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SUPPORTING INFORMATION

EXPERIMENTAL SECTION

Optical property measurements. Samples were spin-casted on cover glass slide in the 

dimension of 1 inch × 1 inch. Reflection ellipsometry experiment was conducted using a 

spectroscopic ellipsometer (M2000U, J.A. Woollam) to measure the complex refractive index of 

the as-cast and annealed supramolecular nanocomposite thin films. The white light source used 

had a broad spectrum of wavelength ranging from 250 to 1000 nm. Biaxial model was used to 

retrieve the refractive index of the samples. 

Angle resolved transmission measurements. The transmission spectra of the samples 

were characterized using angle-resolved optical spectroscopy combined with an inverted optical 

microscope (Leica DMI 3000M microscope) and a matching grating spectrometer (SR-303i, 

Andor Technology).1 A high numerical aperture (NA) objective lens (50x, NA = 0.8) was used to 

collect all the light propagating through the sample, with a maximum incident angle determined 

by the condenser’s NA (NA = 0.55). A 100 W halogen lamp was used as the illumination source, 

while a rotating linear polarizer (LPVISB100, Thorlabs) was used to control the polarization of 

the incident light. The transmission spectra were normalized with respect to the bare glass 

substrate. 
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SI 1. Thin Film Swelling and Drying Profiles during SVA and Rapid Solvent Removal

Thin films samples were treated with solvent annealing under chloroform vapor. The 

swelling and drying profile is plotted as the solvent volume fraction in the film vs. annealing 

time.

Figure S1. A typical thin film swelling and drying profile indicating solvent volume faction fs 

vs. annealing time.
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SI 2. Nanoparticle Size Analysis

Size analysis of the nanoparticles used in the experiments were conducted based on 

multiple TEM images. Au NPs are coated by oleylamine. Fe2O3 NPs are coated by oleic acid.

Figure S2. TEM images and size analysis of (a) 3 nm Au NPs, (b) 10 nm and (c) 12 nm Fe2O3 

NPs, (d) 12 nm Au NPs. (e) Normalized absorption spectra of 3 and 12 nm Au NPs dispersed in 

chloroform.
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SI 3. Calculation and Analysis of the Dispersion Relation of the Polariton Modes in 3-D 

Plasmonic Crystals

The plasmonic crystal model investigated here is composed of Au NPs periodically 

embedded in polymer matrix with permittivity  as illustrated in Figure 1a. The diameter 𝜀ℎ = 2.43

of an individual Au NP is about 3 nm or 12 nm, and the center-to-center distance along the z-

direction is determined by the lamellae periodicities, which are 20 nm and 41 nm. In xy-plane, 

the inter-particle gap is kept constant as 3 nm. Noting that the fields inside the metal sphere are 

supposed to be homogenous since the radius is smaller than the skin depth (22 nm), and the 

quantum effect can be ignored in this size.2 Thus, the Au NPs can be treated as the plasmonic 

“atoms” and permit the use of previously reported classic dipole coupling model.2,3 Prior to 

studying the inter-particle coupling, the intrinsic resonant frequency of a single Au NP is 

determined to be  (corresponds to a resonance centered at 520 nm), 𝜔0 = 3.63 × 1015 𝑟𝑎𝑑/𝑠

which is based on the experimental data for the Au NPs in chloroform solution. For the polariton 

mode that induced by the coupling effect between the photons and the long transverse plasmon 

wave, the fundamental equations governing the coupling effect in the plasmonic crystal can be 

derived similar as an ionic crystal, and the effective dielectric function can be subsequently 

obtained from the previously reported dipole coupling model.3

To better understand the coupled phenomena in the 3-D array of electric dipoles, we first 

consider the interaction of two electric dipole moments  and   with the relative position 𝑃𝑗 𝑃𝑘

vector  (Figure S2a). The quasi-static interaction energy V is given by 𝑟𝑗𝑘

𝑉 = ―
1

4𝜋𝜀0𝑟3
𝑗𝑘

[3(𝑃𝑗 ∙ 𝑒𝑗𝑘)(𝑃𝑘 ∙ 𝑒𝑗𝑘) ― (𝑃𝑗 ∙ 𝑃𝑘)]



