

3-(*tert*-Butyl)-5-phenylbenzo[*b*]phosphindole 5-oxide (2c): 22 mg (66%); white solid; m.p. 62-63 °C; ¹H NMR (400 MHz, CDCl₃): δ 1.31 (s, 9H), 7.34 (ddd, J = 7.2, 7.2, 3.6 Hz, 1H), 7.40 (ddd, J = 7.3, 7.3, 3.0 Hz, 2H), 7.50 (ddd, J = 7.3, 7.3, 1.4 Hz, 1H), 7.56 (dd, J = 7.6, 7.6, 1H), 7.61-7.76 (m, 6H), 7.79 (dd, J = 2.9, 7.7 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 31.30 (3C), 35.22 (1C), 121.03 (d, J = 10.8 Hz, 1C), 121.05 (d, J = 9.6 Hz, 1C), 126.73 (d, J = 10.0 Hz, 1C), 128.84 (d, J = 12.4 Hz, 2C), 129.14 (d, J = 11.1 Hz, 1C), 129.95 (d, J = 9.5 Hz, 1C), 130.88 (d, J = 2.1 Hz, 1C), 131.18 (d, J = 102.3 Hz, 1C), 131.22 (d, J = 10.9 Hz, 2C), 132.21 (d, J = 2.8 Hz, 1C), 132.64 (d, J = 106.4 Hz, 1C), 133.14 (d, J = 106.5 Hz, 1C), 133.44 (d, J = 2.1 Hz, 1C), 139.39 (d, J = 21.9 Hz, 1C), 141.95 (d, J = 21.7 Hz, 1C), 153.25 (d, J = 10.2 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 34.28; HRMS (APCI)

² Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. ACS Catal. 2015, 5, 6634.

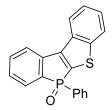
m/z (M+H)⁺ calcd for C₂₂H₂₂OP: 333.1408, found: 333.1403.

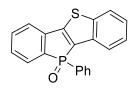


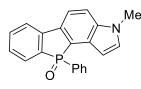
1-Methyl-5-phenylbenzo[*b*]**phosphindole 5-oxide (2h)**: 21 mg (72%); white solid; m.p. 170-171 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.77 (s, 3H), 7.29 (ddd, *J* = 7.4, 7.4, 3.5 Hz, 1H), 7.36-7.40 (m, 4H), 7.46-7.50 (m, 1H), 7.58-7.67 (m, 4H), 7.76 (ddd, *J* = 10.5, 7.4, 0.7 Hz, 1H), 7.79 (dd, *J* = 8.0, 3.5 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 23.06 (1C), 125.48 (d, *J* = 9.2 Hz, 1C), 127.91 (d, *J* = 9.6 Hz, 1C), 128.74 (d, *J* = 11.0 Hz, 1C), 128.80 (d, *J* = 12.5 Hz, 2C), 129.13 (d, *J* = 12.1 Hz, 1C), 130.28 (d, *J* = 9.4 Hz, 1C), 131.21 (d, *J* = 103.3 Hz, 1C), 131.23 (d, *J* = 10.8 Hz, 2C), 132.19 (d, *J* = 2.9 Hz, 1C), 133.42 (d, *J* = 2.2 Hz, 1C), 133.76 (d, *J* = 104.3 Hz, 1C), 133.96 (d, *J* = 106.0 Hz, 1C), 135.04 (d, *J* = 9.9 Hz, 1C), 136.98 (d, *J* = 2.1 Hz, 1C), 139.86 (d, *J* = 21.5 Hz, 1C), 143.240 (d, *J* = 21.6 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 32.58; HRMS (EI⁺) m/z (M⁺) calcd for C₁₉H₁₅OP: 290.0861, found: 290.0864.



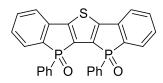
9-Phenyltribenzo[*b,e,g*]**phosphindole 9-oxide (2i)**: 31 mg (83%); white solid; m.p. 192-193 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.38 (m, 2H), 7.43-7.47 (m, 2H), 7.54-7.58 (m, 1H), 7.63-7.70 (m, 2H), 7.72-7.86 (m, 5H), 8.30 (d, *J* = 8.0 Hz, 1H), 8.54 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.82-8.84 (m, 1H), 8.99-9.01 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 123.17 (1C), 124.22 (1C), 125.71 (d, *J* = 10.8 Hz, 1C), 125.95 (1C), 127.19 (d, *J* = 5.6 Hz,1C), 127.55 (1C), 127.99 (1C), 128.15 (d, *J* = 11.8 Hz, 1C), 128.19 (1C), 128.70 (1C), 128.99 (d, *J* = 12.4 Hz, 2C), 129.05 (d, *J* = 11.1 Hz, 1C), 129.45 (d, *J* = 8.9 Hz, 1C), 130.26 (d, *J* = 9.9 Hz, 1C), 130.32 (d, *J* = 111.0 Hz, 1C), 130.79 (1C), 131.00 (d, *J* = 101.6 Hz, 1C), 131.22 (d, *J* = 10.8 Hz, 2C), 132.29 (d, *J* = 2.8 Hz, 1C), 133.22 (d, *J* = 2.0 Hz, 1C), 134.09 (d, *J* = 1.5 Hz, 1C), 134.84 (d, *J* = 105.8 Hz, 1C), 139.62 (d, *J* = 19.7 Hz, 1C), 142.67 (d, *J* = 23.2 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 33.90; HRMS (EI⁺) m/z (M⁺) calcd


for C₂₆H₁₇OP: 376.1017, found: 376.1016.

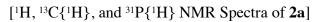

7-Methoxy-2-methyl-5-phenylbenzo[*b*]**phosphindole 5-oxide (2j**): 24 mg (76%); white solid; m.p. 148-149 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.33 (s, 3H), 3.80 (s, 3H), 7.08 (ddd, *J* = 8.5, 2.5, 0.7 Hz, 1H), 7.19 (dd, *J* = 10.9, 2.5 Hz, 1H), 7.34 (d, *J* = 7.9 Hz, 1H), 7.38-7.42 (m, 2H), 7.46-7.52 (m, 2H), 7.60 (dd, *J* = 7.8, 3.2 Hz, 1H), 7.64-7.69 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 21.34 (1C), 55.77 (1C), 114.01 (d, *J* = 10.9 Hz, 1C), 120.04 (d, *J* = 2.1 Hz, 1C), 120.43 (d, *J* = 10.9 Hz, 1C), 122.25 (d, *J* = 12.1 Hz, 1C), 128.86 (d, *J* = 12.4 Hz, 2C), 130.46 (d, *J* = 9.6 Hz, 1C), 131.21 (d, *J* = 10.8 Hz, 2C), 131.22 (d, *J* = 102.0 Hz, 1C), 132.24 (d, *J* = 2.9 Hz, 1C), 132.64 (d, *J* = 107.1 Hz, 1C), 134.30 (d, *J* = 2.1 Hz, 1C), 134.52 (d, *J* = 105.7 Hz, 1C), 134.79 (d, *J* = 21.3 Hz, 1C), 138.52 (d, *J* = 11.0 Hz, 1C), 139.48 (d, *J* = 21.3 Hz, 1C), 160.61 (d, *J* = 13.8 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 33.68; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₀H₁₈O₂P: 321.1039, found: 321.1043.

