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The following document contains suplemental information for “Contribution of Wildland-Fire 8 
Smoke to US PM2.5 and Its Influence on Recent Trends” by Katelyn O’Dell, Bonne Ford, Emily 9 
V. Fischer, and Jeffrey R. Pierce. The document is 7 pages in length and contains the following 10 
information: (1) Alternative statistical approach to calculate PM2.5 slopes presented in Figures 1 11 
and 2, (2) a description of the process used to determine the kriging parameters, (3) Figure 2 12 
trends for all other seasons using the observation-based approach, and (4) a discussion of 13 
interannual variability in two driving factors of smoke PM2.5 concentrations in the PNW: smoke 14 
concentration intensity and smoke day frequency. The four sections and associated figures are 15 
listed in the table of contents below. 16 
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Alternative statistical approach 33 

For the alternative statistical approach, we follow a similar methodology outlined in the main 34 

text with the exception of the linear-least squares regression and associated significance test. 35 

Here we estimate slopes using the Theil-Sen estimator1which calculates a linear-least squares 36 

regression between each possible pair of points in the dataset (here, each available year) and 37 

takes the median of the resulting slopes. We use Kendall’s tau to estimate the statistical 38 

significance of the slopes. The Theil-Sen estimator and Kendall’s tau have been used recently in 39 

air quality trend studies2,3as they are less sensitive to outliers. We apply this alternative statistical 40 

approach to the datasets shown in Figures 1 and 2 of the main text. Results are presented in 41 

Figures S1 and S2. The two methods result it similar slopes for each dataset across the domain.  42 

 43 

Figure S1. Thiel slopes of seasonal-mean PM2.5 at EPA AQS sites from 2006-2016. Sites with 44 

significant correlations at the 95% confidence level according to Kendall’s tau are outlined in 45 

black; sites with insignificant correlations are outlined in gray. Dashed line shown at 100o W.46 
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 47 

Figure S2. Thiel slopes of summer-mean (JAS) total PM2.5, nonsmoke PM2.5 (summer median 48 

for monitor-HMS method), and smoke PM2.5 from 2006-2016 for the monitor-HMS (panels a, b, 49 

and c) and GEOS-Chem (panels d, e, and f) methods. Locations with significant correlations at 50 

the 95% confidence level according to Kendall’s tau are dotted.  51 

Determining kriging parameters  52 

Kriging parameters (sill, range, and nugget) are determined using a k-fold cross validation with 53 

ten folds. 2,700 different combinations of parameters are tested. Values tested for each parameter 54 

are as follows: sill: 0.2, 0.4, 0.6, 0.8, 1.0, … 3.0; range: 0.5, 1.5, 2.0 … 10.0; nugget: 0.1, 0.2, 0.3 55 

… 1.0. The parameters are evaluated over the western US with the sites shown in Figure S3 for 56 

May - October of 2015. For each set of parameters, the available monitoring sites were divided 57 

into ten unique groups (or ‘folds’) containing 101 monitors each (except the final group which 58 

contained 104 monitors). We remove one group of monitors and krige the remaining monitors to 59 

obtain a continuous estimate of PM2.5 across the domain. We evaluate the krigged estimate 60 

against the PM2.5 concentrations reported by the removed monitors for each day by calculating 61 

R2, slope, mean bias, and mean absolute error. This process is repeated for each group of62 
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monitors. We then average the statistical parameters across the ten folds. We select the set of 63 

parameters we use in this study from the 15 sets of parameters that produce an R2 in the highest 64 

10%, slope in the highest 10%, mean bias in the lowest 10% absolute values, and mean absolute 65 

error in the lowest 10%.   66 

Figure S3. Kriging domain (shaded region) and sites used for selecting kriging parameters. 67 

Black points indicate locations of monitors available in the EPA AQS dataset. Blue points 68 

indicate locations of monitors used to constrain the edges of the kriging domain, but not used in 69 

the kriging evaluation. Red points indicate locations of monitors used in the interpolation and to 70 

evaluate the kriged surface. Note: black points within the kriging domain represent locations of 71 

monitors with no available data during the time period that we use to test the kriging parameters 72 

(May - October 2015). 73 

Total, nonsmoke, and smoke PM2.5 trends in winter, spring, and fall 74 

Figure S4 shows the trends in total, nonsmoke, and smoke PM2.5 for winter, spring, and fall 75 

seasons. Trends were calculated using the observation-based method described for the summer  76 
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 77 

