SUPPORTING INFORMATION

1,4-Palladium Shift/C($\left.\mathbf{s p}^{3}\right)$-H Activation Strategy for the Remote Construction of 5-Membered Rings

Ronan Rocaboy and Olivier Baudoin*
*University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland E-mail: olivier.baudoin@unibas.ch

1- General information: 2
2- General procedures: 4
3- Table $\mathrm{S} 1: 1,4-\mathrm{Pd}$ shift/C($\left.\mathrm{sp}^{3}\right)$-H activation reaction optimization: 6
4- Amines: 7
5- Synthesis of reaction substrates: 9
6- Scheme S1: Experiments with deuterated substrates: 41
7- $\quad 1,4-\mathrm{Pd}$ shift $/ \mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation products: 42
8- Checkcif for compound 2 y : 67
9- NMR Spectras: 70

1- General information:

Techniques

All reactions involving air-sensitive material were carried out in pre-dried glassware under an argon atmosphere by using Schlenk techniques employing double-line argon-vacuum lines and working in an argon-filled glove box. Analytical thin layer chromatography (TLC) was performed using pre-coated Merck silica gel 60 F254 plates (0.25 mm). Visualization of the developed chromatogram was performed by UV absorbance (254 nm) or TLC stains (KMnO4 and Phosphomolybdic acid). Flash chromatography was performed using Silicycle SiliaFlash P60 (230-400 mesh) with the indicated solvent system, using gradients of increasing polarity in most cases.

Chemicals

Anhydrous THF, DME, DMF, toluene were purchased from Acros Organics or Sigma-Aldrich. The solvents were degassed by three cycles of freeze-pump-thaw and storing in single-necked flasks equipped with a J-Young PTFE valve when necessary. $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}$ was purchased from Strem. All other chemical reagents were purchased from Sigma-Aldrich, Acros Organics, Fisher, and Fluorochem and used as received without further purification unless otherwise stated.

Instrumentation

Preparative HPLC was performed using a preparative Shimadzu HPLC system with a Gemini $10 \mu \mathrm{~m}$ NX-C18, LC Column $150 \times 30 \mathrm{~mm}$.

Melting points were obtained on a Büchi B-565, and are uncorrected. IR spectra were recorded on an ATR Varian Scimitar 800 and are reported in reciprocal centimeters (cm-1).

Nuclear magnetic resonance spectra were recorded on a Bruker Advance $400(400 \mathrm{MHz})$, on a Bruker Advance 500 (500 MHz) or a Bruker Advance $600(600 \mathrm{MHz}$) in deuterated chloroform S4 (residual peaks $1 \mathrm{H} \delta 7.26 \mathrm{ppm}, 13 \mathrm{C} \delta 77.16 \mathrm{ppm}$) unless otherwise noted. 19F NMR spectra were referenced to external CFCl3.31P NMR spectra were referenced to external 85% phosphoric acid. Data are reported in parts per million (ppm) as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintuplet, sept $=$ septuplet, $\mathrm{m}=$ multiplet and brs = broad singlet), coupling constant in Hz and integration. High resolution
mass spectra were recorded by Dr. H. Nadig (Department of Chemistry, University of Basel) on a Bruker maXis 4G QTOF ESI mass spectrometer. X-ray crystallographic analysis was performed by Dr. M. Neuburger of the University of Basel.

2- General procedures:

General procedure for Knoevenagel condensations:

In a round bottom flask was stirred the ortho-bromobenzaldehyde derivatives (1 equiv), malonic acid (1.1 equiv), piperidine (1.1 equiv) in pyridine (2.5 M) at $90^{\circ} \mathrm{C}$ for 15 h . Pyridine was removed under vacuum, the crude mixture was acidified with $\mathrm{HCl}(2 \mathrm{M})$ and extracted with AcOEt (3 times). The crude mixture was dried over sodium sulfate, filtered and evaporated under vacuum. The acid was purified by precipitated in $\mathrm{Et}_{2} \mathrm{O}$ or used without further purifications for next step.

General procedure for aldolisation reaction:

Aldehyde (1 equiv) and ketone (1 equiv) were dissolved in EtOH (1 M), followed by addition of NaOH (1 equiv) in water (1 M). The reaction was stirred at $45^{\circ} \mathrm{C}$ until completion and evaporated under vacuum. The crude was dissolved in dichloromethane and the organic phase was washed with water. The crude was dried over sodium sulfate, filtered and evaporated under vacuum. The desired chalcones were purified by chromatography on silica gel using cyclohexane/AcOEt as solvent.

General procedure for amide synthesis:

The carboxylic acid (1 equiv) was suspended in dichloromethane (0.05 M) with DMF (0.01 equiv). Oxalyl chloride (1.5 equiv) was carefully added to the resulting mixture, which was then stirred for 2 h . The solvent and excess of oxalyl chloride were removed under vacuum, and the crude was dissolved in dichloromethane (0.05 M). Then, a solution of amine (1 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (2 equiv) in dichloromethane (0.05 M) was carefully added. The reaction was followed by TLC (cyclohexane/AcOEt). After completion, the solvent was removed and the crude was purified by chromatography on silica gel, using cyclohexane/AcOEt as solvent.

General procedure for the $1,4-\mathrm{Pd}$ shift $/ \mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation:

In a 10 mL screw cap charged with amide ($0.1 \mathrm{mmol}, 1$ equiv) was weighted in a glovebox $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}$ (when mentioned) ($2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), pivalic acid ($0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(0.15 \mathrm{mmol}, 1.5$ equiv). The vial was charged with mesitylene $(4 \mathrm{~mL})$ and stirred under argon in a previously heated heating block at $160^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, filtered over celite, and evaporated under vacuum. The crude was purified by preparative HPLC using gradient of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right.$:
$\mathrm{MeCN})$ [90:10] to [10:90]. The collected fractions were evaporated under vacuum to afford the desired product.

3- Table S1: 1,4-Pd shift/C($\left.\mathbf{s p}^{3}\right)$-H activation reaction optimization:

Pd source	$\begin{gathered} \text { Additive (30 } \\ \mathrm{mol} \%) \end{gathered}$	Base	Solvent	NMR yield (Isolated)
$\begin{gathered} \mathrm{Pd}\left(\mathrm{P} t-\mathrm{Bu}_{3}\right)_{2}(10 \\ \mathrm{mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv.) } \end{gathered}$	Mesitylene $[0.05 \mathrm{M}]$	0\%
$\begin{gathered} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \\ \mathrm{mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv.) } \end{gathered}$	Mesitylene $[0.05 \mathrm{M}]$	8\%
$\begin{gathered} {\left[\mathrm { Pd } \left(\eta^{3}-\right.\right.} \\ \text { allyl } \left.) \mathrm{Cl}_{2}\right] / \mathrm{PPh}_{3} \\ (10 \mathrm{~mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Cs}_{2} \mathrm{CO}_{3}(2 \\ \text { equiv.) } \end{gathered}$	Mesitylene $[0.05 \mathrm{M}]$	0\%
$\begin{gathered} \mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{PCy}_{3} \\ (10 \mathrm{~mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv.) } \end{gathered}$	Mesitylene $[0.05 \mathrm{M}]$	31%
$\begin{gathered} \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(10 \\ \mathrm{mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv. }) \end{gathered}$	Mesitylene $[0.05 \mathrm{M}]$	65\%
$\begin{gathered} \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(10 \\ \mathrm{mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv. }) \end{gathered}$	Mesitylene $[0.025 \mathrm{M}]$	100\% (94\%)
$\begin{gathered} \mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(5 \\ \mathrm{mol} \%) \end{gathered}$	PivOH	$\begin{gathered} \mathrm{Rb}_{2} \mathrm{CO}_{3}(1.5 \\ \text { equiv. }) \end{gathered}$	Mesitylene $[0.025 \mathrm{M}]$	51\%