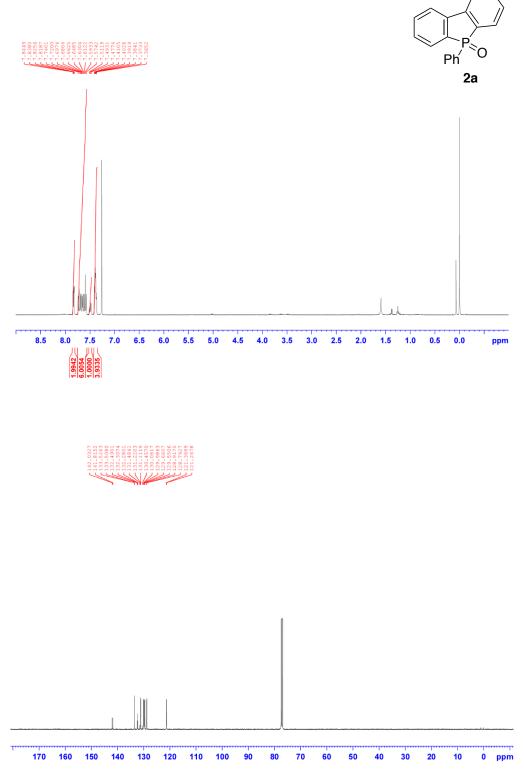

8-Phenylphosphindolo[2,3-*b*]**furan 8-oxide (2m):** 19 mg (73%); pale yellow solid; m.p. 69-70 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.74 (dd, J = 1.7, 1.0 Hz, 1H), 7.29-7.33 (m, 1H), 7.41-7.44 (m, 1H), 7.45-7.49 (m, 2H), 7.50-7.60 (m, 3H), 7.71-7.75 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 105.81 (d, J = 8.4 Hz, 1C), 121.68 (d, J = 7.4 Hz, 1C), 128.75 (d, J = 12.0 Hz, 1C), 128.92 (d, J = 110.9 Hz, 1C), 129.09 (d, J = 13.2 Hz, 2C), 130.26 (d, J = 10.4 Hz, 1C), 131.36 (d, J = 11.4 Hz, 2C), 132.80 (d, J = 2.9 Hz, 1C), 133.13 (d, J = 1.9 Hz, 1C), 133.24 (d, J = 12.5 Hz, 1C), 135.42 (d, J = 113.0 Hz, 1C), 142.21 (d, J = 33.3 Hz, 1C), 152.45 (d, J = 132.1 Hz, 1C), 153.30 (d, J = 6.6 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 12.25; HRMS (EI⁺) m/z (M⁺) calcd for C₁₆H₁₁O₂P: 266.0497, found: 266.0499.

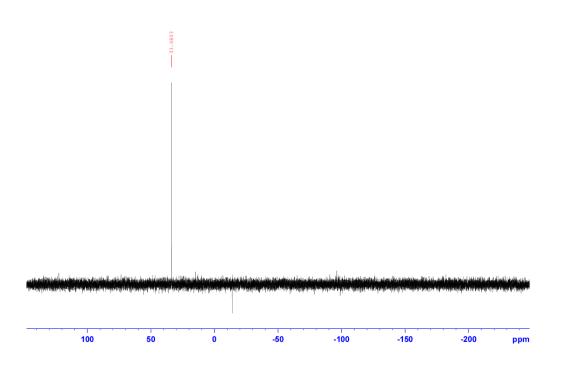
6-Phenylbenzo[*b*]**phosphindolo**[3,2-*d*]**thiophene 6-oxide (20)**: 28 mg (85%); white solid; m.p. 170-171 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.43 (m, 3H), 7.48-7.63 (m, 4H), 7.67-7.76 (m, 3H), 7.95 (d, *J* = 8.0 Hz, 1H), 8.04 (dd, *J* = 7.7, 3.5 Hz, 1H), 8.37 (d, *J* = 8.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 121.76 (d, *J* = 9.8 Hz, 1C), 123.97 (1C), 124.31 (d, *J* = 1.4 Hz, 1C), 125.81 (1C), 126.80 (1C), 128.39 (d, *J* = 11.8 Hz, 1C), 129.06 (d, *J* = 13.0 Hz, 2C), 130.03 (d, *J* = 108.6 Hz, 1C), 130.23 (d, *J* = 10.2 Hz, 1C), 131.31 (d, *J* = 11.1 Hz, 2C), 132.71 (d, *J* = 2.9 Hz, 1C), 133.31 (d, *J* = 2.0 Hz, 1C), 133.49 (d, *J* = 11.8 Hz, 1C), 134.35 (d, *J* = 106.1 Hz, 1C), 137.32 (d, *J* = 109.1 Hz, 1C), 139.23 (d, *J* = 18.4 Hz, 1C), 146.90 (d, *J* = 21.8 Hz, 1C), 148.67 (d, *J* = 5.3 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 26.48; HRMS (EI⁺) m/z (M⁺) calcd for C₂₀H₁₃OPS: 332.0425, found: 332.0425.

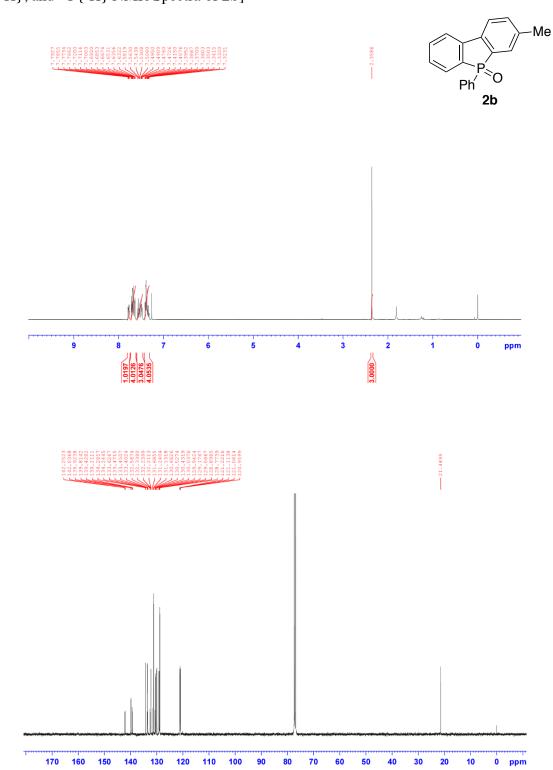


10-Phenylbenzo[*b*]**phosphindolo**[2,3-*d*]**thiophene 10-oxide (2p)**: 28 mg (84%); pale yellow solid; m.p. 61-62 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.43 (m, 5H), 7.49-7.54 (m, 3H), 7.68 (dd, *J* = 10.3, 7.4 Hz, 1H), 7.74-7.81 (m, 3H), 7.86-7.88 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 122.08 (d, *J* = 8.8 Hz, 1C), 123.56 (d, *J* = 4.1 Hz, 2C), 125.62 (1C), 126.16 (1C), 129.09 (d, *J* = 12.6 Hz, 2C), 129.64 (d, *J* = 11.3 Hz, 1C), 129.69 (d, *J* = 9.8 Hz, 1C), 129.94 (d, *J* = 105.7 Hz, 1C), 130.74 (d, *J* = 107.9 Hz, 1C), 131.07 (d, *J* = 11.1 Hz, 2C), 132.61 (d, *J* = 2.9 Hz, 1C), 133.27 (d, *J* = 1.8 Hz, 1C), 136.24 (d, *J* = 12.5 Hz, 1C), 136.74 (d, *J* = 108.8 Hz, 1C), 137.63 (d, *J* = 18.6 Hz, 1C), 143.34 (d, *J* = 12.3 Hz, 1C), 154.78 (d, *J* = 27.3 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 25.24; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₀H₁₄OPS: 333.0497, found: 333.0496.

