# Supporting Information

# Diagonally $\pi$ -Extended Perylene-based Bis(heteroacene) for Chiroptical Activity and Integrating Luminescence with Carrier-transporting Capability

Bo Li,<sup>†</sup> Wangwang Peng,<sup>†</sup> Shenglian Luo,<sup>‡</sup> Chuanling Jiang,<sup>⊥</sup> Jing Guo,<sup>§</sup> Sheng Xie,<sup>\*†</sup> Yuanyuan Hu,<sup>\*§</sup> Yang Zhang,<sup>†</sup> and Zebing Zeng<sup>\*†</sup>

<sup>†</sup> State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.

<sup>‡</sup> College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China.

<sup>⊥</sup> Department of Pharmacy, Clinic Medical College of Anhui Medical University, Hefei 230012, P. R. China.

<sup>§</sup>Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China..

# **Table of Contents**

| 1. General method                                               | 3  |
|-----------------------------------------------------------------|----|
| 2. Synthetic procedures                                         | 4  |
| 3. Optimization of cyclization reaction                         | 5  |
| 4. Detailed optical resolution of 1 by the chiral HPLC          | 6  |
| 5. Investigation of conformational stability by CD spectroscopy | 7  |
| 6. Dynamic investigation of 1 by VT proton NMR spectra          | 8  |
| 7. Cyclic voltammograms of 1                                    | 8  |
| 8. X-ray crystallographic 1                                     | 8  |
| 9. 1-based OFETs and AFM measurements                           | 10 |
| 10. DFT and TD-DFT calculations                                 | 12 |
| 11. Detailed crystallographic data                              | 15 |
| 12. NMR/mass spectra for new compounds                          | 22 |
| 13. IR spectra of the products                                  | 25 |
| 14. References                                                  | 27 |

#### 1. General method

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Column chromatography was generally performed on silica gel (200 - 300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction. <sup>1</sup>H and <sup>13</sup>C NMR data were recorded on a 400 MHz spectrometer at room temperature. All chemical shifts are quoted in ppm, relative to tetramethylsilane, using residual solvent peak as a reference standard. The following abbreviations were used to explain the multiplicities: s =singlet, d = doublet, m = multiplet. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed on a Chenhua 650D electrochemical using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and a Ag/AgNO<sub>3</sub> or Ag/AgCl reference electrode in anhydrous solvents containing recrystallized tetra-n-butyl- ammoniumhexafluorophosphate (TBAPF<sub>6</sub>, 0.1 M) as supporting electrolyte at 298 K. The potential was externally calibrated against the ferrocene/ferrocenium couple. Absorption spectra were recorded on a Shimadzu UV-3600 plus. Photoluminescence spectra were recorded on a Thermo Scientific Lumina. HR MALDI-TOF mass spectra recorded on Finnigan MAT TSQ 7000 instrument. Circular dichroism (CD) spectra were recorded on JASCO J-810 circular dichroismspectrometer.

#### 2. Synthetic procedures

### Synthesis of 2



To a solution of compound **Per-4Br** <sup>S1</sup> (750.0 mg, 0.88 mmol) in dioxane (40 mL), 2-methylthiophenylboronic acid (706.3 mg, 4.20 mmol), Pd(dppf)Cl<sub>2</sub> CH<sub>2</sub>Cl<sub>2</sub> (71.9 mg, 0.09 mmol) and aqueous solution K<sub>2</sub>CO<sub>3</sub> (2.0 M, 5 mL) were added under argon atmosphere. The reaction mixture was stirred at 80 °C. The reaction was monitored by TLC to confirm consumption of starting material. Upon completion, the solution was diluted with dichloromethane (25 mL) and water (15 mL), and washed with brine (20 mL). After removal of the solvent, the residue was purified by silica gel chromatography (petroleum ether/dichloromethane = 3/1) to afford compound **2** (810 mg, 90%) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 - 7.60 (m, 4H), 7.35 - 7.21 (m, 16H), 4.02 - 3.68 (m, 4H), 3.17 - 3.07 (m, 4H), 2.40 - 2.35 (m, 12H), 1.28 - 1.25 (m, 8H), 0.94 - 0.87 (m, 8H), 0.63 (s, 12H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.57, 154.30, 138.29, 133.34, 130.74, 128.63, 127.75, 123.84, 118.17, 32.37, 32.20, 18.86, 15.94, 15.54, 13.88. HRMS (MALDI-TOF, *m/z*) calcd for C<sub>64</sub>H<sub>68</sub>O<sub>4</sub>S<sub>4</sub> [M]<sup>+</sup>, 1028.4000; found 1028.3998 (error = - 0.19 ppm). m.p. = 168 ~ 180 °C.

# Synthesis of 1



To a solution of compound **2** (6.0 g, 5.8 mmol) in chloroform (200 mL), acetic acid (150 mL), propylene oxide (200 mL) was added via a syringe. The solution was cooled to 0  $\mathbb{C}$ , and then iodine solution in chloroform (58.3 mmol) was slowly added. The mixture was heated to 55 °C and stirring for 12 h under inert atmosphere. The reaction was monitored by TLC to confirm consumption of starting material. Upon completion, the mixture was quenched with aqueous sodium bicarbonate, extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL) and dried by anhydrous MgSO<sub>4</sub>. After removal of the solvent, the residue was purified by silica gel chromatography (petroleum ether/dichloromethane = 5/1) to afford compound **1** (5.0 g, 89%) as a yellow solid. <sup>1</sup>H NMR (400 MHz, toluene-*d*<sub>8</sub>):  $\delta$  9.34 (d, *J* = 8.2 Hz, 4H), 7.83 (d, *J* = 8.0 Hz, 4H), 7.53 - 7.49 (m, 4H), 7.32 - 7.28 (m, 4H), 3.83 - 3.81 (m, 4H), 3.44 - 3.40 (m, 4H), 1.55 - 1.39 (m, 8H), 1.11 - 1.07 (m, 8H), 0.44 (t, *J* = 7.4Hz, 12H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.91, 139.24, 135.63, 135.59, 134.01, 127.36, 126.22, 125.59, 124.93, 122.27, 116.27, 115.37, 32.51, 19.20, 13.54. HRMS (MALDI-TOF, *m/z*) calcd for C<sub>60</sub>H<sub>52</sub>O<sub>4</sub>S<sub>4</sub> [M]<sup>+</sup>, 964.2748; found: 964.2724 (error = -2.5 ppm). m.p. = 280 ~ 295 °C.