4- Amines:

$\underline{N-(2,4,6-T r i m e t h o x y b e n z y l) p r o p a n-2-a m i n e ~} \mathrm{~S}_{\mathrm{a}}$:

Exact Mass: 239.1521
N-(2,4,6-trimethoxybenzyl)propan-2-amine was obtained according to a known procedure.
The physical and spectroscopic properties matched those described in the literature. ${ }^{1}$

$\underline{N \text {-(2,4,6-trimethoxybenzyl)ethanamine } \mathbf{S}_{\mathrm{b}}:}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3}$
Exact Mass: 225.1365

N -(2,4,6-trimethoxybenzyl)ethanamine_was obtained according to a known procedure.
The physical and spectroscopic properties matched those described in the literature. ${ }^{1}$

2-Methyl- N-(2,4,6-trimethoxybenzyl)propan-2-amine S_{c} :

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}$
Exact Mass: 253.1678

2-Methyl-N-(2,4,6-trimethoxybenzyl)propan-2-amine was obtained according to a known procedure.

The physical and spectroscopic properties matched those described in the literature. ${ }^{1}$

$\underline{N \text {-(Cyclopentylmethyl)propan-2-amine } \mathbf{S}_{\mathrm{i}}:}$

Exact Mass: 141.1517

N -(Cyclopentylmethyl)propan-2-amine was obtained according to a known procedure.
The physical and spectroscopic properties matched those described in the literature. ${ }^{1}$

5- Synthesis of reaction substrates:

(E)-3-(2-bromophenyl)-N-isopropyl-N-(2,4,6-trimethoxybenzyl)acrylamide

1a:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrNO}_{4}$ Exact Mass: 447.1045

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($411 \mathrm{mg}, 1.81 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.26 \mathrm{~mL}, 2.72 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S}_{\mathbf{a}}\left(433 \mathrm{mg}, 1.81 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.51 $\mathrm{mL}, 3.62 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 a}$ was obtained as a white solid ($720 \mathrm{mg}, 1.6 \mathrm{mmol}, 89 \%$).
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.88(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.14-4.05$ (sept, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrNaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 470.0943 ; found: 470.0937

IR (neat) : $v=2362,1596,1467 \mathrm{~cm}^{-1}$
m.p.: $86-88^{\circ} \mathrm{C}$

(E)-3-(2-bromophenyl)-N-(propan-2-yl-1,1,1,3,3,3-d6)-N-

(2,4,6)trimethoxybenzyl)acrylamide-2-d 1a-d :

(2,4,6-trimethoxyphenyl)methanamine hydrochloride ($500 \mathrm{mg}, 2.14 \mathrm{mmol}, 1$ equiv) was exchanged with methanol- $\mathrm{D}_{4}(10 \mathrm{~mL})$ by stirring at room temperature overnight. After evaporation of the volatiles, the free amine was reacted with acetone- $\mathrm{D}_{6}(2.4 \mathrm{~mL}, 32 \mathrm{mmol}, 15$ equiv) in dry benzene (20 mL) and refluxed in a Dean-Stark apparatus overnight. The volatiles were removed under vacuum, and the imine was then dissolved in diglyme (15 mL) and cooled to $0^{\circ} \mathrm{C}$ with an ice batch. $\mathrm{NaBD}_{4}(4.28 \mathrm{mmol}, 179 \mathrm{mg}, 2$ equiv) was carefully added to the solution, which was slowly warmed to room temperature. After completion, the reaction was quenched with $2 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 \times 15 \mathrm{~mL})$. The combined organic phases were dried over sodium sulfate, filtered and evaporated under vacuum. The desired amine was obtained without further purification. ($508 \mathrm{mg}, 2.12 \mathrm{mmol}, 99 \%$).

Malonic acid- D_{4} ($3 \mathrm{~g}, 27.8 \mathrm{mmol}$, 1 equiv), 2-Bromobenzaldehyde ($5.14 \mathrm{~g}, 27.8 \mathrm{mmol}, 1$ equiv), piperidine (2 drops) were refluxed in pyridine (50 mL) for 3 h . Solvent were removed, and the reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum to afford the deuterated cinnamic acid derivative ($6.26 \mathrm{~g}, 27.45 \mathrm{mmol}, 99 \%$).

The deuterated cinnamic acid derivative ($274 \mathrm{mg}, 1.2 \mathrm{mmol}$, 1 equiv) was reacted with oxalyl chloride ($0.17 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the deuterated amine ($294 \mathrm{mg}, 1.2 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.4 \mathrm{mmol}, 2$
equiv) in dichloromethane. After evaporation and purification, 1a-d7 was obtained as a white solid (412 $\mathrm{mg}, 0.9 \mathrm{mmol}, 75 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.12-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.78 (s, 6H).
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=166.7,161.1,159.7,138.0,136.6,133.4,129.9,127.6,127.5$, 124.9, 106.4, $90.5,55.5,55.4,49.0,39.7$.

(E)-3-(2-bromophenyl)-N-(propan-2-yl-1,1,1,3,3,3-d6)-N-(2,4,6-

 trimethoxybenzyl)acrylamide 1a-d6:

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($182 \mathrm{mg}, 0.8 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.11 \mathrm{~mL}, 1.2 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the deuterated amine ($195 \mathrm{mg}, 0.8 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.22$ $\mathrm{mL}, 1.6 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 a - d} \mathbf{6}$ was obtained as a white solid ($302 \mathrm{mg}, 0.66 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\boldsymbol{\delta}=7.87(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.12-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}(101 ~ M H z, ~ C D C l 3) ~ \delta=166.8, ~ 161.1, ~ 159.7, ~ 138.0, ~ 136.6, ~ 133.4, ~ 129.9, ~ 127.6, ~ 127.5, ~$ 124.9, 124.9, 106.4, 90.6, 55.5, 55.4, 39.7.

(E)-3-(2-bromophenyl)-N-isopropyl-N-(2,4,6-trimethoxybenzyl)acrylamide-

2-d 1a-d $:$

The deuterated cinnamic acid derivative ($251 \mathrm{mg}, 1.1 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.15 \mathrm{~mL}, 1.65 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S a}_{\mathbf{a}}$ ($261 \mathrm{mg}, 1.1 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.31 \mathrm{~mL}, 2.2 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1a-di was obtained as a white solid ($451 \mathrm{mg}, 1.0$ mmol, 91 \%).
$\underline{{ }^{1} \mathbf{H} \text { NMR (} 400 \mathrm{MHz} \text {, Chloroform- } \boldsymbol{d} \text {) } \boldsymbol{\delta}=7.91-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25}$ $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{sept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.77$ (s, 6H), 1.16 (d, J = 6.9 Hz, 6H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=166.7,161.1,159.7,138.0,136.5,133.4,129.9,127.6,127.5$, $124.9,106.4,90.5,55.5,55.4,49.1,39.6,19.9$.