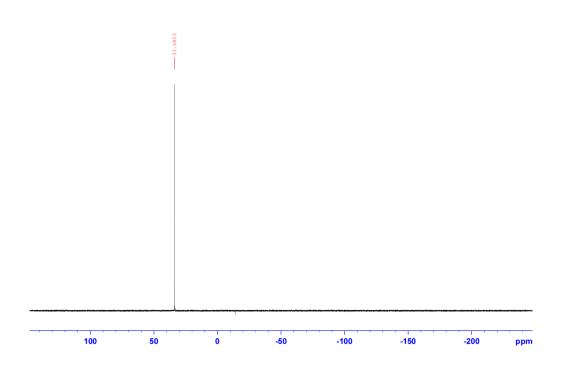


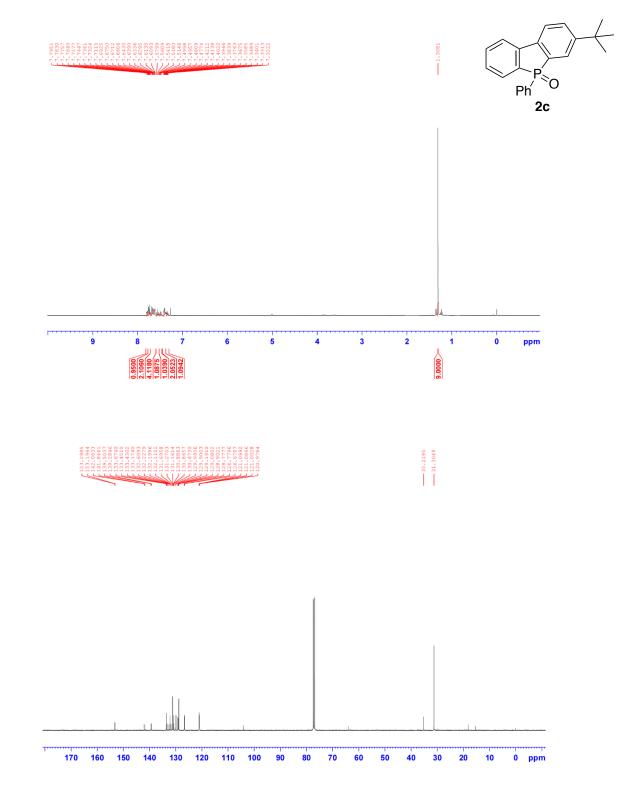

3-Methyl-10-phenyl-3*H***-phosphindolo[2,3-***e***]indole 10-oxide (2q): 17 mg (51% combined yield as a regiomixture of 2p** and **2p'**); pale yellow solid; m.p. 219-220 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.80 (s, 3H), 6.57 (dd, *J* = 3.1, 0.8 Hz, 1H), 7.10 (d, *J* = 3.1 Hz, 1H), 7.26-7.31 (m, 1H), 7.33-7.38 (m, 2H), 7.42-7.47 (m, 1H), 7.49-7.52 (m, 1H), 7.54 (ddd, *J* = 7.6, 1.3, 1.3 Hz, 1H), 7.66 (dd, *J* = 8.6, 2.7 Hz, 1H), 7.68-7.74 (m, 3H), 7.79 (dd, *J* = 7.7, 3.0 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 33.30 (1C),

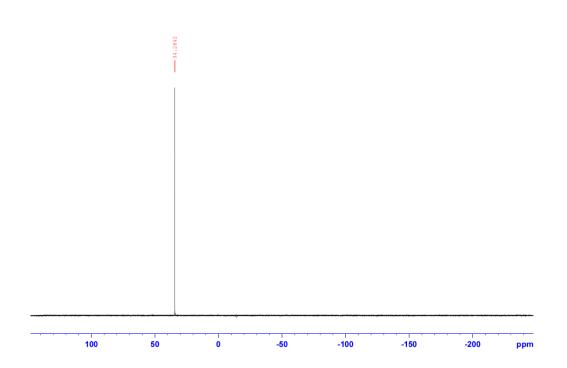

100.70 (d, J = 2.5 Hz, 1C), 114.33 (d, J = 2.2 Hz, 1C), 114.54 (d, J = 10.8 Hz, 2C), 120.65 (d, J = 10.3 Hz, 1C), 123.22 (d, J = 108.1 Hz, 1C), 128.05 (d, J = 11.0 Hz, 1C), 128.56 (d, J = 10.5 Hz, 1C), 128.77 (d, J = 12.4 Hz, 2C), 129.87 (d, J = 9.8 Hz, 1C), 131.19 (d, J = 10.9 Hz, 1C), 131.64 (d, J = 101.0 Hz, 1C), 131.98 (d, J = 2.9 Hz, 1C), 132.38 (1C), 132.92 (d, J = 106.7 Hz, 1C), 133.22 (d, J = 1.9 Hz, 1C), 134.86 (d, J = 21.0 Hz, 1C), 137.74 (d, J = 11.9 Hz, 1C), 143.69 (d, J = 22.7 Hz, 1C); ³¹P{¹H} NMR (162 MHz, CDCl₃): δ 33.69; HRMS (EI⁺) m/z (M⁺) calcd for C₂₁H₁₆NOP: 329.0970, found: 329.0965.

