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Further Details on the Applied Computational Methods

In this section we give additional computational details that were not mentioned in the main

part of this publication. In particular, we want to explain how doping and the corresponding

band-bending are considered in our DFT calculations and how we choose the initial charge

density at the beginning of the self-consistent field cycle.

In principle, with choosing a hybrid functional containing a certain amount exact ex-

change in a DFT calculation, the solution for the transferred charge being localized on

individual molecule (integer charge transfer, ICT) and the solution for charge being homo-

geneously distributed on all molecules (fractional charge transfer, FCT) can be obtained1

(See section below, where we discuss the influence of the exchange-correlation functional).

Both charge transfer solution are fundamentally different: For ICT electrons are transferred

∗To whom correspondence should be addressed

S1

o.hofmann@tugraz.at


in integer numbers, resulting in a splitting of the spin-channels. The LUMO gets spit up

in a singly occupied molecular orbital (SOMO) and a singly unoccupied molecular orbital

(SUMO). This leads to a semiconducting band structure (no density at the Fermi energy).

In contrast, for FCT the spin channels stay degenerate as all molecules get fractionally

charged. This leads to a quasi-metallic density of states. Therefore, a prerequisite to obtain

the ICT solutions is to perform spin-polarized calculations (unrestricted, which increases the

computational cost). As both charge transfer mechanisms are stable solutions in our DFT

calculation, we enforced either solution be choosing the ”right” initial charge density. FCT

solutions were initialized with a fully spin-symmetric charge density. For the ICT solution

the symmetry breaking of the spin channels can be enforced by an unsymmetric initial spin

density. For that, we define individual molecules within our unit cell to have a non-vanishing

initial moment (0.1 per atom). This allows us to select which molecules preferably end up

with an extra electron. The breaking of the spin-density in the molecular layer and the

coexistence of molecules with filled and empy LUMOs in the supercell is accompanied by

a spontaneous breaking in translation symmetry. The geometry of a molecule with empty

LUMO differs from the geometry of the molecule with a filled SOMO. Therefore, geometry

relaxations on the same theoretical level (same density functional) for the whole molecular

layer within the supercell are an essential part of correctly describing the charge transfer

mechanism and the resulting effects.

Considering Doping of Semiconductors in our DFT Calculations

A special focus of this work is on how an organic/inorganic interface system behaves as

the charge carrier concentration of the substrate is changed. Therefore, explicitly including

doping in our DFT calculation of hybrid interfaces is of utmost importance for this work. We

include bulk doping of the ZnO substrate in our calculations by using our recently developed

CREST method2,3. CREST allows explicitly considering doping in DFT calculations by

mimicking the long-ranged electrostatic effect of band-bending. In this approach doping
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within the slab itself is introduced by means of the virtual crystal approximation (VCA).4,5

In the VCA some of the bulk atoms are replaced by pseudo-atoms whose nuclear charge Z ′

(and the corresponding electron number) is fractionally altered from the bulk atom integer

number Z. The added or subtracted fraction of charge, ∆Z, is set such that it corresponds

to the desired bulk charge carrier concentration of the substrate. In our case of n-doped ZnO

only the oxygen atoms in the slab are replaced by the pseudo-atoms with a fractional atomic

number Z ′ = Z+∆Z. The additionally introduced change ∆Z per oxygen atom gives rise to

excess electrons, which fill the bottom of the conduction band, resulting in a corresponding

amount of mobile electrons. The counter charge remains spatially fixed at the ionic cores.

This mobile charge carriers are then available to be eventually transfered into a molecular

layer. The spatially fixed ionized cores build up the electric field that leads to band-bending.