(E)-3-(2-chlorophenyl)-N-isopropyl-N-(2,4,6-trimethoxybenzyl)acrylamide

1a':

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}_{4}$ Exact Mass: 403.1550

Following the general procedure for amide synthesis, 2-chlorocinnamic acid ($139 \mathrm{mg}, 0.76 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S a}_{\mathbf{a}}\left(182 \mathrm{mg}, 0.76 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.21 \mathrm{~mL}, 1.52 \mathrm{mmol}$, 2 equiv) in dichloromethane. After evaporation and purification, 1a' was obtained as a white solid (210 $\mathrm{mg}, 0.52 \mathrm{mmol}, 68 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.93(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{sept}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$), 3.77 ($\mathrm{s}, 6 \mathrm{H}$), 1.17 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=166.8,161.1,159.7,135.6,134.8,134.5,130.1,129.7,127.5$, 126.9, 124.8, 106.4, 90.5, 55.5, 55.4, 49.1, 39.7, 19.9.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 426.1448 ; found: 426.1451

IR (neat) : $v=2362,1592,1463 \mathrm{~cm}^{-1}$
m.p.: 67-69 ${ }^{\circ} \mathrm{C}$

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{4}$
Exact Mass: 433.0889

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($300 \mathrm{mg}, 1.32 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.17 \mathrm{~mL}, 1.98 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S b}_{\mathbf{b}}\left(297 \mathrm{mg}, 1.32 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.37$ $\mathrm{mL}, 2.64 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 b}$ was obtained as a yellowish oil ($487 \mathrm{mg}, 1.12 \mathrm{mmol}, 85 \%$).
${ }^{1}{ }^{\mathbf{H}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=8.04-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28$ $(\mathrm{m}, 1.8 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.15-6.09(\mathrm{~m}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 0.4 \mathrm{H})$, $4.61(\mathrm{~s}, 1.6 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 9 \mathrm{H}), 3.38(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1.6 \mathrm{H}), 3.27(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 1.07$ (t, J = 6.9 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=165.8,161.2,159.8,138.8,136.4,133.3,129.9,127.5,127.4$, $124.9,123.3,105.5,90.3,55.5,55.3,39.6,12.6$.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 434.0967 ; found: 434.0961
IR (neat) : $v=1597,1468 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-(tert-butyl)-N-(2,4,6

trimethoxybenzyl)acrylamide 1c:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{4}$
Exact Mass: 461.1202

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($1 \mathrm{~g}, 4.4 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.62 \mathrm{~mL}, 6.6 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The
acid chloride was then reacted with $\mathbf{S}_{\mathbf{c}}\left(1.11 \mathrm{~g}, 4.4 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(1.24 \mathrm{~mL}, 8.8 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 c}$ was obtained as a colorless oil ($1.45 \mathrm{~g}, 3.13$ mmol, 72%).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=169.3,160.7,159.3,136.6,136.6,133.2,129.8,128.0,127.6,127.5,124.7$, 107.5, 90.6, 57.5, 55.4, 55.4, 40.5, 28.5.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNNaO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 484.1099; found: 484.1094

IR (neat) : $v=1605,1465,1402,1128 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-cyclopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1d:

In a 250 mL round bottom flask equipped with stirring bar, cyclopropanamine ($0.22 \mathrm{~mL}, 3.16$ mmol, 1.2 equiv), 2,4,6-trimethoxybenzaldehyde ($496 \mathrm{mg}, 2.53 \mathrm{mmol}, 1$ equiv) and AcOH ($0.29 \mathrm{~mL}, 5.06 \mathrm{mmol}, 2$ equiv) were stirred for 2 h in 1,2-dichloroethane (50 mL) at room temperature. Then, $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.07 \mathrm{~g}, 5.06 \mathrm{mmol}, 2$ equiv) was added to the mixture which was stirred overnight. The crude was quenched with $\mathrm{NaOH}(2 \mathrm{M}, 50 \mathrm{~mL}$) and the crude was extracted with DCM ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The intermediate amine ($592 \mathrm{mg}, 2.50 \mathrm{mmol}, 99 \%$) was obtained as a clear oil and directly used for next step.

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($143 \mathrm{mg}, 0.632 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.09 \mathrm{~mL}, 0.948 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with N-protected cyclopropanamine intermediate ($150 \mathrm{mg}, 0.632 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.180 \mathrm{~mL}, 1.26 \mathrm{mmol}, 2$ equiv) in
dichloromethane. After evaporation and purification, 1d was obtained as a yellowish oil ($236 \mathrm{mg}, 0.529$ mmol, 84%).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \boldsymbol{\delta}=7.96(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.31-$ $7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 2.35-$ $2.25(\mathrm{~m}, 1 \mathrm{H}), 0.81-0.64(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=167.7,160.8,160.0,139.2,136.2,133.4,130.2,127.8,127.5$, 125.0, 123.7, 105.9, 90.3, 55.8, 55.4, 38.4, 28.0, 9.2.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 446.0967 ; found: 446.0961

IR (neat) : $v=2361,1646,1132 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-isopropyl-N-phenylacrylamide 1e:

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}$ Exact Mass: 343.0572

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($143 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with N-isopropylaniline ($86 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.18 \mathrm{~mL}, 1.26 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1e was obtained as a white solid ($151 \mathrm{mg}, 0.44 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.97(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{sept}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.13$ (d, J = 6.8 Hz, 6H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=165.0,140.0,138.4,135.6,133.3,130.7,130.3,129.4,128.5$, 127.8, 127.4, 125.1, 122.9, 46.7, 21.1.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 366.0469 ; found: 366.0464

IR (neat) : $v=2363,1650 \mathrm{~cm}^{-1}$
m.p.: $80-82^{\circ} \mathrm{C}$

(E)-3-(2-bromophenyl)-1-(2-methyl-3,4-dihydroquinolin-1(2H)-yl)prop-2-

en-1-one 1f:

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNO}$ Exact Mass: 355.0572

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($568 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.35 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with 2-methyl-1,2,3,4-tetrahydroquinoline ($368 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.69 \mathrm{~mL}, 5 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, if was obtained as a white solid ($720 \mathrm{mg}, 2.02 \mathrm{mmol}, 81 \%$).
${ }^{1}{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\boldsymbol{\delta}=8.06(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.38-$ $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dt}, \mathrm{J}=$ $14.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=165.1,140.2,137.2,135.7,133.5,130.5,127.8,127.8,127.6$, 126.5, 126.4, 125.9, 125.2, 123.3, 49.2, 32.7, 26.2, 20.4.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 378.0469 ; found: 378.0464

IR (neat) : $v=2361,1650,1354 \mathrm{~cm}^{-1}$
m.p.: $97-99^{\circ} \mathrm{C}$

(E)-3-(2-bromophenyl)-N,N-diisopropylacrylamide 1g:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrNO}$
Exact Mass: 309.0728

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($1.5 \mathrm{~g}, 6.61 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.94 \mathrm{~mL}, 9.92 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with diisopropylamine ($0.94 \mathrm{~mL}, 6.61 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.9 $\mathrm{mL}, 13.2 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 g}$ was obtained as a colorless oil ($1.76 \mathrm{~g}, 5.68 \mathrm{mmol}, 86 \%$).
 $7.27(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $1.47-1.23(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=165.9,139.0,136.1,133.5,130.3,127.7,127.6,125.0,124.2$.
HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrNaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 332.0626; found: 332.0621

IR (neat) : $v=2362,1598 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N,N-diethylacrylamide 1h:

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrNO}$
Exact Mass: 281.0415

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($232 \mathrm{mg}, 1.02 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.15 \mathrm{~mL}, 1.53 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with diethylamine ($0.1 \mathrm{~mL}, 1.02 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.29 \mathrm{~mL}, 2.04 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 h}$ was obtained as a yellowish oil ($187 \mathrm{mg}, 0.663 \mathrm{mmol}, 65 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.99(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.40$ (m, 4H), $1.29-1.16(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=165.4,140.8,135.9,133.5,130.5,127.9,127.6,125.1,121.3$, 42.5, 41.2, 15.2, 13.3.

HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 282.0494; found: 282.0488

$$
\mathbf{I R} \text { (neat) : } v=2363,1649 \mathrm{~cm}^{-1}
$$

(E)-3-(2-bromophenyl)-N-isopropyl-N-(3-phenylpropyl)acrylamide 1i:

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}$
Exact Mass: 385.1041
In a 250 mL round bottom flask equipped with stirring bar, hydrocinnamaldehyde (0.72 mL , $5.43 \mathrm{mmol}, 1$ equiv), isopropylamine ($0.93 \mathrm{~mL}, 10.9 \mathrm{mmol}, 2$ equiv) and AcOH ($0.62 \mathrm{~mL}, 10.9$ mmol, 2 equiv) were stirred for 2 h in 1,2-dichloroethane (30 mL) at room temperature. Then, $\mathrm{NaBH}(\mathrm{OAc})_{3}(2.3 \mathrm{~g}, 10.9 \mathrm{mmol}, 2$ equiv) was added to the mixture which was stirred overnight. The crude was quenched with $\mathrm{NaOH}(2 \mathrm{M}, 30 \mathrm{~mL})$ and the crude was extracted with DCM (3 x 30 mL). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The intermediate amine ($956 \mathrm{mg}, 10.8 \mathrm{mmol}, 99 \%$) was obtained as a clear oil and directly used for next step.

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($136 \mathrm{mg}, 0.6 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.08 \mathrm{~mL}, 0.9 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the intermediate amine ($106 \mathrm{mg}, 0.6 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ $(0.17 \mathrm{~mL}, 1.2 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 i}$ was obtained as a colorless oil ($187 \mathrm{mg}, 0.484 \mathrm{mmol}, 81 \%$).
$\underline{{ }^{1} \text { H NMR (} \mathbf{5 0 0} \mathbf{~ M H z} \text {, Chloroform- } d \text {) } \boldsymbol{\delta}=8.00-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26}$ (m, 3H), $7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 0.4 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 0.6 \mathrm{H}), 4.86-4.75(\mathrm{~m}$, 0.6 H), $4.31-4.22(\mathrm{~m}, 0.4 \mathrm{H}), 3.36-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.95$ (m, 2H), $1.23-1.15(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=166.2,165.6,141.8,140.9,140.8,140.1,135.7,133.5,130.4$, $128.8,128.6,127.9,127.8,127.6,126.4,126.0,125.2,122.1,121.7,49.0,45.9,42.4,41.4,33.9$, 33.4, 33.3, 31.1, 21.7, 20.7.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 408.0939 ; found: 408.0933

IR (neat) : $v=2363,1647,1420 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-(cyclopentylmethyl)-N-isopropylacrylamide 1j:

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrNO}$
Exact Mass: 349.1041

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($82 \mathrm{mg}, 0.363 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.047 \mathrm{~mL}, 0.543 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S}_{\mathbf{j}}\left(51 \mathrm{mg}, 0.363 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.1$ $\mathrm{mL}, 0.72 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1} \mathbf{j}$ was obtained as a colorless oil ($74 \mathrm{mg}, 0.211 \mathrm{mmol}, 58 \%$).
${ }^{1}$ HNMR (500 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.99-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.77(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.33$ $-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.21(\mathrm{~m}$, $8 \mathrm{H})$.
${ }^{{ }^{13} \mathbf{C}} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=180.4,166.1,145.1,140.1,139.8,135.9,133.4,130.2,127.7$, $127.5,124.9,122.7,49.8,49.1,48.9,46.1,43.5,41.7,40.1,35.6,31.0,30.8,30.0,27.0,25.8$, 24.9, 23.7, 21.9, 20.5.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrNaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 372.0939$; found: 372.0931

IR (neat) : $v=2361,1648,1423 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-isopropyl-N-(3-methoxypropyl)acrylamide 1k:

In a 250 mL round bottom flask equipped with stirring bar, 3-methyloxypropylamine (0.92 mL , 9.05 mmol , 1 equiv), acetone ($2.7 \mathrm{~mL}, 36.2 \mathrm{mmol}$, 4 equiv) and $\mathrm{AcOH}(1.0 \mathrm{~mL}, 18.1 \mathrm{mmol}, 2$ equiv) were stirred for 2 h in 1,2-dichloroethane (50 mL) at room temperature. Then, $\mathrm{NaBH}(\mathrm{OAc})_{3}(3.8 \mathrm{~g}, 18.1 \mathrm{mmol}, 2$ equiv) was added to the mixture which was stirred overnight.

The crude was quenched with $\mathrm{NaOH}(2 \mathrm{M}, 50 \mathrm{~mL})$ and the crude was extracted with DCM (3 x 50 mL). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The intermediate amine ($976 \mathrm{mg}, 8.33 \mathrm{mmol}, 92 \%$) was obtained as a clear oil and directly used for next step.

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($227 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.13 \mathrm{~mL}, 1 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the intermediate amine ($117 \mathrm{mg}, 1 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ $(0.28 \mathrm{~mL}, 2 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 k}$ was obtained as a colorless oil ($267 \mathrm{mg}, 0.82 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=8.03(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 0.4 \mathrm{H})$, $7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.83$ (d, J = $15.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.85-4.75(\mathrm{~m}, 0.6 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 0.4 \mathrm{H}), 3.50-3.37(\mathrm{~m}, 4 \mathrm{H}), 3.37$ - $3.32(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=166.2,165.9,140.8,140.0,135.9,133.5,130.4,127.9,127.7$, $127.6,125.2,125.0,122.2,122.1,71.1,69.8,58.9,58.7,49.1,46.0,40.4,39.2,32.3,29.7,21.6$, 20.6.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{BrNaNO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 362.0732 ; found: 362.0726

IR (neat) : $v=2361,1642 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-(2-cyanoethyl)-N-isopropylacrylamide 11:

In a 25 mL double-neck flask charged with isopropylamine ($1.1 \mathrm{~mL}, 12.6 \mathrm{mmol}, 2$ equiv) in $\mathrm{EtOH}(6 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ was added via dropping funnel, a solution of acrylonitrile (0.41 $\mathrm{mL}, 6.32 \mathrm{mmol}, 1$ equiv) in $\mathrm{EtOH}(6 \mathrm{~mL})$. The reaction was allowed to reach room temperature, and the volatiles were removed under vacuum. The desired amine was pure enough to react in next step ($454 \mathrm{mg}, 4.04 \mathrm{mmol}, 64 \%$).