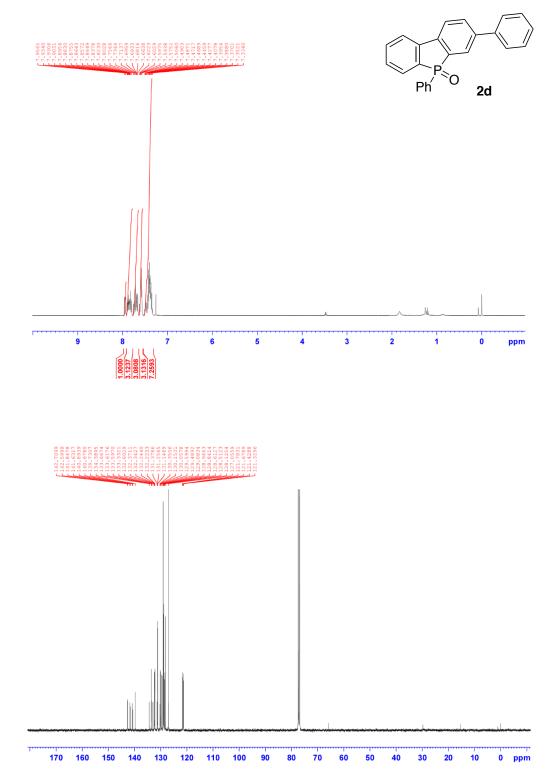


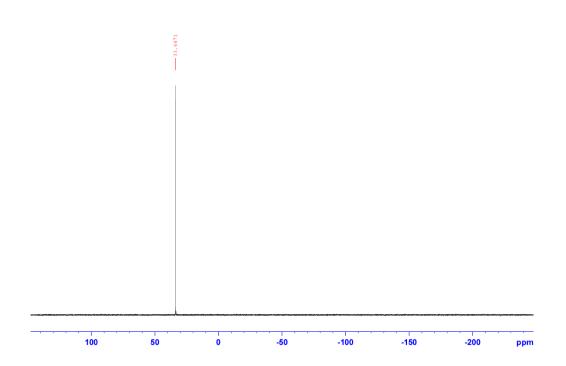
5,6-Diphenyldiphosphindolo[**3,2-***b***:2',3**'-*d*]**thiophene 5,6-dioxide (2r**, *syn* + *anti*, ca. 1:1 mixture): 32 mg (67%); pale yellow solid; ¹H NMR (400 MHz, CDCl₃ + 5% D₂O): δ 7.05 (ddd, *J* = 7.7, 7.7, 3.2 Hz, 3H), 7.25-7.43 (m, 5H), 7.46-7.61 (m, 8H), 7.76 (dd, *J* = 9.9, 7.3 Hz, 1H), 7.89-7.94 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃ + 5% D₂O): δ 121.45 (d, *J* = 8.0 Hz, 2C), 121.53 (d, *J* = 8.1 Hz, 2C), 128.00 (d, *J* = 107.1 Hz, 2C), 128.71 (d, *J* = 13.1 Hz, 4C), 129.11 (d, *J* = 13.2 Hz, 4C), 129.38 (d, *J* = 11.3 Hz, 2C), 129.55 (d, *J* = 108.2 Hz, 2C), 129.56 (d, *J* = 11.6 Hz, 2C), 130.15 (d, *J* = 10.1 Hz, 2C), 130.31 (d, *J* = 9.4 Hz, 2C), 130.64 (d, *J* = 11.4 Hz, 4C), 131.4 (d, *J* = 11.5 Hz, 4C), 132.42 (d, *J* = 3.0 Hz, 2C), 132.96 (d, *J* = 2.9 Hz, 2C), 133.47 (d, *J* = 1.9 Hz, 2C), 133.71 (d, *J* = 1.5 Hz, 2C), 135.06 (d, *J* = 110.6 Hz, 2C), 136.97 (d, *J* = 2.1 Hz, 2C), 137.14 (d, *J* = 2.2 Hz, 2C), 156.33 (dd, *J* = 29.7, 13.0 Hz, 2C), 156.94 (dd, *J* = 28.8, 12.8 Hz, 2C); ³¹P{¹H} NMR (162 MHz, CDCl₃ + 5% D₂O): δ 23.90, 25.39; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₁₉O₂P₂S: 481.0575, found: 481.0575.



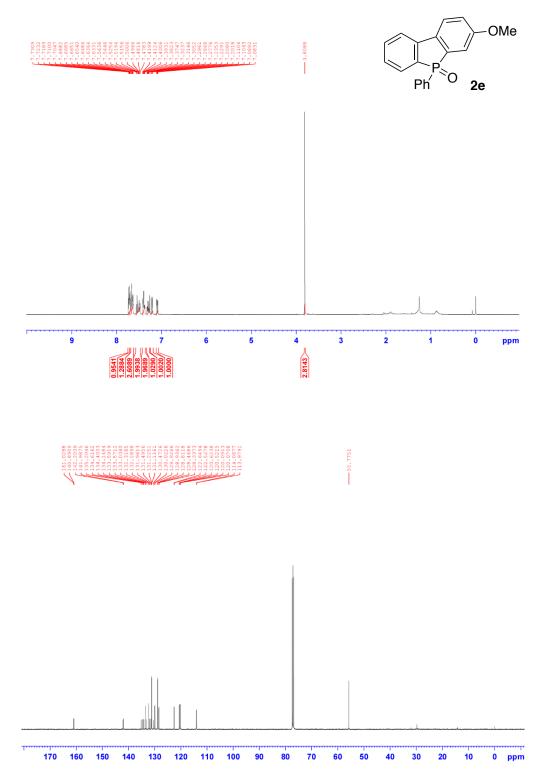


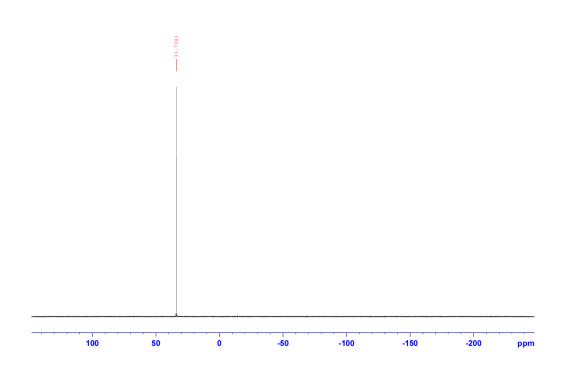



 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of$ **2b**]

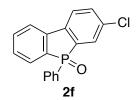


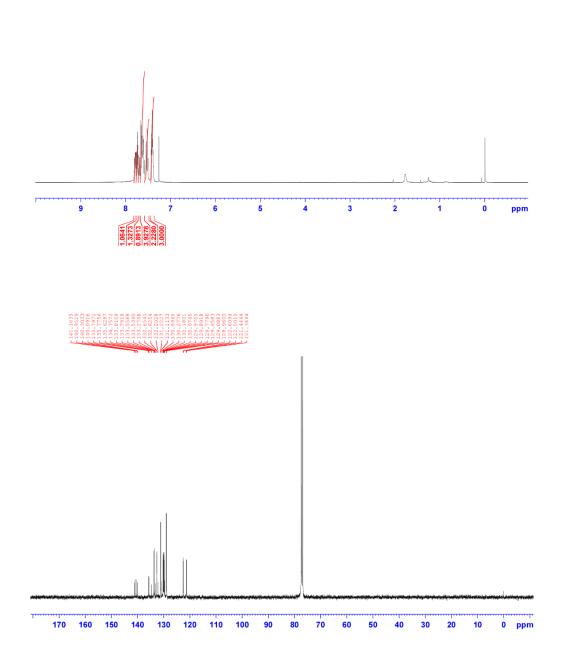
[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2c]