However, at lower charge carrier concentrations the size of the space-charge region drastically

exceeds the size of a computational feasible slab. Therefore a different approach is necessary

to treat the region below the slab. In CREST a charge-sheet is introduced below the slab

that mimics the electrostatic field associated with band-bending. In practice the sheet is

build up by a grid of positive point charges. We use a total of 480 equally distributed point

charges for the charge-sheet in the 2× 2 supercell (i.e., a grid of 3× 5 point charges for the

primitive surface unit cell with the dimensions 3.26× 5.26 Å. This corresponds to a density

of 0.87 point charges per Å2). Along with the charge-sheet, the corresponding amount

of electrons are introduced such that the system remains overall neutral. The additional

electrons represent the bulk charge carrier concentration that is transfered to the interface.

The distance of this charge-sheet from the slab and the amount of charge within the sheet is

determined self-consistently, requiring the bottom side work functions to coincide with the

bottom side work function of the ZnO slab without a molecular layer (i.e. without charge

transfer or band-bending). The work function of the unperturbed slabs were determined for

each doping concentration separately and a work function accuracy of 100 meV was required

in the self-consistent CREST scheme. With this procedure we assure to obtain the correct
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amount of charge transfer into the molecular layer at a specific charge carrier concentration

and reproduce the charge-transfer-limiting effect of the band-bending. As described in more

detail in the original publication,2 the only input we need for CREST is the desired bulk

charge carrier concentration and the dielectric constant εr of the ZnO substrate. In this work

we use εr = 4.0, which is agreement with experimental values of the high frequency dielectric

constant of ZnO.6

At this point it should be emphasized that with the CREST approach a homogeneous

bulk charge carrier concentration is considered without the explicit introduction of defect

sites in the ZnO substrate. Surface or sub-surface defects, which are not explicitly considered,

might drastically reduce the band-bending. Such defects can additionally influence the local

potential at the surface and therefore locally alter the charge transfer and the charge transfer

mechanism.

Surface Geometry and Monolayer Structure

We constructed a reasonable molecular monolayer structure of F4TCNQ molecules adsorbed

on the mixed terminated ZnO (10-10) surface without performing a full structure search. We

like to mention that there are advanced methods to predict the morphology of monolayers

available or currently under development,7,8 but for our conceptional study such an intensive

search is not required. We used a simpler, more straight-forward process to find the mono-

layer structure. Starting from the lowest energy local adsorption site of a single molecule

on the surface (which was found by chemical intuition, see below), we build the densest

possible monolayer that only contains this geometry. The calculations to find the monolayer

structure were performed with the PBE functional, which is computationally more efficient

than hybrid functions. For the local adsorption site we used specific starting geometries

motivated by chemical intuition and performed a geometry relaxation for the molecule only,

fixing the substrate atoms at their initial position. We found that the cyano groups of the
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molecule prefer binding to surface Zn atoms, that act as docking sites for the molecule. We

looked at upright-standing as well as flat-lying adsorption geometries. For a single molecule

the flat-lying geometries are energetically favorable. The two lowest-energy local adsorption

sites are plotted in Fig. S1.

Figure S1: Adsorption geometry found for F4TCNQ on ZnO (10-10): (a-b/c) Side-
view/topview of the lowest energy local adsorption site, that was further on used in this
work to build the monolayer surface structure.

The energetically preferred adsorption site for the F4TCNQ molecule is parallel to the

rills of the ZnO surface (parallel to the [112̄0] direction). In this configuration each of the

four cyano groups can bind to surface Zn atoms and the molecule covers a surface of six

Zn atoms in total. The smallest surface unit cell in this case is then a orthogonal unit cell

comprised of six surface zinc and six surface oxygen atoms, with the dimensions of 13.05 Å ×

10.41 Å in the [112̄0] and [0001] directions, respectively. From the smallest surface unit cell

for a single molecule we build the monolayer structure by using this unit cell in a periodic

slab approach. This means the applied coverage is defined by the structure of the ZnO

surface, and we used the highest packing density allowing the commensurate adsorption of

F4TCNQ in a flat-laying manner. For the bigger unit cell containing four molecules, a 2× 2

supercell was used (See Fig. S2). We do not claim the monolayer morphology considered in

this work to be the one that should be found in experiments.