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($143 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the intermediate amine ($70 \mathrm{mg}, 0.63 \mathrm{mmol}$, 1 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.18 \mathrm{~mL}, 1.26 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 11 was obtained as a yellowish oil ($134 \mathrm{mg}, 0.42 \mathrm{mmol}, 66 \%$).
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.95(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=167.0,141.5,135.4,133.6,130.9,127.8,127.7,125.2,120.8$, 118.5, 49.1, 37.8, 21.7, 17.2.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrNaN}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 343.0422 ; found: 343.0416

IR (neat) : $v=2363,1646,1418 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-N-isopropyl-N-(3

(phenylsulfonyl)propyl)acrylamide 1m:

In a 25 mL double-neck flask charged with isopropylamine ($1.1 \mathrm{~mL}, 12.6 \mathrm{mmol}, 2$ equiv) in EtOH (6 mL) and cooled to $0^{\circ} \mathrm{C}$ was added via dropping funnel, a solution of phenyl vinyl sulfone ($1.06 \mathrm{~g}, 6.32 \mathrm{mmol}, 1$ equiv) in $\mathrm{EtOH}(6 \mathrm{~mL})$. The reaction was allowed to reach room temperature, and the volatiles were removed under vacuum. The desired amine was pure enough to react in next step ($1.4 \mathrm{~g}, 6.31 \mathrm{mmol}, 99 \%$).

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($143 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the intermediate amine ($144 \mathrm{mg}, 0.63 \mathrm{mmol}$,

1 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.18 \mathrm{~mL}, 1.26 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $1 \mathbf{m}$ was obtained as a colorless oil ($202 \mathrm{mg}, 0.46 \mathrm{mmol}, 73 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=8.00-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.43$ (m, 4H), $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.57(\mathrm{~m}, 1 \mathrm{H}), 4.91-4.66(\mathrm{~m}, 0.3 \mathrm{H})$, $4.33-4.21(\mathrm{~m}, 0.7 \mathrm{H}), 3.81-3.71(\mathrm{~m}, 0.7 \mathrm{H}), 3.68-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 0.4 \mathrm{H}), 1.25$ $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 5 \mathrm{H}), 1.17-1.06(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=166.5,141.3,139.1,135.4,134.0,133.5,130.8,129.5,128.0$, $127.8,127.7,125.1,120.6,54.5,49.3,35.6,29.8,21.4,20.4$.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNaNO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 458.0401 ; found: 458.0396

IR (neat) : $v=2362,904 \mathrm{~cm}^{-1}$

ethyl (E)-3-(3-(2-bromophenyl)-N-isopropylacrylamido)propanoate 1n:

In a 25 mL double-neck flask charged with isopropylamine ($1.1 \mathrm{~mL}, 12.6 \mathrm{mmol}, 2$ equiv) in EtOH (6 mL) and cooled to $0^{\circ} \mathrm{C}$ was added via dropping funnel, a solution of ethyl acrylate ($633 \mathrm{mg}, 6.32 \mathrm{mmol}, 1$ equiv) in $\mathrm{EtOH}(6 \mathrm{~mL}$). The reaction was allowed to reach room temperature, and the volatiles were removed under vacuum. The desired amine was pure enough to react in next step ($876 \mathrm{mg}, 5.5 \mathrm{mmol}, 87 \%$).

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($143 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with the intermediate amine ($101 \mathrm{mg}, 0.63 \mathrm{mmol}$, 1 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.18 \mathrm{~mL}, 1.26 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1 n was obtained as a yellowish oil ($152 \mathrm{mg}, 0.41 \mathrm{mmol}, 65 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=8.07-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.74(\mathrm{~m}, 0.4 \mathrm{H}), 4.33-4.23(\mathrm{~m}$, $0.6 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.13(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=172.2,171.2,166.3,165.7,141.7,140.5,135.7,133.5,130.6$, $127.8,127.7,125.0,121.6,121.3,61.1,60.6,49.1,46.0,38.7,37.3,36.8,34.1,21.5,20.5,14.3$. HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNaNO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 390.0681 ; found: 390.0677

IR (neat) : $v=2362,1624,1423 \mathrm{~cm}^{-1}$

(E)-3-(2-bromo-5-fluorophenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 10:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrFNO}_{4}$ Exact Mass: 465.0951

Following the general procedure for amide synthesis, 2-Bromo-5-fluorocinnamic acid ($186 \mathrm{mg}, 0.76$ mmol, 1 equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S} \mathbf{a}(182 \mathrm{mg}, 0.76 \mathrm{mmol}, 1$ equiv $)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.22$ $\mathrm{mL}, 1.52 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 0}$ was obtained as a white solid ($302 \mathrm{mg}, 0.65 \mathrm{mmol}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.80(\mathrm{~d}, J=15.4,1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.07$ $(\mathrm{m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}=166.2,163.1,161.1,160.7,159.5,137.0,134.4(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz})$, $125.9,118.9(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 117.0(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 114.1(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 106.2$, 90.5, 55.4, 55.3, 49.3, 39.6, 19.8.
${ }^{19} \mathbf{F}$ NMR $\left(\mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=-114.9$.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrFNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 466.1029$; found: 466.1026

IR (neat) : $v=2360,1597,1464 \mathrm{~cm}^{-1}$
m.p.: $92-94^{\circ} \mathrm{C}$

(E)-3-(2-bromo-5-(trifluoromethyl)phenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1p:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrF}_{3} \mathrm{NO}_{4}$
Exact Mass: 515.0919

Following the general procedure for Knoevenagel condensation, 2-bromo-5(trifluoromethyl)benzaldehyde ($500 \mathrm{mg}, 1.98 \mathrm{mmol}, 1$ equiv) was reacted with malonic acid ($227 \mathrm{mg}, 2.18 \mathrm{mmol}, 1.1$ equiv), piperidine ($0.22 \mathrm{~mL}, 2.18 \mathrm{mmol}, 1.1$ equiv) in pyridine at 90 ${ }^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($584 \mathrm{mg}, 1.98$ $\mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.28 \mathrm{~mL}, 2.97 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S}_{\mathbf{a}}\left(474 \mathrm{mg}, 1.98 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.55 \mathrm{~mL}, 3.96 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 p}$ was obtained as a colorless oil ($896 \mathrm{mg}, 1.73 \mathrm{mmol}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\boldsymbol{\delta}=7.88-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{sept}, \mathrm{J}=6.9 \mathrm{~Hz}$, 1 H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.79 ($\mathrm{s}, 6 \mathrm{H}$), 1.21 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=166.1,161.3,159.7,137.6,136.7,134.0,130.1(\mathrm{q}, \mathrm{J}=32.6 \mathrm{~Hz})$, $128.5,126.6,126.1,124.3(\mathrm{q}, \mathrm{J}=2.9 \mathrm{~Hz}), 123.9(\mathrm{q}, \mathrm{J}=271.9 \mathrm{~Hz}), 106.4,90.6,55.5,55.4,49.4$, 39.7, 19.9.
${ }^{19} \mathbf{F}$ NMR ($\left.471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-62.7$.
HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrF}_{3} \mathrm{NaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 538.0817; found: 538.0812

IR (neat) : $v=2362,1648 \mathrm{~cm}^{-1}$

(E)-3-(2-bromo-5-methoxyphenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1q:

Following the general procedure for Knoevenagel condensation, 2-bromo-5methoxybenzaldehyde ($2 \mathrm{~g}, 9.02 \mathrm{mmol}$, 1 equiv) was reacted with malonic acid ($1.03 \mathrm{~g}, 9.92$ mmol, 1.1 equiv), piperidine ($0.98 \mathrm{~mL}, 9.92 \mathrm{mmol}, 1.1$ equiv) in pyridine at $90{ }^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($195 \mathrm{mg}, 0.76 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.1 \mathrm{~mL}, 1.14 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S a}\left(182 \mathrm{mg}, 0.76 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.214 \mathrm{~mL}, 1.52 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $1 \mathbf{q}$ was obtained as a white solid ($284 \mathrm{mg}, 0.594 \mathrm{mmol}, 78 \%$).
${ }^{1}$ H NMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.82(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $\mathrm{J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.76-7.70(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.09$ (sept, J = 6.9 Hz, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=166.7,161.2,159.7,159.0,138.1,137.3,133.9,125.1,115.7$, 115.6, 113.2, 106.4, 90.5, 55.6, 55.6, 55.4, 49.1, 39.7, 19.9.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNaNO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 500.1049 ; found: 500.1043