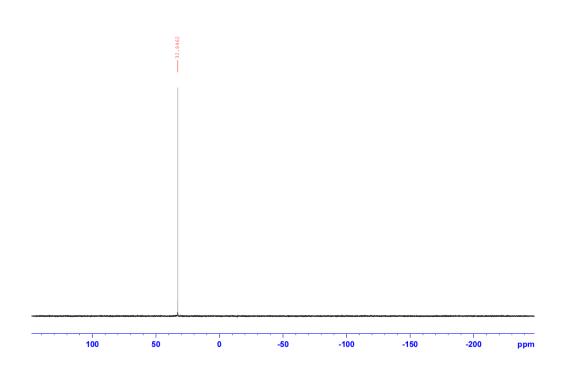




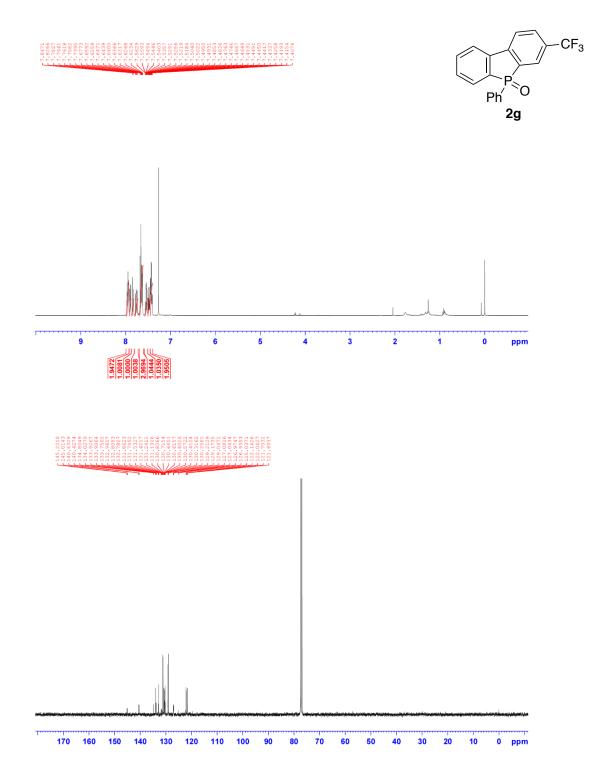
[^{1}H , ^{13}C { ^{1}H }, and ^{31}P { ^{1}H } NMR Spectra of **2d**]

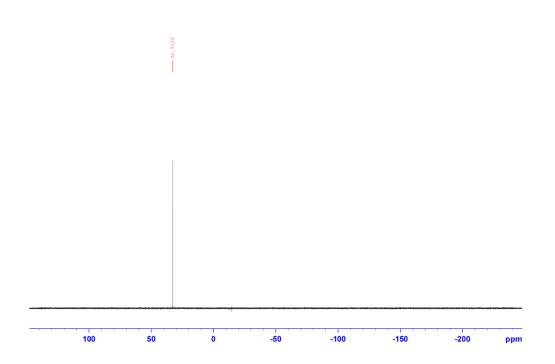


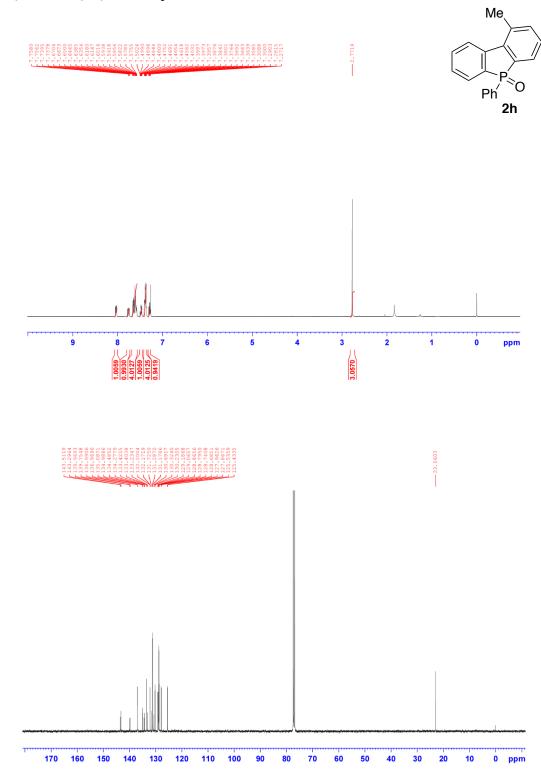


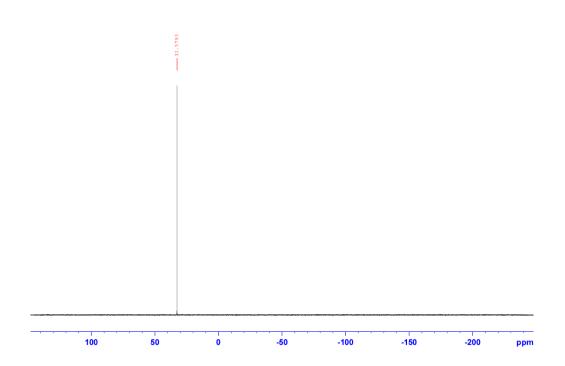


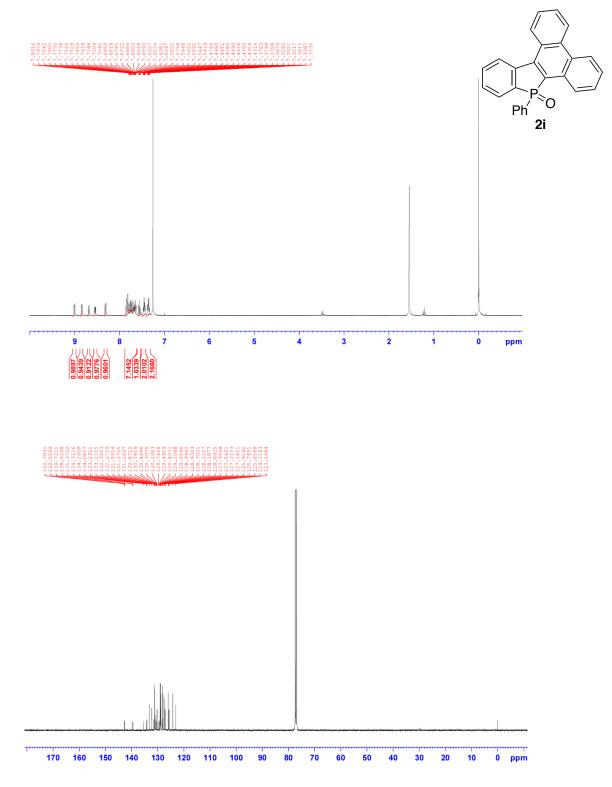
[^{1}H , ^{13}C { ^{1}H }, and ^{31}P { ^{1}H } NMR Spectra of **2f**]