5

in which  is a unit vector parallel to the position vector .4 In our case, the electric dipoles 𝑒𝑗𝑘 𝑟𝑗𝑘

with uniform magnitude P are all aligned along the electric field of the incidence and thus, the 

equation can be further simplified to

𝑉 = 𝛾
𝑃𝑗 ∙ 𝑃𝑘

4𝜋𝜀0𝑟3
𝑗𝑘

= 𝛾
𝑃2

4𝜋𝜀0𝑟3
𝑗𝑘

in which the interaction index  is +1 and -2 for the case of transverse coupling (TC) and 𝛾

longitudinal coupling (LC), respectively. The energy-levels of the hybridization model of two 

coupled electric dipoles ( ) are illustrated in Figure S2b. In the symmetric LC (s-LC) |𝜔0⟩

hybridized state , the attraction of the opposite poles decreases the restoring force and |𝜔 ―𝑠 ― 𝐿𝐶⟩

therefore leads to the redshift of resonant frequency; while the antisymmetric LC (a-LC) 

hybridized state  leads to the blueshift of resonant frequency due to the increasing |𝜔 +𝑎 ― 𝐿𝐶⟩

restoring force. In contrast, the corresponding frequency shifts are reversed in the case of the 

transverse coupling. The symmetric TC (s-TC) hybridized state  and antisymmetric TC |𝜔 +𝑠 ― 𝐿𝐶⟩

(a-TC) hybridized state  result in the blueshift and redshift of the resonance frequency, |𝜔 ―𝑎 ― 𝐿𝐶⟩

respectively. 
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Figure S3. (a) The interaction between two dipoles moments  and  with  as the center-to-𝑃𝑗 𝑃𝑘 𝑟𝑗𝑘

center vector. (b) Schematic illustration of energy-levels for symmetric and antisymmetric 

arrangements of LC and TC cases. 

In the 3-D plasmonic crystal, the symmetric arrangement of both TC and LC modes 

coexist and compete mutually to determine the collective Eigen mode, as described in Table S1. 

For clarity, the in-plane interaction distance is defined as 6 nm or 15 nm  for 3 nm or 12 nm 𝑟𝑖𝑛 =

Au NPs, respectively, which is much smaller than the out-of-plane interaction distance  20 𝑟𝑜𝑢𝑡 =

nm or 41 nm determined by the lamellar periodicities.

Table S1. Collective energy level of different coupling modes.

Cases Parallel Case (θ = 0) Normal Case (θ = 90)

Direction In-plane Out-of-plane In-plane Out-of-plane 

Modes s-TC s-LC s-TC s-TC s-TC s-LC

V
1

𝑃2

4𝜋𝜀0𝑟3
𝑖𝑛

―2
𝑃2

4𝜋𝜀0𝑟3
𝑖𝑛

1
𝑃2

4𝜋𝜀0𝑟3
𝑜𝑢𝑡

1
𝑃2

4𝜋𝜀0𝑟3
𝑖𝑛

1
𝑃2

4𝜋𝜀0𝑟3
𝑖𝑛

―2
𝑃2

4𝜋𝜀0𝑟3
𝑜𝑢𝑡

Collective energy level < 0, redshift Collective energy level > 0, blueshift
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SI 4. Angle-resolved Transmission Spectra of Nanocomposite Thin Films with 3 nm Au 

NPs

In the presence of strong interparticle coupling, coupling between the propagating light 

wave and the transverse particles plasmon wave results in the polaritonic stop band.2 Lamellar 

Au NPs assemblies shown in Figure S4a have both in-plane and out-of-plane coupling modes. 

