Dehydrogenative Synthesis of Quinolines, 2-Aminoquinolines and Quinazolines using Singlet Di-radical Ni(II)-Catalysts

Gargi Chakraborty,[†] Rina Sikari,[†] Siuli Das, Rakesh Mondal, Suman Sinha, Seemika Banerjee and Nanda D. Paul*

Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India

E-mail: ndpaul@gmail.com; <a href="mailto:ndpaul

Table of Contents

Experimental Details	S3-S4
EPR spectra of the reaction mixture containing catalyst 3 and KO ^t Bu recorded at	S 4
RT.	
Figures of ¹ H and ¹³ C NMR spectra	S5-S66
References	S67

Intermolecular Transfer Hydrogenation Experiments using 3 as the catalyst.

Scheme S1. Intermolecular Transfer Hydrogenation Experiments using 3 as the catalyst.

Detection of Hydrogen Peroxide During the Catalytic Alcohol Oxidation Reaction.¹ During catalytic alcohol oxidation reaction H_2O_2 was produced and it was detected spectrophotometrically following the gradual development of the characteristic peak of I_3^- at λ_{max} = 351 nm, upon reaction with KI. A mixture of 1.0 mmol 1-phenylethanol, 0.5 mmol KO'Bu and catalyst **3** (4 mol%) in a 5.0 ml dry toluene was placed in a 50 ml round-bottom flask fitted with a stir bar and a condenser and stirred in a preheated oil bath at 70°C for 16h. To this mixture an equal volume of water was added and the total reaction mixture was extracted three times with dichloromethane. The separated aqueous layer was acidified with H_2SO_4 to pH=2 to stop further oxidation. Then 1.0 mL of a10% solution of KI and a few drops of a 3% solution of ammoniummolybdate was added to it. Produced hydrogen peroxide oxidizes Γ to I_2 , which reacts with excess Γ to form I^{3-} according to the following reactions: (i) $H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$, (ii) $I_2(aq) + \Gamma \rightarrow I_3^-$. (Fig: S1).

Figure S1: Detection of H₂O₂. Absorption spectral changes during formation of I_3^- in presence of H₂O₂.

Quantification of Hydrogen Peroxide During the Catalytic Alcohol Oxidation Reaction. Hydrogen Peroxide was quantified iodometrically using standard sodium thiosulphate solution. At first (N/20) sodium thiosulphate solution was standardized by standard (N/20) potassium dichromate solution ($S_{dichromate} = 0.611/0.6129$ (N/20) = 0.0498 (N)) using 1% starch solution as indicator. Strength of sodium thiosulphate solution was 0.0517 (N).

Scheme S2. Reaction for quantification of H₂O₂ using 3 as the catalyst.

Serial	Amount of 1-phenyl	Amount of	Amount of	Amount of H ₂ O ₂
No.	ethanol	KO ^t Bu	catalyst 3	(w.r.t. alcohol)
1	1.0 mmol	0.5 mmol	4.0 mol%	0.68 equiv.
2	1.0 mmol	1.0 mmol	4.0 mol%	0.48 equiv.
3	0.1 mmol	0.1 mmol	0.1 mmol	0.82 equiv.

Figure S2. EPR spectra (left full spectrum, right zoom) of the reaction mixture containing catalyst **3** and KO^tBu recorded at RT.

Figure S3. ¹H and ¹³C NMR spectra of compound 8aa in CDCl₃.

Figure S4. ¹H and ¹³C NMR spectra of compound 8ab in CDCl₃.

Figure S5. ¹H and ¹³C NMR spectra of compound **8ac** in CDCl₃.

Figure S6. ¹H and ¹³C NMR spectra of compound 8ad in CDCl₃.

Figure S7. ¹H and ¹³C NMR spectra of compound 8ae in CDCl₃.

Figure S8. ¹H and ¹³C NMR spectra of compound **8af** in CDCl₃.

Figure S9. ¹H and ¹³C NMR spectra of compound 8ag in CDCl₃.

Figure S10. ¹H and ¹³C NMR spectra of compound 8ah in CDCl₃.

Figure S11. ¹H and ¹³C NMR spectra of compound 8ai in CDCl₃.

Figure S12. ¹H and ¹³C NMR spectra of compound **8aj** in CDCl₃.

Figure S13. ¹H and ¹³C NMR spectra of compound 8ak in CDCl₃.

Figure S14. ¹H and ¹³C NMR spectra of compound 8al in CDCl₃.

Figure S15. ¹H and ¹³C NMR spectra of compound 8am in CDCl₃.

Figure S16. ¹H and ¹³C NMR spectra of compound 8an in CDCl₃.

Figure S17. ¹H and ¹³C NMR spectra of compound 8ao in CDCl₃.

Figure S18. ¹H NMR spectum of compound 8ap in CDCl₃.

Figure S19. ¹H and ¹³C NMR spectra of compound 8aq in CDCl₃.