IR (neat) : $v=2364 \mathrm{~cm}^{-1}$
m.p.: $104-106^{\circ} \mathrm{C}$

(E)-3-(5-(benzyloxy)-2-bromophenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1 r :

In a 100 mL flask charged with 2-bromo-5-hydroxybenzaldehyde ($500 \mathrm{mg}, 2.48 \mathrm{mmol}, 1$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.02 \mathrm{~g}, 7.44 \mathrm{mmol}, 3$ equiv) in DMF (10 mL) was added benzyl bromide (0.45 mL , $3.72 \mathrm{mmol}, 1.5$ equiv). The reaction was stirred to room temperature and monitored by TLC using Cyclohexane/AcOEt as solvent. After completion, the reaction was quenched with water (10 mL) and extracted with AcOEt ($3 \times 10 \mathrm{~mL}$). The combined organic phases were washed with $10 \% \mathrm{LiCl}$ solution ($3 \times 10 \mathrm{~mL}$) and the crude was dried over sodium sulfate, filtered and evaporated under vacuum. The crude was used in next step without further purification (720 $\mathrm{mg}, 2.48 \mathrm{mmol}, 99 \%)$.

Following the general procedure for Knoevenagel condensation, 5-(benzyloxy)-2bromobenzaldehyde ($720 \mathrm{mg}, 2.48 \mathrm{mmol}, 1$ equiv) was reacted with malonic acid (284 mg , 2.73 mmol , 1.1 equiv), piperidine ($0.25 \mathrm{~mL}, 2.73 \mathrm{mmol}, 1.1$ equiv) in pyridine at $90^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($333 \mathrm{mg}, 1.0 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.14 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S}_{\mathbf{a}}\left(239 \mathrm{mg}, 1.0 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.28 $\mathrm{mL}, 2 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $1 \mathbf{r}$ was obtained as a yellowish solid ($387 \mathrm{mg}, 0.7 \mathrm{mmol}, 70 \%$).
${ }^{1}$ HNMR ($\mathbf{4 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.85-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}$, $5 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.16-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=166.6,161.1,159.7,158.1,137.9,137.3,136.5,133.9,128.8$, $128.3,127.6,125.1,116.6,115.8,114.2,106.4,90.6,70.5,55.4,49.1,39.6,19.9$.

HRMS (ESI): Calculated for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{BrNO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 554.1542 ; found: 554.1537

IR (neat) : $v=1594,1464,905 \mathrm{~cm}^{-1}$
m.p.: $115-117^{\circ} \mathrm{C}$

(E)-3-(6-bromobenzo[d] 1,3]dioxol-5-yl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1s:

Following the general procedure for Knoevenagel condensation, 6-Bromopiperonal (2.29 g, 10 mmol, 1 equiv) was reacted with malonic acid ($1.15 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv), piperidine (1.1 $\mathrm{mL}, 11 \mathrm{mmol}, 1.1$ equiv) in pyridine at $90^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($148 \mathrm{mg}, 0.547 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride (0.07 $\mathrm{mL}, 0.821 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S}_{\mathbf{a}}\left(131 \mathrm{mg}, 0.547 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.154 \mathrm{~mL}, 1.09 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $1 \mathbf{s}$ was obtained as a yellowish solid ($202 \mathrm{mg}, 0.41 \mathrm{mmol}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.83(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.11(\mathrm{~s}$, 2H), 5.99 (s, 2H), 4.57 (s, 2H), 4.09 (sept, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 ($\mathrm{s}, 3 \mathrm{H}$), 3.78 ($\mathrm{s}, 6 \mathrm{H}$), 1.17 (d, J $=6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=166.9,161.2,159.7,149.0,147.8,138.0,129.8,123.1,116.8$, 113.2, 106.5, 102.1, 90.6, 55.6, 55.4, 49.3, 39.7, 19.9.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{BrNaNO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 514.0841 ; found: 514.0836

IR (neat) : $v=2362,1596,1474 \mathrm{~cm}^{-1}$
m.p.: $115-117^{\circ} \mathrm{C}$

(E)-3-(2-bromo-4-fluorophenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1t:

Following the general procedure for Knoevenagel condensation, 2-bromo-4fluorobenzaldehyde ($812 \mathrm{mg}, 4 \mathrm{mmol}, 1$ equiv) was reacted with malonic acid ($458 \mathrm{mg}, 4.4$ $\mathrm{mmol}, 1.1$ equiv), piperidine ($0.44 \mathrm{~mL}, 4.4 \mathrm{mmol}, 1.1$ equiv) in pyridine at $90^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($155 \mathrm{mg}, 0.63 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.08 \mathrm{~mL}, 0.95 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S a}_{\mathbf{a}}\left(151 \mathrm{mg}, 0.63 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.26 \mathrm{mmol}$, 2 equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 t}$ was obtained as a yellowish solid (236 $\mathrm{mg}, 0.506 \mathrm{mmol}, 80 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\boldsymbol{\delta}=7.82(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.36-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.08$ (sept, J = 6.9 Hz, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=166.6,162.7(\mathrm{~d}, \mathrm{~J}=257 \mathrm{~Hz}), 161.1,159.7,137.0,132.9,132.9$, 128.6 (d, J = 8.2 Hz), , 125.0, 124.9, 124.8, 120.4 (d, J = 24.7 Hz), 114.9 (d, J = 21.2 Hz), 106.4, 55.6, 55.4, 49.2, 39.7, 19.9.
$\underline{\left.{ }^{19} \mathbf{F} \text { NMR (} \mathbf{3 7 6} \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=-111.1 .}$

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{BrFNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 466.1029$; found: 466.1024

IR (neat) : $v=2361,159,1460 \mathrm{~cm}^{-1}$
m.p.: $95-97^{\circ} \mathrm{C}$

(E)-3-(2-bromo-4-methylphenyl)-N-isopropyl-N-(2,4,6-

trimethoxybenzyl)acrylamide 1u:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{4}$ Exact Mass: 461.1202

Following the general procedure for Knoevenagel condensation, 2-bromo-4methylbenzaldehyde ($500 \mathrm{mg}, 2.51 \mathrm{mmol}, 1$ equiv) was reacted with malonic acid (287 mg , 2.76 mmol , 1.1 equiv), piperidine ($0.27 \mathrm{~mL}, 2.76 \mathrm{mmol}$, 1.1 equiv) in pyridine at $90^{\circ} \mathrm{C}$ for 15 h . After evaporation and purification, the intermediate carboxylic acid ($605 \mathrm{mg}, 2.51 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.35 \mathrm{~mL}, 3.76 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with $\mathbf{S a}_{\mathbf{a}}\left(601 \mathrm{mg}, 2.51 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.70$ $\mathrm{mL}, 5.0 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 u}$ was obtained as a white solid ($812 \mathrm{mg}, 1.75 \mathrm{mmol}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.90-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41$ $(\mathrm{m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{sept}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=166.9,161.1,159.7,140.5,138.0,133.8,133.6,128.5,127.3$, 124.8, 123.9, 106.5, 90.6, 55.6, 55.4, 49.1, 39.7, 21.0, 19.9.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrNO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 462.1280$; found: 462.1274

