## Supporting Information

## Lithiophilic Ag Nanoparticle Layer on Cu Current Collector towards Stable Li Metal Anode

Zhen Hou,<sup>†,‡, #</sup> Yikang Yu,<sup>‡, #</sup> Wenhui Wang,<sup>‡, #</sup> Xixia Zhao,<sup>‡</sup> Qian Di,<sup>‡</sup>

Qianwen Chen,<sup>†,‡</sup> Wen Chen,<sup>†,‡</sup> Yulian Liu,<sup>‡</sup> and Zewei Quan<sup>\*,‡</sup>

<sup>†</sup>School of Chemistry and Chemical Engineering, Harbin Institute of

Technology, Harbin 150001, P. R. China

<sup>‡</sup>Department of Chemistry, Southern University of Science and Technology

(SUSTech), Shenzhen, Guangdong 518055, P. R. China

\*E-mail: <u>quanzw@sustc.edu.cn</u>

<sup>I</sup>These authors contributed equally

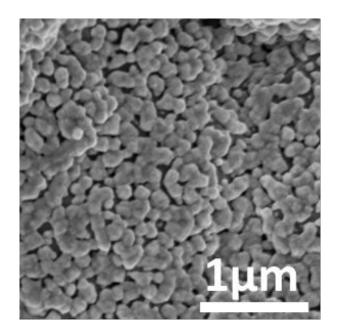
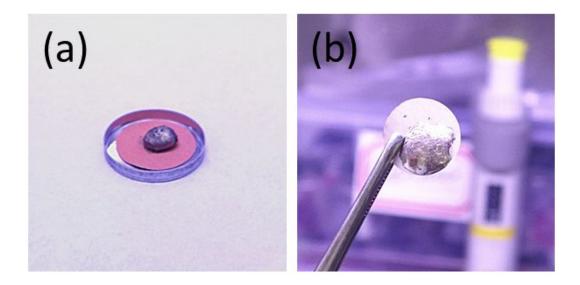
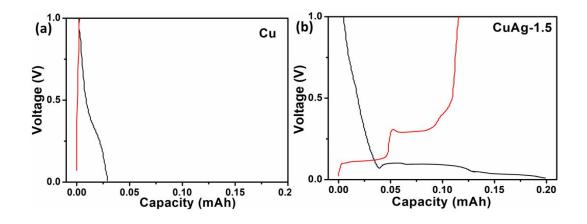
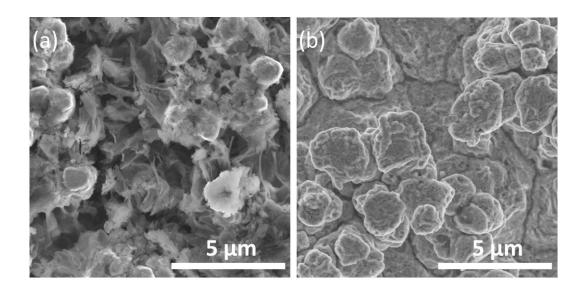
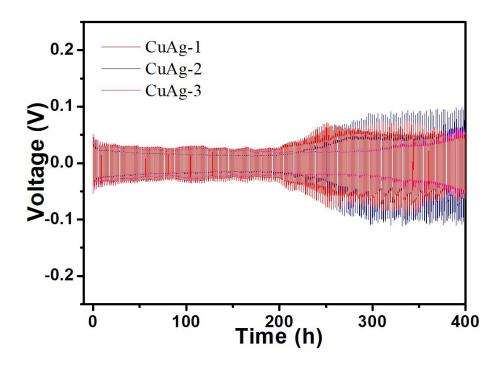




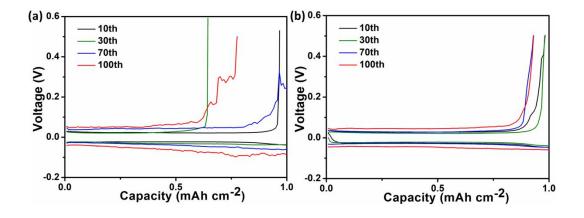

Figure S1. SEM image of CuAg sample synthesized via electroless plating time with


3 min.

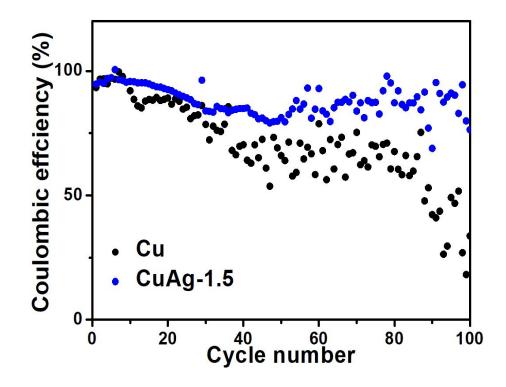



**Figure S2.** Lithiophilicity difference between bare Cu foil (a) and CuAg-1.5 sample (b), by placing molten Li onto them.