The relative coupling strength between two adjacent NPs as a function of the ratio between 

interparticle gap and particle diameter is calculated using the discrete dipole approximation 

(DDA) method5 (Figure S4b). The in-plane coupling between 12 nm NPs is very strong but weak 

for 3 nm NPs. However, with the large interparticle distance across neighboring lamellae (~41 

nm), there is negligible out-of-plane coupling. To engage effective out-of-plane coupling, it 

requires significant reduction of the lamellar periodicity (L). We calculated the polariton 

dispersion3 for 12 nm NPs, but significantly reduced lamellar periodicity by half to 20 nm in 

Figure S4c. The center wavelength of the polariton bandgap shows a pronounced blueshift from 

572 nm (red dash line) for the light wave propagating along z-direction (θ = 0°) to 534 nm (blue 

dash line) for the light wave propagating along the orthogonal direction (θ = 90°). The results 

justify the possibility to reach strongly coupled region and to manipulate wavelength-dependent 

optical anisotropy of NP assemblies with high sensitivity.
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Figure S4. Angular- and wavelength-dependent optical properties of the nanocomposite 

thin films. (a) Schematic illustration of the lamellar nanocomposite film. (blue: PS; purple: 

P4VP(PDP); orange: NP) (b) Calculated relative plasmon coupling strength between two 

neighboring Au NPs as a function of the ratio between interparticle gap and particle diameter. (c) 

Calculated dispersion relations of the nanocomposite containing 12 nm Au NPs with the lamellar 

periodicity of 20 nm. (d) Calculated transmission spectra of annealed thin film containing 12 nm 

Au NPs. (e, f) Experimentally measured angle-resolved transmission spectra of 140 nm (e) as 

cast and (f) annealed films containing 9 vol% of 3 nm (dashed lines) or 12 nm (solid lines) Au 

NPs. 

Figure S4d shows the angular-dependent transmission spectra of the nanocomposite film 

containing 12 nm Au NPs with a lamellar periodicity of 22 nm calculated numerically using the 

FDTD method. (FDTD Solution, Lumerical Inc.) The center wavelengths of the transmission 
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minimums exhibit a pronounced blueshifts from 570 nm to 518 nm when changing the incident 

angle from 0° to 90°, in good agreement with the theoretical calculation in Figure S4c. 

Transmission spectra of 140 nm nanocomposite thin films with 9 vol% of 12 nm Au NPs were 

measured with angle-resolved optical spectroscopy.1 The as cast film in Figure S4e comprises an 

amorphous arrangement of Au NPs. The transmission spectra of the as cast film show angle-

independent response with the transmission minimum remaining unshifted at the center 

wavelength of 538 nm. However, the transmission minimum of the annealed film in Figure S4f 

containing 12 nm Au NP lamellae blueshifts from 549 nm to 536 nm as the incident angle 

changes from 0° to 30°. This trend is in good agreement with the simulated result in Figure S4d. 

In comparison, despite its structural anisotropy, the measured transmission spectra of both as cast 

and annealed thin films containing 9 vol% of 3 nm Au NPs show very similar angle-independent 

transmission from 0° to 30° (Figure S4e and S4f) due to the weak interparticle couplings 

between those small NPs as expected. Thus, the macroscopic optical properties of 

nanocomposite thin film with the same composition can be tuned by the NP size and special 

organization.
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SI 5. Wavelength and NP Size-dependent Optical Anisotropy in Nanocomposite Thin Films

Refractive indices of thin films of PS(40 kDa)-b-P4VP(5.6 kDa)(PDP)1 supramolecule 

were measured. No obvious optical anisotropy in the visible light region of is observed.

Figure S5. Wavelength and NP size-dependent optical anisotropy in 140 nm PS(40 kDa)-b-

P4VP(5.6 kDa)(PDP)1 thin films. (a) Ellipsometry measurements of the in-plane (no) and out-of-

plane (ne) components of the real refractive indices. (b) Difference of the out-of-plane (ne) and 

in-plane (no) real refractive indices calculated from (a).