IR (neat) : $v=1598,1458,1130 \mathrm{~cm}^{-1}$
m.p.: $94-96^{\circ} \mathrm{C}$

(E)-3-(2-bromophenyl)-1-(2-methylpyrrolidin-1-yl)prop-2-en-1-one 1v:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}$ Exact Mass: 293.0415

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($330 \mathrm{mg}, 1.45 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.20 \mathrm{~mL}, 2.18 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with 2-methylpyrrolidine $(0.14 \mathrm{~mL}, 1.45 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.41 \mathrm{~mL}, 2.90 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1v was obtained as a yellowish solid ($369 \mathrm{mg}, 1.25 \mathrm{mmol}, 86 \%$).
${ }^{1}$ HNMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=8.06-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.61(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.13$ $-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=164.1,164.0,140.3,140.2,135.9,135.8,133.5,133.5,130.5$, $127.9,127.9,127.6,125.2,125.1,122.7,122.2,53.4,53.1,47.1,46.1,33.4,32.1,24.1,22.3$, 22.0, 19.7.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 316.0313$; found: 316.0307

IR (neat) : $v=1649,1603,1407 \mathrm{~cm}^{-1}$
m.p.: $78-80^{\circ} \mathrm{C}$

(S,E)-3-(2-bromophenyl)-1-(2-methylpyrrolidin-1-yl)prop-2-en-1-one (S)1v:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}$
Exact Mass: 293.0415
Following the general procedure for amide synthesis, 2-bromocinnamic acid ($2.65 \mathrm{~g}, 11.7 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($1.66 \mathrm{~mL}, 17.6 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with (S)-2-methylpyrrolidine ($1 \mathrm{~g}, 11.7 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$
($3.25 \mathrm{~mL}, 23.4 \mathrm{mmol}$, 2 equiv) in dichloromethane. After evaporation and purification, (\mathbf{S})-1v was obtained as a yellowish oil ($3.44 \mathrm{~g}, 11.7 \mathrm{mmol}, 100 \%$).
${ }^{1}$ HNMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=8.04-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.62(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.15$ $-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=164.1,164.0,140.3,140.1,135.9,135.8,133.5,133.5,130.5$, $127.9,127.9,127.6,125.2,125.1,122.7,122.2,53.4,53.1,47.1,46.1,33.4,32.1,24.1,22.3$, 22.0, 19.7.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 316.0313$; found: 316.0306

IR (neat) : $v=1649,1407 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(2-methylpiperidin-1-yl)prop-2-en-1-one 1w:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}$
Exact Mass: 307.0572

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($232 \mathrm{mg}, 1.02 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.14 \mathrm{~mL}, 1.53 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with 2-methylpiperidine ($0.12 \mathrm{~mL}, 1.02 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.28 \mathrm{~mL}, 2.04 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 w}$ was obtained as a yellowish oil ($292 \mathrm{mg}, 0.95 \mathrm{mmol}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.88(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{ddd}, \mathrm{J}=8.9,7.9,1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25$ $-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=165.2,140.0,135.9,133.3,130.2,127.6,127.5,124.8,121.8$, 18.9 .

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 308.0650; found: 308.0645

IR (neat) : $v=2362,2157,1644 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(2-methylazepan-1-yl)prop-2-en-1-one 1x:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNO}$ Exact Mass: 321.0728

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($300 \mathrm{mg}, 1.32 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride $(0.17 \mathrm{~mL}, 1.98 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with 2-methylazepane hydrochloride (198 mg, $1.32 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.37 \mathrm{~mL}, 2.64 \mathrm{mmol}, 2$ equiv $)$ in dichloromethane. After evaporation and purification, 1x was obtained as a colorless oil ($205 \mathrm{mg}, 0.64 \mathrm{mmol}, 48 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=8.06-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.56(\mathrm{~m}, 0.6 \mathrm{H}), 4.23$ $-4.15(\mathrm{~m}, 0.4 \mathrm{H}), 4.10-3.97(\mathrm{~m}, 0.4 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 0.6 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 0.5 \mathrm{H}), 2.79-$ $2.67(\mathrm{~m}, 0.5 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 0.5 \mathrm{H}), 1.57-1.49$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 1.5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=165.7,165.6,140.8,140.4,135.9,135.9,133.4,133.4,130.3$, $130.3,127.8,127.7,127.5,125.0,124.9,121.6,121.5,53.0,50.1,41.7,40.4,36.4,35.6,30.7$, 29.9, 29.4, 28.3, 25.2, 25.0, 21.2, 19.4.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 322.0807$; found: 322.0801

IR (neat) : $v=2362,1623 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(2-methyl-1,3-oxazinan-3-yl)prop-2-en-1-one 1y:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2}$
Exact Mass: 309.0364

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($350 \mathrm{mg}, 1.54 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.20 \mathrm{~mL}, 2.31 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in
dichloromethane. The acid chloride was then reacted with 2-methyl-1,3-oxazinane ($156 \mathrm{mg}, 1.54 \mathrm{mmol}$, 1 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.43 \mathrm{~mL}, 3.08 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1y was obtained as a yellowish oil ($361 \mathrm{mg}, 1.16 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.94-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 4.27$ (br. s, 1H), 3.99 (ddd, $\mathrm{J}=11.9,10.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.73$ $-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=164.6,141.1,135.4,133.4,130.6,127.7,127.6,124.9,120.7$, 79.5, 59.7, 25.7, 16.5.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 310.0443$; found: 310.0437

IR (neat) : $v=1625,1424,1107 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(3-methylmorpholino)prop-2-en-1-one 1z:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{2}$

 Exact Mass: 309.0364Following the general procedure for amide synthesis, 2-bromocinnamic acid ($568 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.35 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with 3-methylmorpholine ($253 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (0.69 $\mathrm{mL}, 5 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, $\mathbf{1 z}$ was obtained as a colorless oil ($580 \mathrm{mg}, 1.87 \mathrm{mmol}, 75 \%$).
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.96(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.57-$ $7.54(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.00$ $(\mathrm{m}, 2 \mathrm{H}), 3.97-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H})$, 3.30 (br. s, 1H), 1.37 (d, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=165.3,141.4,135.6,133.5,130.7,127.8,127.7,125.0,120.4$, 71.0, 67.1.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 310.0443$; found: 310.0438

IR (neat) : $v=1625,1425,1106 \mathrm{~cm}^{-1}$

carboxylate 1aa:

(R)-2-methylpiperazine ($600 \mathrm{mg}, 6 \mathrm{mmol}, 1$ equiv) was dissolved in dry dichloromethane (80 $\mathrm{mL})$ and cooled to $0^{\circ} \mathrm{C}$. A solution of the $\mathrm{Boc}_{2} \mathrm{O}(1.31 \mathrm{~g}, 6 \mathrm{mmol}, 1$ equiv) in 20 mL of dry dichloromethanewas added dropwise in 30 min and then pyridine ($0.73 \mathrm{~mL}, 9 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was allowed to reach room temperature and was stirred overnight. The crude was quenched with $\mathrm{NaOH}(1 \mathrm{M}, 60 \mathrm{~mL})$ and the aqueous phase was extracted with DCM (3 x 20 mL). The combined organic layers were dried over sodium sulfate, filtered and evaporated under vacuum. The N-Boc protected piperazine was then used without further purification for next step.