# 3. Optimization of cyclization reaction





| 4  | H <sub>2</sub> O <sub>2</sub> , HAc/DCM or                         | DT    | 0    |
|----|--------------------------------------------------------------------|-------|------|
| 4  | H <sub>2</sub> O <sub>2</sub> ,CF <sub>3</sub> COOH/Pydrine        | K I   | 0    |
| 5  | <sup>a</sup> I <sub>2</sub> /CHCl <sub>3</sub> , HAc               | RT    | 1~3% |
| 6  | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 2/1) | RT    | 29%  |
| 7  | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 1/1) | RT    | 52%  |
| 8  | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 3/4) | RT    | 75%  |
| 9  | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 1/2) | RT    | 70%  |
| 10 | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 3/4) | 55 °C | 89%  |
| 11 | ${}^{a}I_{2}$ /CHCl <sub>3</sub> , HAc/PO <sup>b</sup> (v/v = 3/4) | 70 °C | 84%  |

<sup>a</sup>10 equivalent relative to that of **2** in the reaction; <sup>b</sup>PO is propyleneoxide; <sup>c</sup>Isolated yield. All the testing reactions were carried out with 0.1 mmol of **2**.



**Scheme S1.** Reaction mechanism was proposed for four-fold thienannulation on basis of acid-induced cyclization of aromatic methyl sulfoxide developed by K. Müllen<sup>[S4]</sup>. It is noteworthy that the previous synthetic methodology applied to substrate **2** gave either undesired products under strong oxidative condition or removal of alkoxyl groups (-OC<sub>4</sub>H<sub>9</sub>) in the strong acid, especially for generated HI when weaker oxidant I<sub>2</sub> was used in the reaction.

# 4. Detailed optical resolution of 1 by the chiral HPLC

Separation of the chiral isomers was performed on a Shimadzu LC-20AR instrument equipped with a Daicel Chiralcel OD-H column (4.6 mm  $\times$  250 mm). A

mixture of hexane/isopropanol (99 : 1) was used as the eluent at a flow rate of 1 mL/min.



# 5. Investigation of conformational stability by CD spectroscopy

**Figure S1.** Thermal racemization of the second-eluted enantiomer (M, M)-1 in toulene at 70 °C was monitored by CD spectrum following the decay of the enantiomeric excess over time.

The spectral changes (Figure S1) were monitored at 344 and 356 nm. Plotting the average ln ( $\Delta \varepsilon / \Delta \varepsilon_0$ )-values vs time resulted in  $k = 6.6 \times 10^{-12} \pm 0.1 \times 10^{-12}$  after linear regression. According to

$$\Delta G = -RTlnK^{\#}$$
 (Van't Hoff equation)

$$K^{\#} = \frac{k \times h}{\kappa \times k_b \times T}$$
 (Eyring equation)<sup>[S5]</sup>

(h: Plancks constant, kb: Boltzmann constant)

 $\Delta G^{\#}$  was calculated to be 34.6  $\pm 0.4$  kcal/mol

For the enantiomer interconversion of **1**, where a stepwise process converts one enantiomer into the unstable meso form and then into the other enantiomer (see the theoretical section below), the statistical transmission coefficient  $\kappa = 0.5$  was used in the calculation of the free energy barrier  $\Delta G^{\#}$  for a single inversion (*M*, *M* or *P*, *P* to meso) from the rate constant of the overall process.

# 6. Dynamic investigation of 1 by VT proton NMR spectra



**Figure S2.**Temperature-dependent <sup>1</sup>H NMR spectra of racemic **1** in toluene- $d_8$ , the signals represent proton resonances of methylene subunits (-OCH<sub>2</sub>-).

# 7. Cyclic voltammograms of 1



**Figure S3.** Cyclic voltammograms (black curves) and differential pulse voltammograms (red curves) of 1 solution in DCM (1.0 mM), redox potentials were determined by using 0.10 M n-Bu<sub>4</sub>N<sup>+</sup>PF<sub>6</sub><sup>-</sup> as a supporting electrolyte, the electrode potential was externally calibrated by the ferrocene/ferrocenium redox couple. (*Eox*<sup>1</sup> = 0.52 V, *Eox*<sup>2</sup> = 0.84 V, *E*<sub>HOMO</sub> = -5.32 eV).

# 8. X-ray crystallographic 1

The single crystal was grown by slowly diffusing petroleum ether vapor into the dichloromethane solution of compound 1.



**Figure S4.** ORTEP plots of crystal **1** (carbon, blue; oxygen, red; sulphur, yellow; hydrogen atoms are omitted for clarity, and thermal ellipsoids are shown at 50%)



**Figure S5.** The rich and close  $S \cdots S$  contacts (3.39 ~ 3.32 Å) were observed for nearing enantiomers (a), and molecular packing arrangements of racemic 1 (b). Hydrogen atoms are omitted for clarity.