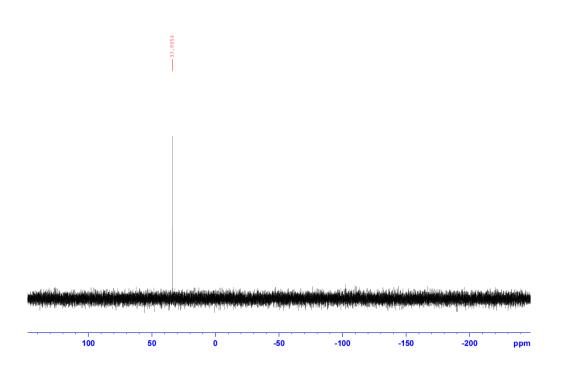


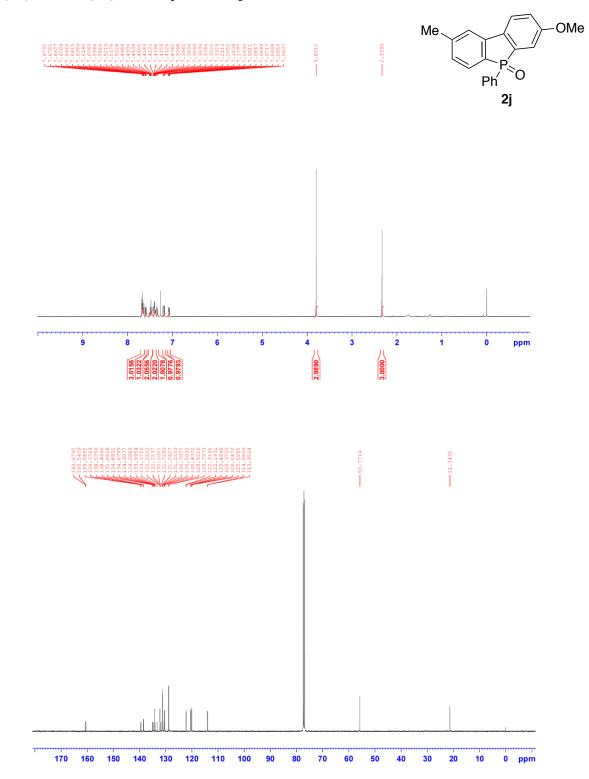


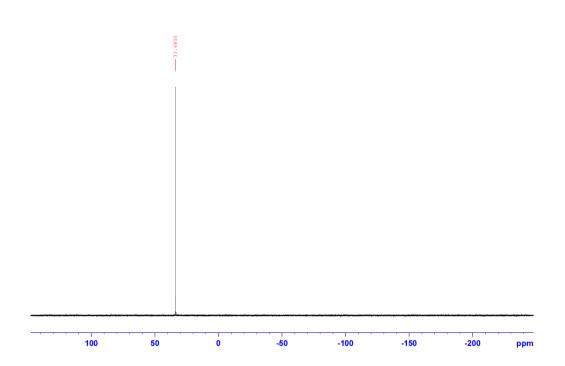


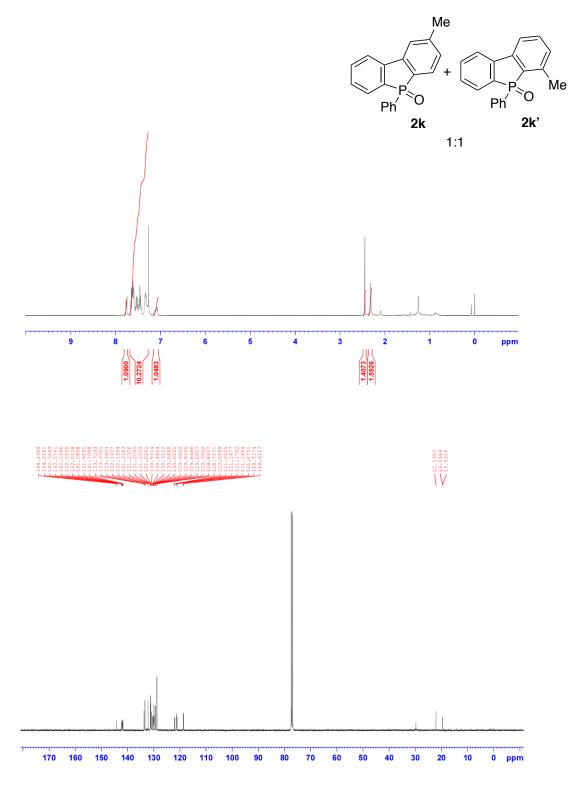

[^{1}H , ^{13}C { ^{1}H }, and ^{31}P { ^{1}H } NMR Spectra of **2g**]

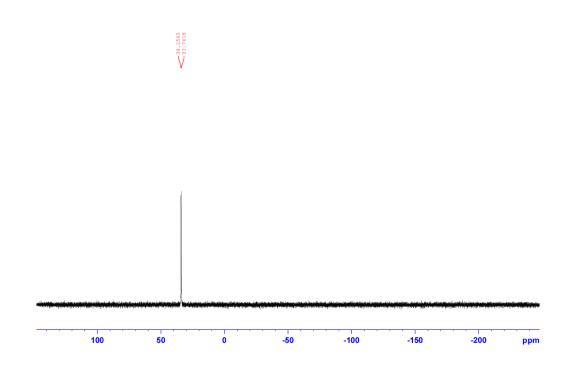




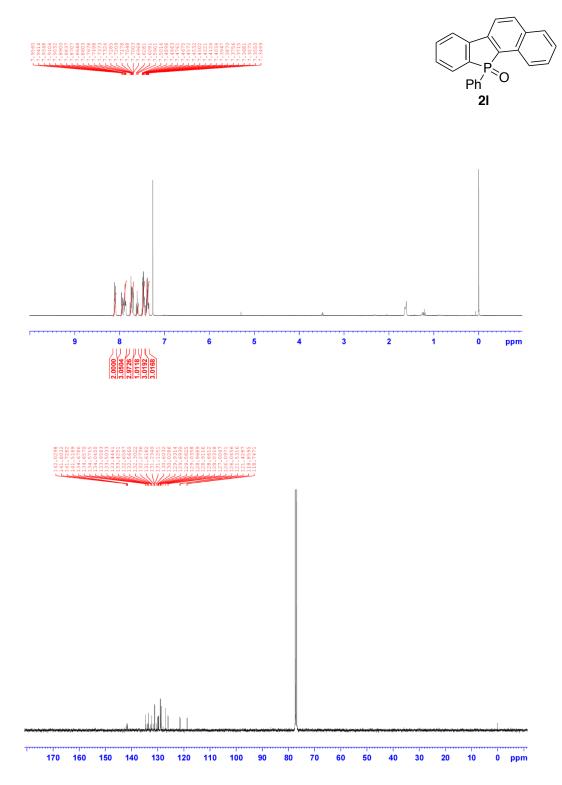

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2h]