We calculated the adsorption energy ∆Eads of the F4TCNQ molecule on the undoped
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Figure S2: The red dashed line indicates the 2× 2 supercell containing four molecules used
in this work for the F4TCNQ monolayer on ZnO (10-10)

ZnO (10-10) surface using the following equation:

∆Eads = Esys − Esub − Emol (1)

where Esys and Esub are the total energies of the combined system and the bare substrate,

and Emol is the total energy of the neutral molecule. The energy for the combined system

was calculated from a PBEh (α = 0.63) calculation with the small unit cell containing

one molecule and the relaxation strategy described in the methods section of the main

publication. The energy for the bare substrate was calculated in an equivalent manner

without the adsorbate. The energy Emol was obtained from a gas-phase calculation of the

molecule. For the adsorption energy values neglecting van-der-Waals (vdW) interaction,

we subtracted the vdW contribution to the total energies (the geometries were obtained

including vdW interaction).
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Molecular Orbital Density of States

In Fig. S3(a) we plot the molecular orbital density of states (MODOS) for the F4TCNQ

molecule on undoped ZnO (10-10). Integration of each state up to the Fermi-energy then

yields its formal occupation, as shown in Figure S3(b). The orbitals associated with the

cyano groups (HOMO-10 to HOMO-13) show clearly a reduced occupation, because of the

covalent bonding to surface Zn atoms. We find a notable occupation depletion of ca. 5%.

This leads to a net positive charge transfer from this deeper laying states of 0.1 e- (value

from Mulliken analysis of the cyano groups). For the other orbitals we find a rather weak

hybridization with the substrate. The HOMO of the molecule is broadened to some extent.

The LUMO basically does not hybridize at all with the bands of the semiconductor substrate,

showing no broadening and remaining essentially empty (The nominal LUMO occupation

of 2% and occupation numbers to be above 100%, that can be seen in Fig. S3(b), can be

ascribed to artefacts of the Mulliken scheme).

Figure S3: (a) Molecular orbital density of states (MODOS) projected on the free F4TCNQ
orbitals and (b) molecular orbital population analysis of a single F4TCNQ molecule on
undoped ZnO (10-10).
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Discussion of the Applied Exchange-Correlation Func-

tional: Determining the Hybrid Mixing Parameter

Describing the charge transfer, including the amount and particularly the localization of

charge, is a non-trivial task using computational methods based on density functional theory

(DFT). This is mainly attributed to the many-electron self-interaction error (MSIE) from

which most approximate density functionals suffer.9 This leads to a tendency of charge over-

delocalization for common local and semilocal functionals. Therefore, these functionals favor

FCT solutions for weakly hybridizing organic molecules adsorbed on inorganic substrates.10

For describing the physics of such systems it is important to at least know whether the used

functional does favor charge delocalization or localization.

In practice, the MSIE associated with approximate density functionals manifests itself as

the convexity or concavity of the total energy as a function of fractional number of electrons

N. In exact theory the ground-state energy with respect to N is known to be described by a

series of straight-line segments.11–13 The MSIE can, therefore, be defined indirectly using the

straight-line energy condition.11 A functional is defined as being free from many-electron SIE

if the total energy E(N) of anN electron system is a piecewise linear function between integer

particle numbers. A deviation from this straight-line condition in form of a concave or convex

E versus N curve is also referenced in the literature as localization error or delocalization

error, respectively. Commonly used semilocal functionals underestimate the total energy of a

system at factional occupation, leading to a convex energy curve and an over-delocalization

of charge.9,10,14 Hartree-Fock (HF), on the other hand, while being one-electron SI free by

construction, still suffers from many-electron SI resulting in an overestimation of the total

energy at factional occupation and charge over-localization.9,10,14

Because of this opposing trend for semilocal functionals and HF theory the deviation

from the straight-line condition can be reduced and even lifted by employing a portion of

the HF like exchange in a semilocal functional, resulting in so-called hybrid functionals.15
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The disadvantage of such functionals is that they are computationally much more costly

than their semilocal cousins. In this work, we apply the Perdew-Burke-Ernzerhof (PBEh)

family of hybrid functionals:16

EPBEh
xc = αEHF

x + (1− α)EPBE
x + EPBE

c (2)

for which the amount HF exchange can be tuned by the hybrid mixing parameter α ∈ [0, 1]