### 9. 1-based OFETs and AFM measurements

# 9.1 Thin film deposition and device fabrication

Bottom-gate/bottom-contact OFET devices fabricated using Si/SiO<sub>2</sub> substrates where Si and SiO<sub>2</sub> work as gate electrode and gate dielectric, respectively. The source and drain gold electrodes with thickness of 50 nm using 2 nm of chromium as an adhesion layer were formed by standard lithography procedures. Prior to deposition, the wafers were cleaned up with ultrapure water, acetone, isopropanol, and then treated by oxygen plasma and passivated by trichloro(octadecyl)silane to reduce the traps. Finally, then films were deposited (5 mg/mL in THF) by spin-coating at 1500 rpm in a nitrogen glovebox. The length and width of channel were 80  $\mu$ m and 1000  $\mu$ m, respectively.



**Figure S6.** The organic field-effect transistors (OFETs) devices were successfully fabricated in a bottom-contact bottom-gate (BGBC) configuration.

9.2 The parameters of charge carrier mobilities

The charge carrier mobilities of OFETs were calculated in the saturation regime from a plot of the square root of the drain current vs. gate voltage using the following equation:

$$I_{\rm DS} = \frac{WC_i}{2L} \mu (V_G - V_T)^2$$

where  $I_{DS}$  is the drain-source current,  $C_i$  is the capacitance per unit area of the gate dielectric(10 nF/cm<sup>2</sup>), *L* is the channel length, *W* is the channel width,  $V_G$  and  $V_T$  are the gate-source voltage and threshold voltage, respectively.



Figure S7. Temperature-dependent characteristics and the average carrier mobility  $(0.017 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1})$  in devices.

Table S2. Electronic performances based on thin films of 1

| Compound | $\mu_h \\ cm^2 V^{-1} s^{-1}$ | Ion/Ioff            | $V_T/V$ | channel<br>width(µm) | channel<br>length(µm) |
|----------|-------------------------------|---------------------|---------|----------------------|-----------------------|
| 1        | 0.02                          | 2.3×10 <sup>3</sup> | 31.3    | 80                   | 1000                  |

9.3 Topographical images of 1 at different substrate temperature ( $t_{sub}$ ).

AFM measurements were performed using XE7 (Park SYSTEMS), operated in intermittent contact (tapping) mode, at a scanning speed of 1 Hz.



**Figure S8.** (a-d) AFM height and (e-h) phase images of thin film 1 on OTS-treated SiO<sub>2</sub> substrates annealed at 25 °C, 100 °C, 120 °C, 150 °C.

## **10. DFT and TD-DFT calculations**

Density functional theory (DFT) and time-dependent DFT (TD-DFT) simulations were performed using the Gaussian 09 software package.<sup>[S6]</sup> All calculations were carried out using the DFT method with Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP) employing the 6-31G (d,p) basis set for all atoms.<sup>[S7]</sup>



**Figure S9.** LUMOs (left) and HOMOs (right) of **1** obtained from DFT calculations at the B3LYP/6-31G (d,p) level.

# **TD-DFT**



**Figure S10.** Calculated (B3LYP/6-31G (d,p)) absorption spectra and oscillator strengths of **1**.



**Figure S11.** LUMOs and HOMOs of molecule **1**, obtained by DFT calculations at the B3LYP/6-31G(d,p) level

Major electronic transitions of 1 calculated by TD-DFT method.

| excited state | Energy (eV) | Wavelength (nm) | Osc. Strength | Major contribs      |
|---------------|-------------|-----------------|---------------|---------------------|
| 1             | 20924.44155 | 477.91001       | 0.3308        | HOMO→LUMO (99%)     |
| 2             | 24400 50470 |                 | 0.0450        | HOMO-2→LUMO (17%),  |
| 2             | 24160.50176 | 413.33635       | 0.0156        | HOMO→LUMO+1 (80%)   |
| 2             | 04044 00004 | 400.04404       | 0.0040        | HOMO-1→LUMO (36%),  |
| 3             | 24941.06201 | 400.94491       | 0.0016        | HOMO→LUMO+2 (50%)   |
| 4             | 20400 04022 | 270 04700       | 0.0040        | HOMO→LUMO +2 (24%), |
| 4             | 20409.01022 | 378.04700       | 0.0042        | HOMO→LUMO +3 (69%)  |
| F             | 27701 11106 | 260,00624       | 0.0052        | HOMO-2→LUMO (44%),  |
| 5             | 27701.11100 | 360.99634       | 0.0952        | HOMO-1→LUMO (29%)   |
|               |             |                 |               | HOMO-2→LUMO (31%),  |
| 6             | 20201 0420  | 250 22702       | 0.5221        | HOMO-1→LUMO (29%),  |
| 0             | 20301.0430  | 332.33793       | 0.3221        | HOMO→LUMO+2 (14%),  |
|               |             |                 |               | HOMO→LUMO+3 (12%)   |
| 7             | 28731.88842 | 348.04534       | 0.0082        | HOMO -3→LUMO (86%)  |
| 8             | 29421.49246 | 339.88758       | 0.0044        | HOMO-4→LUMO (93%)   |
| 0             | 20780 40877 | 224 79701       | 0.0275        | HOMO→LUMO+4 (19%),  |
| 9             | 30789.40877 | 524.70701       | 0.0275        | HOMO→LUMO+5 (63%)   |
|               |             |                 |               | HOMO-2→LUMO+1(10%), |
| 10            | 21605 64195 | 216 20021       | 0.0057        | HOMO-1→LUMO+1(30%), |
| 10            | 31005.04165 | 310.39921       | 0.0057        | HOMO→LUMO+4 (39%),  |
|               |             |                 |               | HOMO→LUMO +5 (12%)  |
| 11            | 21929 72609 | 214 00202       | 0.0192        | HOMO-1→LUMO+1(63%), |
| 11            | 31030.73000 | 314.00202       | 0.0165        | HOMO→LUMO +4 (26%)  |
|               |             |                 |               | HOMO-6→LUMO (11%),  |
| 12            | 32183.94138 | 310.71396       | 0.2577        | HOMO-2→LUMO+1(45%), |
|               |             |                 |               | HOMO-1→LUMO+2 (13%) |
| 13            | 32408.16351 | 308.56423       | 0.0184        | HOMO -5→LUMO (86%)  |
| 14            | 32589.63826 | 306.846         | 0.0012        | HOMO→LUMO +6 (45%), |