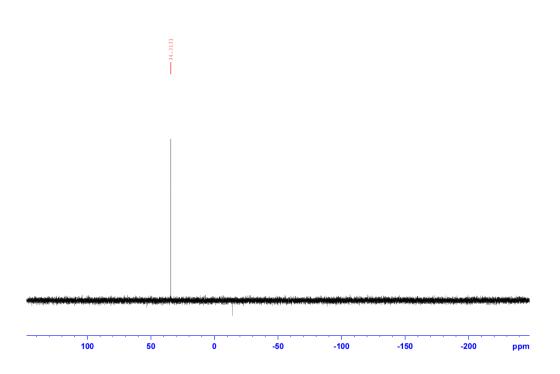

[^{1}H , ^{13}C { ^{1}H }, and ^{31}P { ^{1}H } NMR Spectra of **2i**]



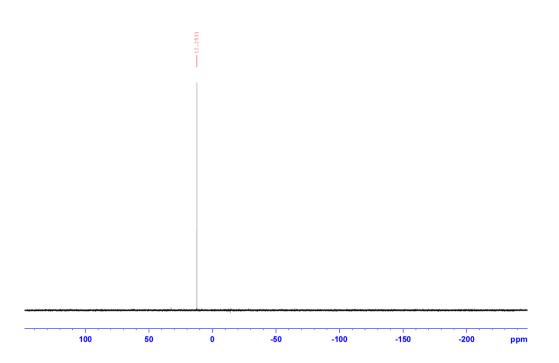


 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 2j]$

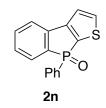


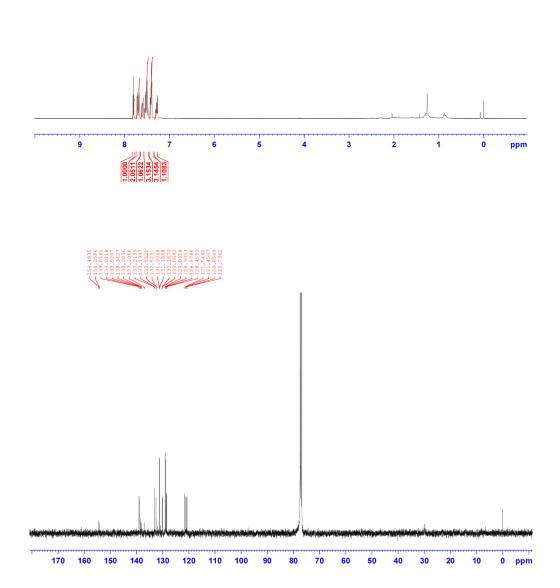

 $[^{1}H, ^{13}C{^{1}H}, \text{ and } ^{31}P{^{1}H} \text{ NMR Spectra of } 2\mathbf{k} + 2\mathbf{k'}]$

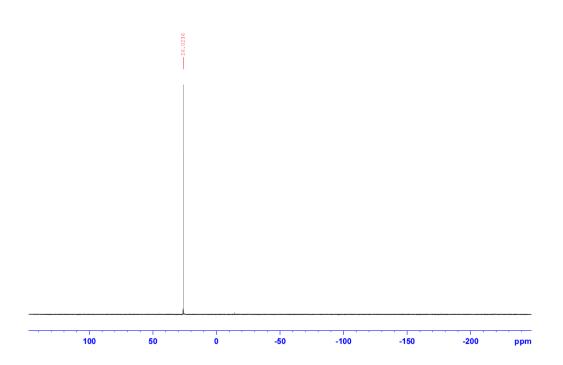


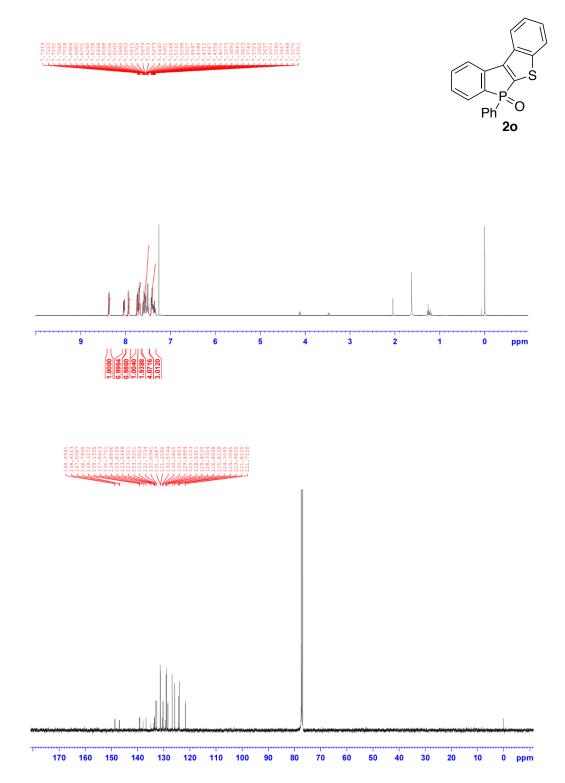


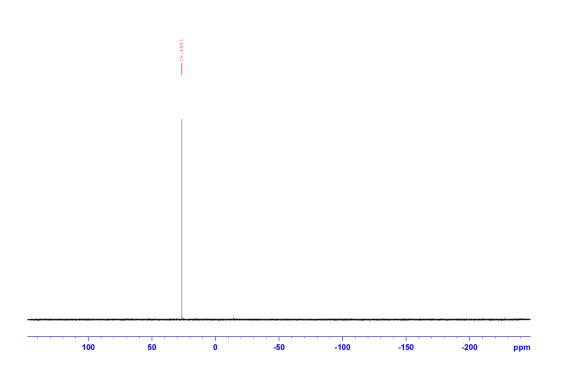
 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 21]$