Figure S20. ¹H NMR spectrum of compound 8ar in CDCl₃.

Figure S21. ¹H and ¹³C NMR spectra of compound 8as in CDCl₃.

Figure S22. ¹H and ¹³C NMR spectra of compound 8at in CDCl₃.

Figure S23. ¹H and ¹³C NMR spectra of compound 8au in CDCl₃.

Figure S24. ¹H and ¹³C NMR spectra of compound 9aa in CDCl₃.

Figure S25. ¹H and ¹³C NMR spectra of compound **9ab** in CDCl₃.

Figure S26. ¹H and ¹³C NMR spectra of compound 9ac in CDCl₃.

Figure S27. ¹H and ¹³C NMR spectra of compound 9ad in CDCl₃.

Figure S28. ¹H and ¹³C NMR spectra of compound 9ae in CDCl₃

Figure S29. ¹H and ¹³C NMR spectra of compound 10aa in CDCl₃.

Figure S30. ¹H and ¹³C NMR spectra of compound 10ab in CDCl₃.

Figure S31. ¹H and ¹³C NMR spectra of compound 10ac in CDCl₃.

Figure S32. ¹H and ¹³C NMR spectra of compound **10ad** in CDCl₃.

Figure S33. ¹H and ¹³C NMR spectra of compound **10ae** in CDCl₃.

Figure S34. ¹H and ¹³C NMR spectra of compound 10af in CDCl₃.

Figure S35. ¹H NMR spectrum of compound 10ag in CDCl₃.

Figure S36. ¹H and ¹³C NMR spectra of compound 10ah in CDCl₃.

Figure S37. ¹H NMR spectrum of compound 10ai in CDCl₃.

Figure S38. ¹H and ¹³C NMR spectra of compound 10aj in CDCl₃.

Figure S39. ¹H and ¹³C NMR spectra of compound 10ak in CDCl₃.

100

50

150

[ppm]

Figure S40. ¹H and ¹³C NMR spectra of compound 10al in CDCl₃.

Figure S41. ¹H and ¹³C NMR spectra of compound 10am in CDCl₃.

Figure S42. ¹H and ¹³C NMR spectra of compound 10an in CDCl₃.

Figure S43. ¹H and ¹³C NMR spectra of compound 10ao in CDCl₃.

Figure S44. ¹H and ¹³C NMR spectra of compound **10ap** in CDCl₃.

Figure S45. ¹H and ¹³C NMR spectra of compound 10aq in CDCl₃.

Figure S46. ¹H and ¹³C NMR spectra of compound 10ar in CDCl₃.

Figure S47. ¹H NMR spectrum of compound 10as in CDCl₃.

Figure S48. ¹H NMR spectrum of compound 10at in CDCl₃.

4.3 0.9 7.5

7.0

6.5

1.1

Figure S49. ¹H NMR spectrum of compound 8ba in CDCl₃.

8.5

9.0

M

2.0 2.0

8.0

- 9

•

[ppm]

Figure S50. ¹H NMR spectrum of compound 8ca in CDCl₃.

Figure S51. ¹H NMR spectrum of compound 8da in CDCl₃.

Figure S52. ¹H and ¹³C NMR spectra of compound 8ea in CDCl₃.

Figure S53. ¹H NMR spectrum of compound 8fa in CDCl₃.

Figure S54. ¹H and ¹³C NMR spectra of compound 9ba in CDCl₃.

Figure S55. ¹H and ¹³C NMR spectra of compound **9ca** in CDCl₃.

Figure S56. ¹H and ¹³C NMR spectra of compound 9da in CDCl₃.

Figure S57. ¹H and ¹³C NMR spectra of compound **9ea** in CDCl₃.

Figure S58. ¹H and ¹³C NMR spectra of compound 9fa in CDCl₃.

Figure S59. ¹H and ¹³C NMR spectra of compound **10ba** in CDCl₃.

Figure S60. ¹H and ¹³C NMR spectra of compound **10ca** in CDCl₃.

Figure S61. ¹H and ¹³C NMR spectra of compound 10da in CDCl₃.

Figure S62. ¹H and ¹³C NMR spectra of compound 10ea in CDCl₃.

Figure S63. ¹H and ¹³C NMR spectra of compound 10fa in CDCl₃.

Figure S64. ¹H NMR spectrum of reaction mixture of obtained after the dehydrogenation of cyclobutanol, catalyzed by **3** in CDCl₃.

Figure S65. ¹H NMR spectrum of 6a' in CDCl_{3.}

Figure S66. ¹H NMR spectrum of 7a' in CDCl_{3.}

References.

(1) Sinha, S.; Das, S.; Sikari, R.; Parua, S.; Brandaõ, P.; Demeshko, S.; Meyer, F.; Paul, N.

D. Redox Noninnocent Azo-Aromatic Pincers and Their Iron Complexes. Isolation, Characterization, and Catalytic Alcohol Oxidation. *Inorg. Chem.* **2017**, *56*, 14084–14100.