# 11. Detailed crystallographic data

| Identification code                         | 1                                                  |
|---------------------------------------------|----------------------------------------------------|
| Empirical formula                           | $C_{60}H_{52}O_4S_4$                               |
| Formula weight                              | 965.25                                             |
| Temperature/K                               | 100.00(10)                                         |
| Crystal system                              | triclinic                                          |
| Space group                                 | P-1                                                |
| a/Å                                         | 13.2096(4)                                         |
| b/Å                                         | 13.4878(3)                                         |
| c/Å                                         | 15.1291(3)                                         |
| α/°                                         | 85.310(2)                                          |
| β/°                                         | 79.985(2)                                          |
| γ/°                                         | 60.706(3)                                          |
| Volume/Å <sup>3</sup>                       | 2314.99(12)                                        |
| Z                                           | 2                                                  |
| $ ho_{calc}g/cm^3$                          | 1.385                                              |
| µ/mm <sup>-1</sup>                          | 2.292                                              |
| F(000)                                      | 1016.0                                             |
| Crystal size/mm <sup>3</sup>                | $0.2 \times 0.18 \times 0.15$                      |
| Radiation                                   | CuKα (λ = 1.54184)                                 |
| 2Θ range for data collection/°              | 7.516 to 143.782                                   |
| Index ranges                                | -16 ≤ h ≤ 16, -16 ≤ k ≤ 16, -18 ≤ l ≤ 18           |
| Reflections collected                       | 32665                                              |
| Independent reflections                     | 8979 [ $R_{int} = 0.0554$ , $R_{sigma} = 0.0517$ ] |
| Data/restraints/parameters                  | 8979/0/617                                         |
| Goodness-of-fit on F <sup>2</sup>           | 1.037                                              |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0699, wR_2 = 0.1886$                      |
| Final R indexes [all data]                  | $R_1 = 0.0818$ , $wR_2 = 0.1964$                   |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 2.50/-0.68                                         |

| Tabl | e S3. | Crystal | data and | structure refinement | for <b>1</b> | (CCDC:1882923) | ļ |
|------|-------|---------|----------|----------------------|--------------|----------------|---|
|------|-------|---------|----------|----------------------|--------------|----------------|---|

 Table S4. Bond Lengths [Å] for 1.

| Atom Atom | Length/Å |
|-----------|----------|
| AtomAtom  | Echigur/ |

Atom S4LenQt5/Å 1.743(3)

| S4  | C14 | 1.748(3) | C24 | C23 | 1.459(4) |
|-----|-----|----------|-----|-----|----------|
| S1  | C36 | 1.742(3) | C24 | C25 | 1.412(4) |
| S1  | C37 | 1.750(3) | C8  | C7  | 1.419(4) |
| S3  | C17 | 1.741(3) | C8  | C9  | 1.454(4) |
| S3  | C18 | 1.741(3) | C4  | C25 | 1.395(4) |
| S2  | C34 | 1.743(3) | C29 | C30 | 1.388(4) |
| S2  | C33 | 1.739(3) | C13 | C12 | 1.385(4) |
| O2  | C26 | 1.361(3) | C13 | C14 | 1.395(4) |
| O2  | C53 | 1.445(4) | C9  | C10 | 1.412(4) |
| O3  | C25 | 1.376(4) | C9  | C14 | 1.405(4) |
| O3  | C57 | 1.448(5) | C10 | C11 | 1.379(5) |
| O4  | C7  | 1.364(3) | C23 | C18 | 1.404(5) |
| O4  | C49 | 1.450(3) | C23 | C22 | 1.407(4) |
| O1  | C44 | 1.372(3) | C30 | C31 | 1.400(5) |
| O1  | C45 | 1.445(3) | C32 | C31 | 1.378(5) |
| C6  | C1  | 1.473(4) | C32 | C33 | 1.397(4) |
| C6  | C5  | 1.438(4) | C41 | C40 | 1.383(4) |
| C6  | C7  | 1.385(4) | C27 | C26 | 1.423(4) |
| C15 | C16 | 1.427(4) | C49 | C50 | 1.519(4) |
| C15 | C8  | 1.392(4) | C12 | C11 | 1.396(5) |
| C35 | C2  | 1.409(4) | C37 | C38 | 1.394(4) |
| C35 | C34 | 1.422(4) | C40 | C39 | 1.399(5) |
| C35 | C36 | 1.426(4) | C19 | C18 | 1.395(4) |
| C42 | C41 | 1.412(4) | C19 | C20 | 1.381(5) |
| C42 | C37 | 1.399(4) | C53 | C54 | 1.511(4) |
| C42 | C43 | 1.460(4) | C43 | C44 | 1.412(4) |
| C16 | C5  | 1.414(4) | C54 | C55 | 1.527(5) |
| C16 | C17 | 1.422(4) | C38 | C39 | 1.382(5) |
| C3  | C2  | 1.438(4) | C47 | C46 | 1.523(5) |
| C3  | C4  | 1.480(4) | C47 | C48 | 1.530(5) |
| C3  | C26 | 1.395(4) | C51 | C50 | 1.522(4) |
| C2  | C1  | 1.430(4) | C51 | C52 | 1.525(5) |
| C34 | C27 | 1.395(4) | C22 | C21 | 1.390(5) |
| C1  | C44 | 1.388(4) | C20 | C21 | 1.390(5) |
| C5- | C4  | 1.435(4) | C46 | C45 | 1.517(4) |
| C28 | C29 | 1.405(4) | C55 | C56 | 1.525(5) |
| C28 | C27 | 1.462(4) | C60 | C59 | 1.521(6) |
| C28 | C33 | 1.408(4) | C57 | C58 | 1.485(6) |
| C36 | C43 | 1.392(4) | C59 | C58 | 1.472(6) |
| C24 | C17 | 1.393(4) |     |     |          |