(α = 0 corresponds to the common PBE functional,17 the PBE0 functional is obtained

by setting α = 0.2518,19). The parameter α can be chosen to enforce the straight-line

condition by requiring that the derivative of the total energy with respect to the number

of electrons in the system, i.e. the orbital energy, does not change between integer electron

numbers. This criterion can be enforced, for example, between the neutral and the singly-

ionized system. It has recently been shown that when using hybrid functional DFT with

an optimized mixing parameter α∗ (i.e., the value at which the functional becomes MSIE-

free), both solutions, the ICT and the FCT case, are stable and energetically degenerate if

the straight line condition is fulfilled.1 This limits our possibility to use DFT to predict the

correct charge transfer mechanism, but gives us the opportunity to gain a deeper insight into

charge transfer systems by studying both possible solutions. Therefore, our study should

be seen as a proof of concept that both charge transfer mechanisms can in principle occur

simultaneously.

In the following we show how we determined the mixing parameter α used in this work.

We used the fact that the hybrid mixing parameter can be chosen to enforce the straight-line

condition by requiring that the derivative of the total-energy with respect to the number of

electrons in the system (in Kohn-Sham DFT this equals the energy of the orbital ε(N) that

is filled) does not change between integer electron numbers N . We enforced this criterion for

the free F4TCNQ molecule between the neutral and the singly-charged system and obtained

the optimal mixing parameter α∗ = 0.63 (For a specific system we denote the optimal mixing

parameter that fulfills the straight-line condition as α∗). This is the mixing parameter that
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is used throughout this work, although the surface system should require less HF exchange

than the molecule in the gas phase due to screening effects of the substrate.1 We note that

at α values below 0.2 the energy level alignment of the system is qualitatively no longer

reproduced correctly. There, the LUMO of the F4TCNQ molecule is shifted below the

valence band of the ZnO substrate, leading to a spurious charge transfer to the molecule

already without doping. Therefore, possibly not all aspects of the F4TCNQ/ZnO interface

can simultaneously be described correctly using hybrid functional DFT. To reproduce the

correct energy level alignment, we need to accept that the charge localization for the chosen

α parameter is driven towards over-localization and the integer charge transfer solutions

are energetically favored by the applied functional. In other words, we apply the gas phase

parameter because if using the α∗ for the interface system (which would be less than 0.2) we

obtain a spurious energy level alignment between the molecule and the substrate. We want

to stress here that the qualitative results in this contribution are not influenced by the used

functional as long we use a mixing parameter α > 0.2 and a correct energy level ordering is

assured. We tested that qualitatively equivalent results are obtained when using α = 0.25,

which is the default value for the PBE0 functional.18,19

Straight-Line Condition for F4-TCNQ in the Gas Phase

Determining the straight-line mixing parameter α∗ for gas phase molecules using a DFT

code capable of applying open boundary conditions is a straight forward procedure. We

calculated the molecular orbital energies for the neutral molecule and the anion (i.e. singly

charged molecule) using the optimized geometries of for various mixing parameters α. As

FHI-aims allows to calculate fractional occupations of the orbital energies as well we can

directly observe the concavity or convexity for the total energy curve (see Fig. S4). For PBE

(α = 0.0) the curve is clearly convex and for HF exchange (α = 1.0) the curve is clearly

concave. The total energies of the neutral molecule for every α are set to zero in this graph.