A series of 140 nm supramolecular thin films containing 9 vol% of 3 nm and 12 nm Au 

NPs before and after solvent annealing are used to investigate NP size-dependent optical 

properties of the nanocomposites. NPs were randomly distributed in the as cast films but well-

ordered in lamellar structures in the annealed films. The real part of the in-plane refractive index 

(no) and out-of-plane refractive index (ne) of as cast and annealed films were measured by 

ellipsometry (Figure S4a) and plotted in Figure S4b, d to characterize the optical anisotropy. For 

the solvent annealed films, the in-plane inter-particle gap is 3 nm, much smaller than the out-of-

plane gap of 22 nm, thereby leading to a stronger inter-particle plasmonic coupling in-plane than 
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out-of-plane to the first approximation as discussed above. Consequently, a wavelength-

dependent optical anisotropy was observed between 450 and 700 nm and ∆n, the difference 

between ne and no, were plotted in Figure S4c, e. In detail, ∆n of the annealed films is larger than 

the as cast films with the same compositions (Figure S4c, e), and ∆n of films with 12 nm Au NPs 

is much larger than films with 3 nm Au NPs, especially below 600 nm. In summary, for the 

solvent annealed films, 3 nm Au NPs show small optical anisotropy and is relatively independent 

on NP arrangements; but 12 nm Au NPs show obvious wavelength-dependent optical 

anisotropies and depend obviously on NP arrangements due to the relatively strong dipole 

coupling in both of in-plane and out-of-plane directions. Therefore, the results demonstrate the 

potential to manipulate the optical properties of the 3-D plasmonic crystal using lamellar 

supramolecular nanocomposites.

   

Figure S6. (a) Schematics of the ellipsometry measurements of the in-plane (no) and out-of-
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plane (ne) components of the refractive indices. (b, d) Ellipsometry measurements of the in-plane 

(no) and out-of-plane (ne) components of the real refractive indices of 140 nm films containing 9 

vol% of (b) 3 and (d) 12 nm Au NPs. (c, e) Difference of the out-of-plane (ne) and in-plane (no) 

real refractive indices calculated from (b, d). 
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SI 6. Simulated Particle Plasmon Resonance of a Single 3 nm and 12 nm Au NP

Numerically calculated particle plasmon resonance peak of an individual Au NP in the 

size of 3 or 12 nm in the supramolecular matrix is 544 or 543 nm respectively.

Figure S7. Simulated resonance peak of an individual Au NP in the size of 3 nm or 12 nm in the 

supramolecular matrix.
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SI 7. In-plane Arrangement of NPs on the Surface of Supramolecular Thin Films

Thin films of Au NPs and nanocomposite on glass slides show different colors due to the 

different extinction properties originated from the different NP sizes and inter-particle distances. 

Figure S8. Images of the thin films of Au NPs and solvent annealed nanocomposite films on 

glass slides. 



15

REFERENCES

(1) Wagner, R.; Heerklotz, L.; Kortenbruck, N.; Cichos, F. Back Focal Plane Imaging 
Spectroscopy of Photonic Crystals. Appl. Phys. Lett. 2012, 101 (8), 081904.

(2) Huang, C.; Yin, X.; Wang, Q.; Huang, H.; Zhu, Y. Long-Wavelength Optical Properties of a 
Plasmonic Crystal. Phys. Rev. Lett. 2010, 104 (1), 016402.

(3) Chen, X.; Guo, P.; He, C.; Dong, B.; Ocola, L. E.; Schaller, R. D.; Chang, R. P. H.; Sun, C. 
Scaling the Artificial Polariton Bandgap at Infrared Frequencies Using Indium Tin Oxide 
Nanorod Arrays. Advanced Optical Materials 2016, 4 (12), 2077–2084.

(4) Liu, N.; Giessen, H. Coupling Effects in Optical Metamaterials. Angewandte Chemie 
International Edition 2010, 49 (51), 9838–9852.

(5) Jain, P. K.; Huang, W.; El-Sayed, M. A. On the Universal Scaling Behavior of the Distance 
Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano 
Lett. 2007, 7 (7), 2080–2088.