 Table S5. Bond Angles [ ] for 1.

| Atom | h Atom | n Atom | Angle/°   | C4  | C5  | C6  | 118.5(3) |
|------|--------|--------|-----------|-----|-----|-----|----------|
| C15  | S4     | C14    | 91.36(14) | C29 | C28 | C27 | 130.7(3) |
| C36  | S1     | C37    | 91.26(14) | C29 | C28 | C33 | 118.1(3) |
| C17  | S3     | C18    | 91.29(15) | C33 | C28 | C27 | 111.2(3) |
| C33  | S2     | C34    | 91.12(14) | C35 | C36 | S1  | 125.0(2) |
| C26  | 02     | C53    | 120.3(2)  | C43 | C36 | S1  | 112.9(2) |
| C25  | O3     | C57    | 113.6(2)  | C43 | C36 | C35 | 122.0(3) |
| C7   | O4     | C49    | 119.3(2)  | C17 | C24 | C23 | 111.8(3) |
| C44  | 01     | C45    | 114.8(2)  | C17 | C24 | C25 | 119.5(3) |
| C5   | C6     | C1     | 115.5(3)  | C25 | C24 | C23 | 128.7(3) |
| C7   | C6     | C1     | 125.6(3)  | C15 | C8  | C7  | 119.5(3) |
| C7   | C6     | C5     | 118.9(3)  | C15 | C8  | C9  | 112.2(3) |
| C16  | C15    | S4     | 125.0(2)  | C7  | C8  | C9  | 128.3(3) |
| C8   | C15    | S4     | 112.5(2)  | C5  | C4  | C3  | 117.0(3) |
| C8   | C15    | C16    | 122.2(3)  | C25 | C4  | C3  | 124.5(3) |
| C2   | C35    | C34    | 116.8(3)  | C25 | C4  | C5  | 118.5(3) |
| C2   | C35    | C36    | 117.1(3)  | C16 | C17 | S3  | 125.0(2) |
| C34  | C35    | C36    | 126.1(3)  | C24 | C17 | S3  | 112.9(2) |
| C41  | C42    | C43    | 130.0(3)  | C24 | C17 | C16 | 122.1(3) |
| C37  | C42    | C41    | 118.0(3)  | C30 | C29 | C28 | 119.0(3) |
| C37  | C42    | C43    | 111.9(3)  | O4  | C7  | C6  | 124.8(3) |
| C5   | C16    | C15    | 116.1(3)  | O4  | C7  | C8  | 115.8(3) |
| C5   | C16    | C17    | 116.9(3)  | C6  | C7  | C8  | 119.4(3) |
| C17  | C16    | C15    | 127.0(3)  | C12 | C13 | C14 | 117.7(3) |
| C2   | C3     | C4     | 115.7(2)  | C10 | C9  | C8  | 130.2(3) |
| C26  | C3     | C2     | 118.2(3)  | C14 | C9  | C8  | 111.6(3) |
| C26  | C3     | C4     | 125.9(3)  | C14 | C9  | C10 | 118.1(3) |
| C35  | C2     | C3     | 121.4(3)  | C11 | C10 | C9  | 119.2(3) |
| C35  | C2     | C1     | 120.1(3)  | C18 | C23 | C24 | 111.4(3) |
| C1   | C2     | C3     | 118.5(3)  | C18 | C23 | C22 | 118.2(3) |
| C35  | C34    | S2     | 124.9(2)  | C22 | C23 | C24 | 130.3(3) |
| C27  | C34    | S2     | 113.1(2)  | C29 | C30 | C31 | 121.7(3) |
| C27  | C34    | C35    | 121.9(3)  | C31 | C32 | C33 | 118.1(3) |
| C2   | C1     | C6     | 117.2(3)  | C40 | C41 | C42 | 119.1(3) |
| C44  | C1     | C6     | 123.3(3)  | C34 | C27 | C28 | 111.7(3) |
| C44  | C1     | C2     | 119.6(3)  | C34 | C27 | C26 | 119.7(3) |
| C16  | C5     | C6     | 120.6(3)  | C26 | C27 | C28 | 128.6(3) |
| C16  | C5     | C4     | 120.9(3)  | O3  | C25 | C24 | 118.1(2) |