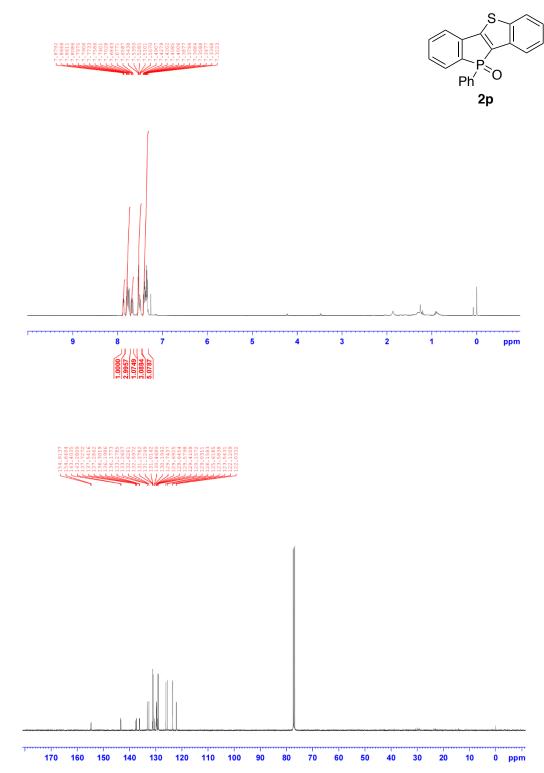


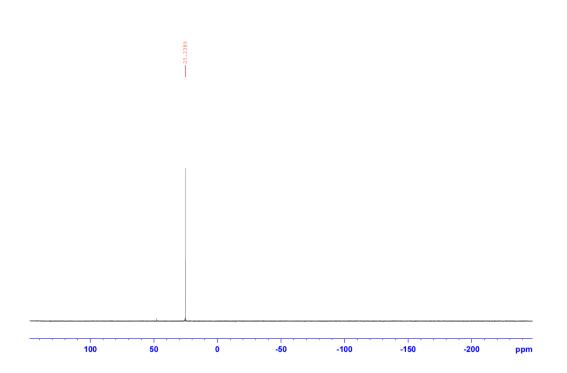


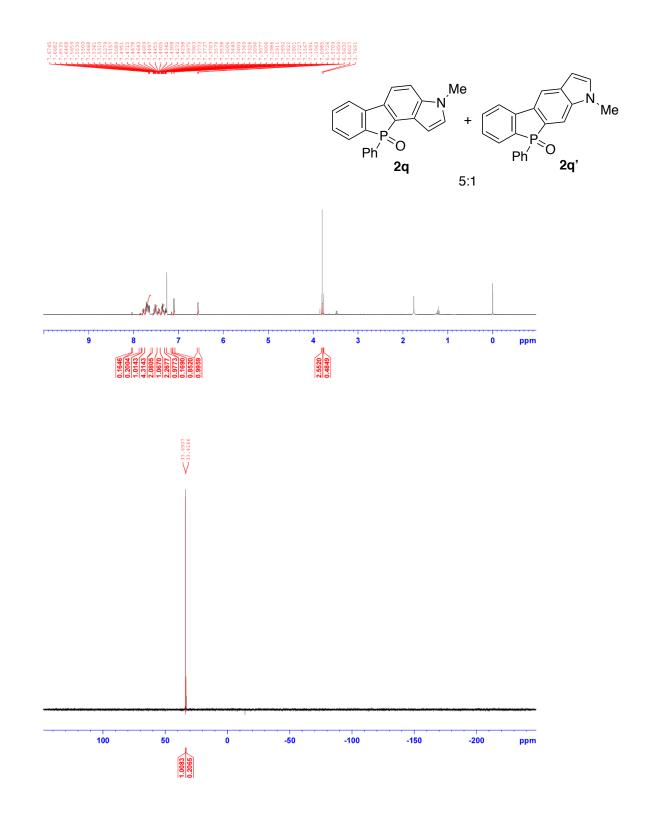


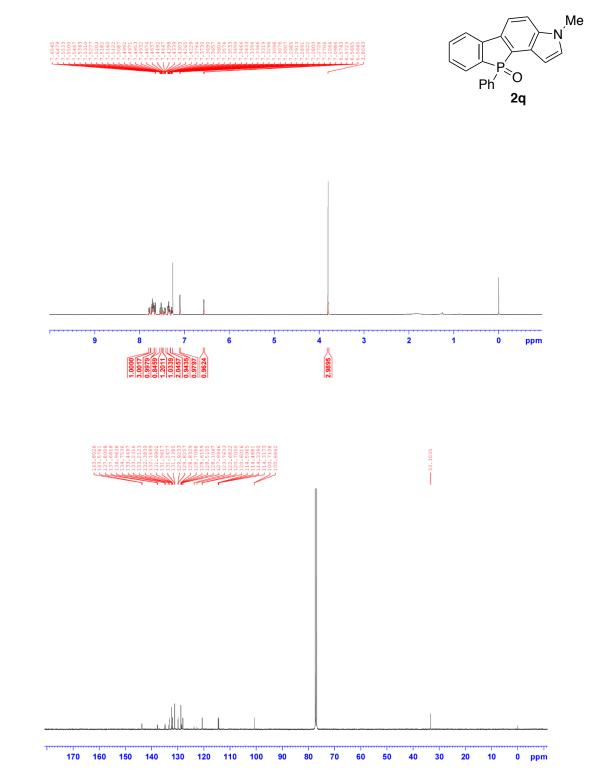




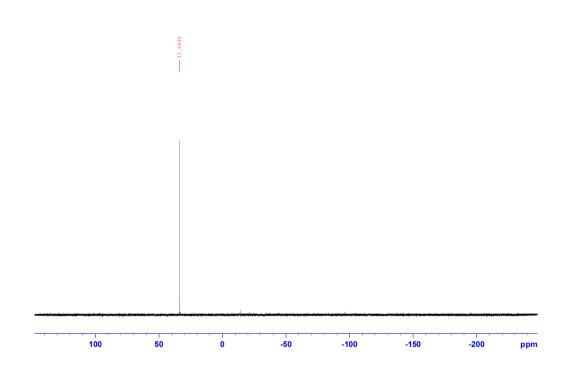



[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2o]

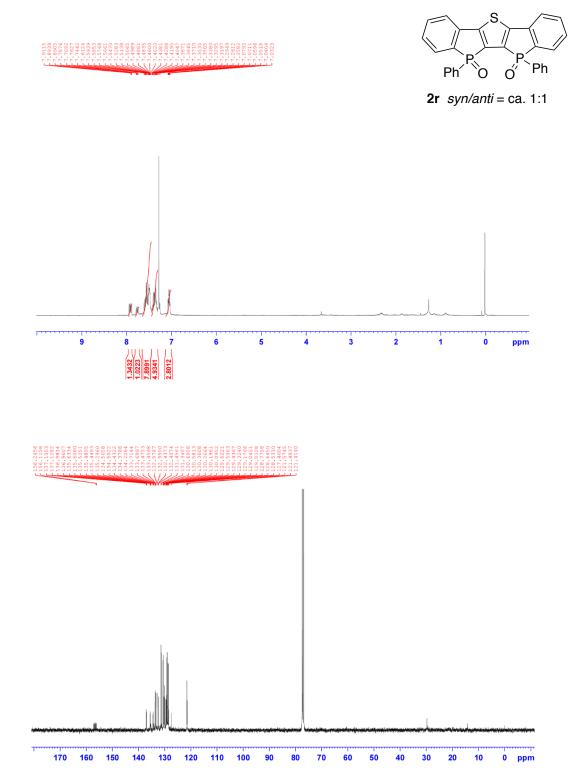


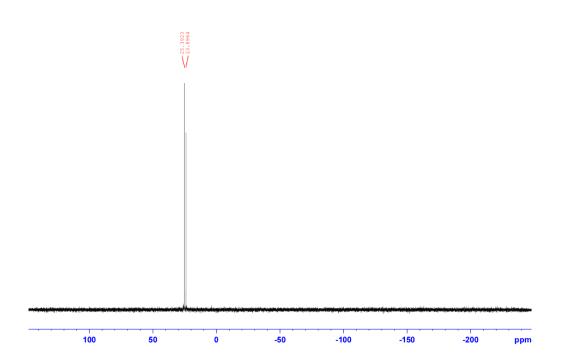


 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of$ **2p**]



[¹H and ³¹P{¹H} NMR Spectra of 2q + 2q']





 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 2q]$

 $[^{1}H, ^{13}C{^{1}H}, \text{ and } ^{31}P{^{1}H} \text{ NMR Spectra of } 2r]$