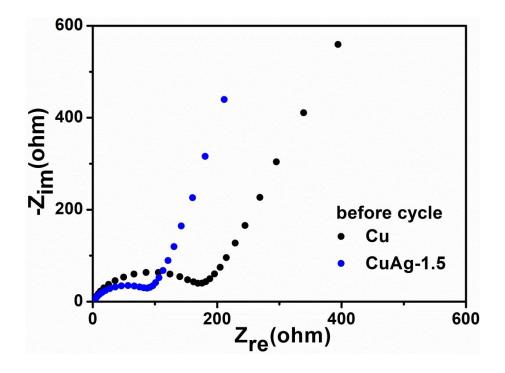



**Figure S3.** First charge/discharge cycles of (a) Cu foil and (b) CuAg-1.5 sample using Li foil as the counter/reference electrode from 0.01 V to 1 V at 0.2 mA cm<sup>-2</sup>.




**Figure S4.** SEM images of (a) Cu foil and (b) CuAg-1.5 sample current collectors after Li stripping 2 mAh cm<sup>-2</sup> (recharged to 0.5 V).




**Figure S5.** The voltage-time curves of Li anode plating/stripping with a cycling capacity of 1 mAh cm<sup>-2</sup> at 1 mA cm<sup>-2</sup> of CuAg-1, CuAg-2 and CuAg-3 samples.



**Figure S6.** The voltage-capacity curves of the 10th, 30th, 70th, and 100th cycle of Cu (a) foil and CuAg-1.5 sample (b) with a cycling capacity of 1 mAh cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>.



**Figure S7.** Coulombic efficiencies of the Cu foil and CuAg-1.5 sample with an areal capacity of 1 mAh cm<sup>-2</sup> at 1 mA cm<sup>-2</sup> using 2 wt% LiNO<sub>3</sub> additives. The CuAg-1.5 sample presents the average CE of 88% for 100 cycles, while the Cu foil exhibits a much lower average CE of 70%.



**Figure S8.** The Nyquist curves of the Cu foil and CuAg-1.5 sample in symmetrical cells before cycling.

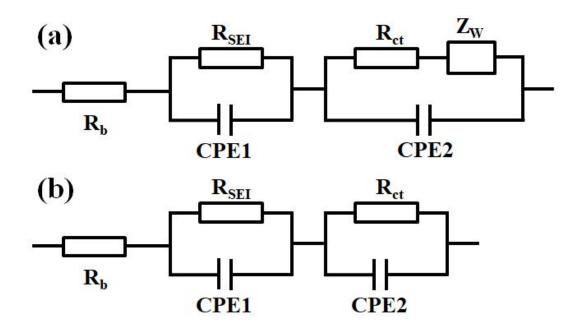
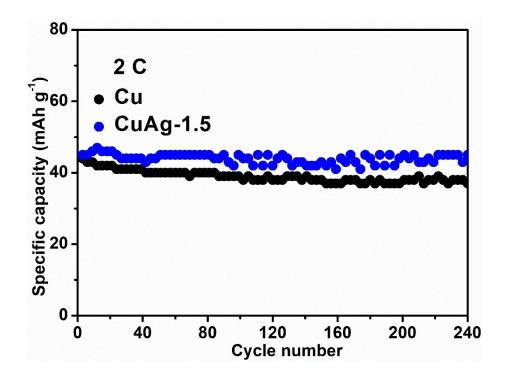
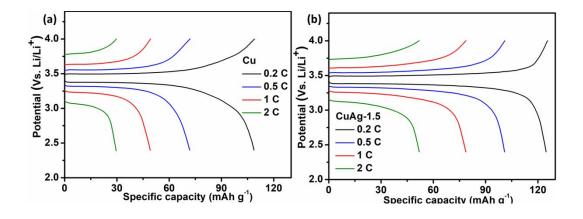




Figure S9. Equivalent circuit model for EIS plots of (a) Cu foil and (b) CuAg-1.5 sample.


We use two different equivalent circuits for Cu foil and CuAg-1.5 sample, that is, Warburg element ( $Z_W$ ) is used in the equivalent circuit for Cu foil but not for CuAg-1.5 sample. This is because a straight line related to mass transfer control has been observed in low frequency range in the Nyquist curves of Cu foil, although it is not completely shown.

| Table S1. Electrochemical impedance fitted results of equivalent circuit models of the |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|
| Cu foil and CuAg-1.5 sample after 100 cycles.                                          |  |  |  |

|                 | $R_b(\Omega)$ | $\mathrm{R}_{\mathrm{SEI}}(\Omega)$ | $R_{ct}(\Omega)$ |
|-----------------|---------------|-------------------------------------|------------------|
| Bare Cu foil    | 11.87         | 37.87                               | 19.44            |
| CuAg-1.5 sample | 2.39          | 1.44                                | 11.99            |



**Figure S10.** Cycling performances of Li@Cu||LFP and Li@CuAg-1.5||LFP full cells at 2 C.



**Figure S11.** Charge-discharge curves of Li@Cu||LFP (a) and Li@CuAg-1.5||LFP full cells (b) at rates of 0.2 C, 0.5 C, 1 C and 2 C.