| O3  | C25 | C4  | 121.4(3) | C53 | C54 | C55 | 113.4(3) |
|-----|-----|-----|----------|-----|-----|-----|----------|
| C4  | C25 | C24 | 120.4(3) | C39 | C38 | C37 | 117.9(3) |
| O4  | C49 | C50 | 109.0(2) | 01  | C44 | C1  | 121.5(3) |
| C13 | C12 | C11 | 120.6(3) | 01  | C44 | C43 | 118.6(3) |
| O2  | C26 | C3  | 125.6(3) | C1  | C44 | C43 | 119.8(3) |
| O2  | C26 | C27 | 114.5(2) | C46 | C47 | C48 | 113.2(3) |
| C3  | C26 | C27 | 119.9(3) | C28 | C33 | S2  | 112.9(2) |
| C42 | C37 | S1  | 112.2(2) | C32 | C33 | S2  | 124.4(3) |
| C38 | C37 | S1  | 124.8(3) | C32 | C33 | C28 | 122.7(3) |
| C38 | C37 | C42 | 123.0(3) | C38 | C39 | C40 | 120.4(3) |
| C13 | C14 | S4  | 125.0(2) | C10 | C11 | C12 | 121.6(3) |
| C13 | C14 | C9  | 122.7(3) | C50 | C51 | C52 | 112.3(3) |
| C9  | C14 | S4  | 112.2(2) | C49 | C50 | C51 | 112.8(3) |
| C41 | C40 | C39 | 121.6(3) | C21 | C22 | C23 | 119.0(3) |
| C20 | C19 | C18 | 118.1(3) | C19 | C20 | C21 | 120.6(3) |
| O2  | C53 | C54 | 107.1(2) | C45 | C46 | C47 | 115.2(3) |
| C23 | C18 | S3  | 112.6(2) | 01  | C45 | C46 | 107.8(2) |
| C19 | C18 | S3  | 124.8(3) | C22 | C21 | C20 | 121.6(3) |
| C19 | C18 | C23 | 122.5(3) | C56 | C55 | C54 | 113.4(3) |
| C32 | C31 | C30 | 120.3(3) | O3  | C57 | C58 | 111.0(3) |
| C36 | C43 | C42 | 111.6(3) | C58 | C59 | C60 | 118.4(4) |
| C36 | C43 | C44 | 119.4(3) | C59 | C58 | C57 | 118.0(4) |
| C44 | C43 | C42 | 128.8(3) |     |     |     |          |

# Table S6. Torsion Angles [ ] for 1.

| Α  | В   | С   | D   | Angle/°   | Α   | В   | С   | D   | Angle/°   |
|----|-----|-----|-----|-----------|-----|-----|-----|-----|-----------|
| S4 | C15 | C16 | C5  | -177.0(2) | C4  | C3  | C26 | C27 | 165.4(3)  |
| S4 | C15 | C16 | C17 | 0.3(4)    | C17 | S3  | C18 | C23 | 0.8(2)    |
| S4 | C15 | C8  | C7  | -174.7(2) | C17 | S3  | C18 | C19 | -179.0(3) |
| S4 | C15 | C8  | C9  | 4.4(3)    | C17 | C16 | C5  | C6  | 169.9(3)  |
| S1 | C36 | C43 | C42 | 0.0(3)    | C17 | C16 | C5  | C4  | -10.9(4)  |
| S1 | C36 | C43 | C44 | -177.3(2) | C17 | C24 | C23 | C18 | -0.5(4)   |
| S1 | C37 | C38 | C39 | -179.3(2) | C17 | C24 | C23 | C22 | 179.4(3)  |
| S2 | C34 | C27 | C28 | 1.7(3)    | C17 | C24 | C25 | O3  | 176.5(3)  |
| S2 | C34 | C27 | C26 | -175.4(2) | C17 | C24 | C25 | C4  | -0.2(4)   |
| O2 | C53 | C54 | C55 | -179.5(2) | C29 | C28 | C27 | C34 | 179.4(3)  |
| O3 | C57 | C58 | C59 | -70.3(6)  | C29 | C28 | C27 | C26 | -3.8(5)   |
| O4 | C49 | C50 | C51 | -162.1(2) | C29 | C28 | C33 | S2  | -179.8(2) |
| C6 | C1  | C44 | 01  | -7.5(4)   | C29 | C28 | C33 | C32 | 1.2(5)    |
| C6 | C1  | C44 | C43 | 168.4(3)  | C29 | C30 | C31 | C32 | 0.4(5)    |