Figure S4. Trends in total, nonsmoke, and smoke PM2.5 for winter (panels a, b, and c), spring 78 

(panels d, e, and f), and fall (panels g, h, and i). 79 

season trends in the main text. Overall, the total and nonsmoke trends are decreasing in all 80 

seasons with a few exceptions in New York and northern California. Neither of these increases 81 

are reflected in the observations and thus could be an artifact of the kriging. In the case of the 82 

spring increases in California, the increasing trend could be due to separating out an apparent 83 

decreasing trend in smoke PM2.5. The insignficant decreasing spring trend in smoke PM2.5 in 84 

northern Califonia is likely due to the large fire season in June 2008 near the start of our study 85 

period. The spring trends in smoke PM2.5 also show insignificant increases along the Mississippi 86 

River, where there is often a large amount of agricultural burning in spring. The overall smoke 87 

trend in both winter and fall is close to zero, due to the lack of smoke days in both seasons.88 
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There are slight, insignificant increases in smoke PM2.5 across South Carolina in the fall season, 89 

likely trend in both winter and fall is close to zero, due to the lack of smoke days in both seasons. 90 

For the fall and winter seasons with very few smoke days and near-zero trend in smoke PM2.5, 91 

the difference between the nonsmoke and total PM2.5 trends is likely not attributable to smoke 92 

and could arise from differences between the mean and median PM2.5.  93 

 94 

Interannual variability in drivers of smoke PM2.5 concentations 95 

In Figure S5, we are investigating two potential driving factors of interannual variability in 96 

smoke PM2.5 in the Pacific Northwest (PNW) region defined by the grey boxes in Figure 2a of 97 

the main text. Interannual variability of smoke PM2.5 in the PNW (orange bars in Figure S5a) 98 

may be driven by two factors:(1) the frequency of smoke days (purple bars in Figure S5b) and  99 

100 
Figure S5. Panel (a): Smoke contribution to summer-mean PM2.5 from the monitor-HMS method 101 

in the PNW (the orange portion of Figure 3a in the main text). Panel (b): Left axis: Black line 102 

shows the area-averaged summer (JAS) mean smoke PM2.5 estimated using the monitor-HMS 103 

method on smoke-influenced days across the Pacific Northwest (PNW). Right axis: The average 104 

fraction of PNW area covered by a smoke plume during the summer is represented by the purple 105 

bars (i.e., the fraction of days that are smoke days). 106 
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(2) smoke PM2.5 concentrations on smoke days (black line in Figure S5b); i.e., is smoke 107 

occurring more/less frequently, or are smoke concentrations higher/lower when they occur. The 108 

product of the smoke day frequency and smoke PM2.5 concentrations on smoke days gives an 109 

estimate of summer-mean smoke PM2.5. This value differs from the smoke PM2.5 contribution 110 

shown in Figure S5a due to our method of defining nonsmoke PM2.5 as a seasonal median rather 111 

than mean on nonsmoke days.  112 

 113 

The summer-mean fraction of total area in the PNW with smoke somewhere in the column (i.e., 114 

the summer mean smoke-day frequency) ranges from 10 - 15% in low fire years (e.g. 2010) to 115 

>50% in extreme years (e.g. 2012). The summer-mean smoke PM2.5 concentrations on smoke 116 

days range from ~2 µg m-3 in low fire years to ~6 µg m-3 in high fire 117 

years according to the monitor-HMS method. There is a moderate correlation between the two 118 

cases (R2 = 0.36); big fire years tend to have higher values for both metrics. However, some 119 

years with high smoke contributions to the summer-mean total PM2.5 (Figure S5a) are more 120 

driven by extensive smoke spatial/temporal coverage (e.g. 2012) while others are more driven by 121 

higher smoke PM2.5 concentrations on smoke days (e.g. 2015). Overall, 2012 and 2015 are the 122 

two years with the highest smoke contributions to the summer-mean total PM2.5 (Figure S5a), yet 123 

we estimate that they achieved this for different reasons. It is unclear from our estimates alone 124 

what is driving the independent variability in smoke area/temporal coverage versus smoke PM2.5 125 

concentrations. Large interannual variability in both the area/frequency of smoke days and 126 

smoke PM2.5 on smoke days obscures decreasing trends in nonsmoke summer PM2.5 in this 127 

region (Figure 3 in the main text and Figure S5 in the supplement). 128 
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