We can also see that the electron affinity (EA) calculated from the total energy difference
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between the anion and the neutral molecule obviously slightly depends on the amount of

HF exchange, as the curves for the different αs do net meet again for the single negatively

charged molecule.

Figure S4: Total energy as a function of LUMO occupation between a neutral molecule and
a anion for various hybrid mixing parameters α. Five charging levels have been considered
(N = 0, N = 0.25, N = 0.5, N = 0.75 and N = 1). The energy curves are aligned to be
zero for the neutral molecule.

To determine the optimal mixing parameter α∗ we use the orbital energy of the LUMO

(i.e. the derivative of the total energy curve). For a singly charged molecule, the LUMO of the

neutral molecule now becomes the SOMO of the charged molecule. The energetic evolution

of the LUMO as it becomes filled is plotted in Fig. S5(a) for various mixing parameters α.

In agreement with the total energy curves we find a increase of the LUMO orbital energy

as is become occupied for small mixing values α < 0.6 and an decrease for higher mixing

values α > 0.8. The slope of the orbital energies are obtained from a linear fit and plotted

in Fig. S5(b). A linear interpolation between the points results in a vanishing slope at the

straight-line mixing parameter α∗ = 0.63. This is similar to the value of 0.7 obtained for the

chemically similar TCNQ molecule.15
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Figure S5: (left) Evolution of LUMO orbital energy of F4TCNQ in the gas phase as is gets
(partially) occupied for different hybrid mixing parameters α. (right) Slope of the orbital
energy plotted as a function of α. At α∗ = 0.63 the slope is zero and the straight line
condition is fulfilled.
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(7) Scherbela, M.; Hörmann, L.; Jeindl, A.; Obersteiner, V.; Hofmann, O. T. Charting

the Energy Landscape of Metal/Organic Interfaces via Machine Learning. Phys. Rev.

Materials 2018, 2, 043803.

(8) Packwood, D. M.; Han, P.; Hitosugi, T. Chemical and Entropic Control on the Molec-

ular Self-Assembly Process. Nature Communications 2017, 8, 14463.

(9) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Many-Electron Self-Interaction Error in

Approximate Density Functionals. The Journal of Chemical Physics 2006, 125, 201102.

(10) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Localization and Delocalization Errors in

Density Functional Theory and Implications for Band-Gap Prediction. Physical review

letters 2008, 100, 146401.

(11) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Density-Functional Theory for

Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett.

1982, 49, 1691–1694.

(12) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.;

Staroverov, V. N.; Tao, J. Exchange and Correlation in Open Systems of Fluctuat-

ing Electron Number. Phys. Rev. A 2007, 76, 040501.

(13) Li, C.; Yang, W. On the Piecewise Convex or Concave Nature of Ground State Energy

as a Function of Fractional Number of Electrons for Approximate Density Functionals.

The Journal of Chemical Physics 2017, 146, 074107.

(14) Stein, T.; Autschbach, J.; Govind, N.; Kronik, L.; Baer, R. Curvature and Frontier

Orbital Energies in Density Functional Theory. The journal of physical chemistry letters

2012, 3, 3740–3744.

S13



(15) Atalla, V.; Zhang, I. Y.; Hofmann, O. T.; Ren, X.; Rinke, P.; Scheffler, M. Enforcing

the Linear Behavior of the Total Energy with Hybrid Functionals: Implications for

Charge Transfer, Interaction Energies, and the Random-Phase Approximation. Phys.

Rev. B 2016, 94, 035140.

(16) Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for Mixing Exact Exchange with

Density Functional Approximations. The Journal of chemical physics 1996, 105, 9982–

9985.

(17) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made

Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396.

(18) Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-Burke-Ernzerhof Exchange-

Correlation Functional. The Journal of Chemical Physics 1999, 110, 5029–5036.

(19) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Ad-

justable Parameters: The PBE0 Model. The Journal of Chemical Physics 1999, 110,

6158–6170.

S14