| C6  | C5  | C4  | C3  | 15.0(4)   | C7  | 04  | C49 | C50 | 143.6(3)  |
|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----------|
| C6  | C5  | C4  | C25 | -164.9(3) | C7  | C6  | C1  | C2  | 141.2(3)  |
| C15 | S4  | C14 | C13 | -175.7(3) | C7  | C6  | C1  | C44 | -38.9(4)  |
| C15 | S4  | C14 | C9  | 1.5(2)    | C7  | C6  | C5  | C16 | 21.4(4)   |
| C15 | C16 | C5  | C6  | -12.5(4)  | C7  | C6  | C5  | C4  | -157.8(3) |
| C15 | C16 | C5  | C4  | 166.7(3)  | C7  | C8  | C9  | C10 | -7.7(5)   |
| C15 | C16 | C17 | S3  | 4.9(4)    | C7  | C8  | C9  | C14 | 175.8(3)  |
| C15 | C16 | C17 | C24 | -177.0(3) | C13 | C12 | C11 | C10 | 0.6(4)    |
| C15 | C8  | C7  | O4  | 175.2(2)  | C9  | C8  | C7  | O4  | -3.8(4)   |
| C15 | C8  | C7  | C6  | -2.3(4)   | C9  | C8  | C7  | C6  | 178.7(3)  |
| C15 | C8  | C9  | C10 | 173.3(3)  | C9  | C10 | C11 | C12 | -1.4(4)   |
| C15 | C8  | C9  | C14 | -3.3(3)   | C10 | C9  | C14 | S4  | -176.4(2) |
| C35 | C2  | C1  | C6  | -162.6(3) | C10 | C9  | C14 | C13 | 0.9(4)    |
| C35 | C2  | C1  | C44 | 17.5(4)   | C23 | C24 | C17 | S3  | 1.1(3)    |
| C35 | C34 | C27 | C28 | -175.3(3) | C23 | C24 | C17 | C16 | -177.2(3) |
| C35 | C34 | C27 | C26 | 7.6(4)    | C23 | C24 | C25 | O3  | -0.5(4)   |
| C35 | C36 | C43 | C42 | -176.5(3) | C23 | C24 | C25 | C4  | -177.2(3) |
| C35 | C36 | C43 | C44 | 6.1(4)    | C23 | C22 | C21 | C20 | 0.3(5)    |
| C42 | C41 | C40 | C39 | 0.5(5)    | C41 | C42 | C37 | S1  | 179.1(2)  |
| C42 | C37 | C38 | C39 | -0.1(5)   | C41 | C42 | C37 | C38 | -0.1(4)   |
| C42 | C43 | C44 | 01  | -0.7(4)   | C41 | C42 | C43 | C36 | -178.6(3) |
| C42 | C43 | C44 | C1  | -176.8(3) | C41 | C42 | C43 | C44 | -1.6(5)   |
| C16 | C15 | C8  | C7  | 11.3(4)   | C41 | C40 | C39 | C38 | -0.9(5)   |
| C16 | C15 | C8  | C9  | -169.5(3) | C27 | C28 | C29 | C30 | 177.2(3)  |
| C16 | C5  | C4  | C3  | -164.2(3) | C27 | C28 | C33 | S2  | 1.3(3)    |
| C16 | C5  | C4  | C25 | 15.9(4)   | C27 | C28 | C33 | C32 | -177.6(3) |
| C3  | C2  | C1  | C6  | 16.5(4)   | C25 | O3  | C57 | C58 | 179.8(3)  |
| C3  | C2  | C1  | C44 | -163.4(3) | C25 | C24 | C17 | S3  | -176.4(2) |
| C3  | C4  | C25 | O3  | -6.6(5)   | C25 | C24 | C17 | C16 | 5.3(4)    |
| C3  | C4  | C25 | C24 | 170.0(3)  | C25 | C24 | C23 | C18 | 176.7(3)  |
| C2  | C35 | C34 | S2  | -178.7(2) | C25 | C24 | C23 | C22 | -3.4(5)   |
| C2  | C35 | C34 | C27 | -2.1(4)   | C49 | O4  | C7  | C6  | -46.2(4)  |
| C2  | C35 | C36 | S1  | -176.6(2) | C49 | O4  | C7  | C8  | 136.5(3)  |
| C2  | C35 | C36 | C43 | -0.4(4)   | C12 | C13 | C14 | S4  | 175.3(2)  |
| C2  | C3  | C4  | C5  | -37.4(4)  | C12 | C13 | C14 | C9  | -1.7(4)   |
| C2  | C3  | C4  | C25 | 142.5(3)  | C26 | 02  | C53 | C54 | 163.5(2)  |
| C2  | C3  | C26 | 02  | 172.1(3)  | C26 | C3  | C2  | C35 | 17.2(4)   |
| C2  | C3  | C26 | C27 | -11.4(4)  | C26 | C3  | C2  | C1  | -161.9(3) |
| C2  | C1  | C44 | O1  | 172.4(2)  | C26 | C3  | C4  | C5  | 145.8(3)  |
| C2  | C1  | C44 | C43 | -11.7(4)  | C26 | C3  | C4  | C25 | -34.3(5)  |
|     |     |     |     |           |     |     |     |     |           |

| C34 | S2  | C33 | C28 | -0.4(2)   | C37 | S1  | C36 | C35 | 176.8(3)  |
|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----------|
| C34 | S2  | C33 | C32 | 178.6(3)  | C37 | S1  | C36 | C43 | 0.3(2)    |
| C34 | C35 | C2  | C3  | -10.4(4)  | C37 | C42 | C41 | C40 | 0.0(4)    |
| C34 | C35 | C2  | C1  | 168.7(3)  | C37 | C42 | C43 | C36 | -0.5(4)   |
| C34 | C35 | C36 | S1  | 3.5(4)    | C37 | C42 | C43 | C44 | 176.6(3)  |
| C34 | C35 | C36 | C43 | 179.6(3)  | C37 | C38 | C39 | C40 | 0.6(5)    |
| C34 | C27 | C26 | 02  | 176.4(3)  | C14 | S4  | C15 | C16 | 170.3(3)  |
| C34 | C27 | C26 | C3  | -0.5(4)   | C14 | S4  | C15 | C8  | -3.5(2)   |
| C1  | C6  | C5  | C16 | -158.4(3) | C14 | C13 | C12 | C11 | 0.9(4)    |
| C1  | C6  | C5  | C4  | 22.5(4)   | C14 | C9  | C10 | C11 | 0.6(4)    |
| C1  | C6  | C7  | 04  | -11.0(5)  | C19 | C20 | C21 | C22 | -1.0(5)   |
| C1  | C6  | C7  | C8  | 166.2(3)  | C53 | O2  | C26 | C3  | -46.4(4)  |
| C5  | C6  | C1  | C2  | -39.0(4)  | C53 | O2  | C26 | C27 | 136.9(3)  |
| C5  | C6  | C1  | C44 | 140.9(3)  | C53 | C54 | C55 | C56 | 75.9(4)   |
| C5  | C6  | C7  | 04  | 169.2(3)  | C18 | S3  | C17 | C16 | 177.1(3)  |
| C5  | C6  | C7  | C8  | -13.5(4)  | C18 | S3  | C17 | C24 | -1.1(2)   |
| C5  | C16 | C17 | S3  | -177.8(2) | C18 | C23 | C22 | C21 | 0.4(4)    |
| C5  | C16 | C17 | C24 | 0.3(4)    | C18 | C19 | C20 | C21 | 0.9(5)    |
| C5  | C4  | C25 | O3  | 173.3(3)  | C31 | C32 | C33 | S2  | -179.1(2) |
| C5  | C4  | C25 | C24 | -10.1(4)  | C31 | C32 | C33 | C28 | -0.2(5)   |
| C28 | C29 | C30 | C31 | 0.7(5)    | C43 | C42 | C41 | C40 | 178.0(3)  |
| C28 | C27 | C26 | 02  | -0.2(4)   | C43 | C42 | C37 | S1  | 0.7(3)    |
| C28 | C27 | C26 | C3  | -177.1(3) | C43 | C42 | C37 | C38 | -178.6(3) |
| C36 | S1  | C37 | C42 | -0.6(2)   | C44 | O1  | C45 | C46 | -177.6(3) |
| C36 | S1  | C37 | C38 | 178.7(3)  | C47 | C46 | C45 | O1  | -70.2(4)  |
| C36 | C35 | C2  | C3  | 169.7(3)  | C33 | S2  | C34 | C35 | 176.1(3)  |
| C36 | C35 | C2  | C1  | -11.2(4)  | C33 | S2  | C34 | C27 | -0.8(2)   |
| C36 | C35 | C34 | S2  | 1.2(4)    | C33 | C28 | C29 | C30 | -1.4(4)   |
| C36 | C35 | C34 | C27 | 177.9(3)  | C33 | C28 | C27 | C34 | -1.9(4)   |
| C36 | C43 | C44 | O1  | 176.2(3)  | C33 | C28 | C27 | C26 | 174.9(3)  |
| C36 | C43 | C44 | C1  | 0.1(4)    | C33 | C32 | C31 | C30 | -0.6(5)   |
| C24 | C23 | C18 | S3  | -0.4(3)   | C22 | C23 | C18 | S3  | 179.7(2)  |
| C24 | C23 | C18 | C19 | 179.4(3)  | C22 | C23 | C18 | C19 | -0.5(4)   |
| C24 | C23 | C22 | C21 | -179.5(3) | C20 | C19 | C18 | S3  | 179.6(2)  |
| C8  | C15 | C16 | C5  | -3.8(4)   | C20 | C19 | C18 | C23 | -0.2(5)   |
| C8  | C15 | C16 | C17 | 173.5(3)  | C45 | O1  | C44 | C1  | -78.8(4)  |
| C8  | C9  | C10 | C11 | -175.8(3) | C45 | O1  | C44 | C43 | 105.2(3)  |
| C8  | C9  | C14 | S4  | 0.7(3)    | C52 | C51 | C50 | C49 | 176.7(3)  |
| C8  | C9  | C14 | C13 | 177.9(3)  | C48 | C47 | C46 | C45 | -73.8(4)  |
| C4  | C3  | C2  | C35 | -159.9(3) | C60 | C59 | C58 | C57 | -84.2(5)  |

| C4 | C3 | C2  | C1 | 21.0(4)  | C57 | O3 | C25 | C24 | 108.4(4) |
|----|----|-----|----|----------|-----|----|-----|-----|----------|
| C4 | C3 | C26 | O2 | -11.2(5) | C57 | O3 | C25 | C4  | -74.9(4) |

# 12. NMR/mass spectra for new compounds



Figure S12. <sup>1</sup>H NMR spectrum (400 MHz) of compound 2 in CDCl<sub>3</sub> at 298 K.



**Figure S13.** <sup>1</sup>H NMR spectrum (400 MHz) of compound **2** in DMSO- $d_6$  at 353 K.



Figure S14. <sup>13</sup>C NMR spectrum (100 MHz) of compound 2 in CDCl<sub>3</sub> at 298 K.



Figure S15. HR (MALDI-TOF) mass spectrum of 2.



**Figure S16.** <sup>1</sup>H NMR spectrum (400 MHz) of compound **1** in Toluene- $d_8$  at 298 K.



Figure S17. <sup>13</sup>C NMR spectrum (100 MHz) of compound 1 in CDCl<sub>3</sub> at 298 K.



Figure S18. HR (MALDI-TOF) mass spectrum of 1.

13. IR spectra of the products



Figure S19. IR spectra of compound 2



Figure S20. IR spectra of compound 1

# 14. References

- S1. Y. Li, Y. Hong, J. Guo, X. Huang, H. Wei, J. Zhou, T. Qiu, J. Wu, and Z. Zeng, Org. Lett. 2017, 19, 5094-5097.
- S2. S. Zhang, Z. Liu, and Q. Fang, Org. Lett. 2017, 19, 1382-1385
- S3. S. Zhang, X. Qiao, Y. Chen, Y. Wang, R. M. Edkins, Z. Liu, H. Li, and Q. Fang, Org. Lett. 2014, 16, 342-345.
- S4. H. Sirringhaus, R. H. Friend, C. Wang, J. Leuninger, and K. Müllen, J. Mater. Chem. 1999, 9, 2095-2101.
- S5. C. L. Eversloh, Z. Liu, B. Müller, M. Stangl, C. Li, and K. Müllen, *Org. Lett.* **2011**, *13*, 5528-5531.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2010**.
- S7. (a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; (b) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 1988, 37, 785-789.