Following the general procedure for amide synthesis, 2-bromocinnamic acid ($568 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) was reacted with oxalyl chloride ($0.35 \mathrm{~mL}, 3.75 \mathrm{mmol}, 1.5$ equiv) with DMF (1 drop) in dichloromethane. The acid chloride was then reacted with N-Boc protected piperazine ($500 \mathrm{mg}, 2.5 \mathrm{mmol}, 1$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.69 \mathrm{~mL}, 5 \mathrm{mmol}, 2$ equiv) in dichloromethane. After evaporation and purification, 1aa was obtained as a yellowish oil ($684 \mathrm{mg}, 1.67 \mathrm{mmol}, 67 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\boldsymbol{\delta}=7.94(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.46-2.79$ (m, 3H), $1.48(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=165.4,155.1,141.4,135.6,133.5,130.7,127.8,127.7,125.1$, 120.7, 80.4, 28.5.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BrNaN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 431.0946; found: 431.0941

IR (neat) : $v=2362,1690,1423 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(o-tolyl)prop-2-en-1-one 3a:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}$
Exact Mass: 300.0150

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($1.11 \mathrm{~g}, 6$ mmol, 1 equiv), 1-(o-tolyl)ethan-1-one ($805 \mathrm{mg}, 6 \mathrm{mmol}, 1$ equiv), and $\mathrm{NaOH}(240 \mathrm{mg}, 6$ mmol , 1 equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford 3a as a yellowish solid ($1.8 \mathrm{~g}, 6 \mathrm{mmol}$, 100%).

The physical and spectroscopic properties matched those described in the literature. ${ }^{2}$
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.84(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.62-$ $7.59(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}$, $1 \mathrm{H}), 7.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=196.2,144.4,138.7,137.3,134.9,133.6,131.5,130.8,129.4$, 129.3, 128.5, 128.0, 127.9, 125.9, 125.6, 20.5.

(E)-3-(2-bromophenyl)-1-(2,6-dimethylphenyl)prop-2-en-1-one 3b:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}$
Exact Mass: 314.0306

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($1.11 \mathrm{~g}, 6$ mmol, 1 equiv), 1-(2,6 -dimethylphenyl)ethan-1-one ($889 \mathrm{mg}, 6 \mathrm{mmol}, 1$ equiv), and NaOH ($240 \mathrm{mg}, 6 \mathrm{mmol}$, 1 equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 b}$ as a colorless oil (1.89 g, $6 \mathrm{mmol}, 99 \%$).
$\underline{{ }^{1} \mathbf{H} \text { NMR (} \mathbf{4 0 0} \mathbf{~ M H z} \text {, Chloroform- } \boldsymbol{d} \text {) } \boldsymbol{\delta}=7.68-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.56}$ (m, 1H), $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25$ (s, 6H).
${ }^{{ }^{13}} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=201.2,145.9,139.6,134.7,134.2,133.5,131.8,130.7,129.0$, 128.1, 128.0, 127.8, 125.8, 19.6, 19.6.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 315.0385$; found: 315.0379
IR (neat) : $v=1650,1462 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(4-methoxy-2-methylphenyl)prop-2-en-1-one 3c:

A solution of 1-(4-hydroxy-2-methylphenyl)ethan-1-one ($1.0 \mathrm{~g}, 6.66 \mathrm{mmol}, 1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($1.2 \mathrm{~g}, 8.66 \mathrm{mmol}, 1.3$ equiv) and iodomethane ($0.62 \mathrm{ml}, 10 \mathrm{mmol}, 1.5$ equiv) in acetone (25 ml) was heated to $70{ }^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature, the crude was evaporated under vacuum, dissolved in DCM (30 mL) and washed with water ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over sodium sulfate, filtered and evaporated under vacuum. The desired product was used without further purification ($6.65 \mathrm{mmol}, 1.09 \mathrm{~g}, 99 \%$).

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($555 \mathrm{mg}, 3$ mmol, 1 equiv), 1-(4-methoxy-2-methylphenyl)ethan-1-one ($493 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv), and NaOH ($120 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 c}$ as a yellowish oil ($992 \mathrm{mg}, 3 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.89(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.37-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 2.54 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{{ }^{13}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=193.8,161.8,143.0,141.4,135.3,133.6,131.6,131.3,131.1$, 129.1, 128.0, 127.8, 125.8, 117.3, 110.7, 55.5, 21.5.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 331.0334$; found: 331.0330

IR (neat) : $v=1652,1465 \mathrm{~cm}^{-1}$

(E)-1-(4-(benzyloxy)-2-methylphenyl)-3-(2-bromophenyl)prop-2-en-1-one
 3d:

1-(4-hydroxy-2-methylphenyl)ethan-1-one ($1.0 \mathrm{~g}, 6.66 \mathrm{mmol}$, 1 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.66$ mmol, 1.3 equiv) were stirred in DMF (25 mL). Benzyl bromide ($0.96 \mathrm{~mL}, 8 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 6 h . After cooling to room temperature, the crude was quenched with water $(25 \mathrm{~mL})$ and extracted with Et2O ($3 \times 30 \mathrm{~mL}$). The combined organic layers were then washed with $\mathrm{LiCl}(10 \%, 50 \mathrm{~mL})$, dried over sodium sulfate, filtered and evaporated under vacuum. The crude was used in the next step without further purification ($1.6 \mathrm{~g}, 6.66 \mathrm{mmol}, 100 \%$).

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($1.23 \mathrm{~g}, 6.66$ mmol, 1 equiv), 1-(4-benzyl-2-methylphenyl)ethan-1-one ($1.6 \mathrm{~g}, 6.66 \mathrm{mmol}, 1$ equiv), and NaOH ($270 \mathrm{mg}, 6.66 \mathrm{mmol}$, 1 equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 d}$ as a yellowish oil ($2.7 \mathrm{~g}, 6.65 \mathrm{mmol}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \mathbf{d}) $\boldsymbol{\delta}=7.90(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.46-$ $7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.84$ (m, 2H), $5.13(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=193.8,160.9,143.0,141.4,136.6,135.2,133.6,131.6,131.3$, 131.3, 129.1, 128.8, 128.3, 128.0, 127.9, 127.6, 125.9, 118.2, 111.5, 70.1, 21.5.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{BrO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 407.0647; found: 407.0641

IR (neat) : $v=1620,1455 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(2,4-dimethylphenyl)prop-2-en-1-one 3e:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}$

Exact Mass: 314.0306

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($555 \mathrm{~g}, 3$ mmol, 1 equiv), 1-(2,4-dimethylphenyl)ethan-1-one ($445 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv), and NaOH ($120 \mathrm{mg}, 3 \mathrm{mmol}$, 1 equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 e}$ as a yellowish oil (941 $\mathrm{mg}, 2.99 \mathrm{mmol}, 99 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.86(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}$, $3 \mathrm{H}), 2.47$ ($\mathrm{s}, 3 \mathrm{H}$), $2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=195.5,143.7,141.4,138.0,135.8,135.1,133.6,132.5,131.4$, 129.4, 129.1, 128.0, 127.9, 126.3, 125.9, 21.6, 20.7.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 315.0385$; found: 315.0378
IR (neat) : $v=1650,1464 \mathrm{~cm}^{-1}$

(E)-3-(2-bromophenyl)-1-(4-fluoro-2-methylphenyl)prop-2-en-1-one 3f:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrFO}$
Exact Mass: 318.0056

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($555 \mathrm{mg}, 3$ mmol, 1 equiv), 1-(4-fluoro-2-methylphenyl)ethan-1-one ($457 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv), and NaOH ($120 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 f}$ as a colorless oil ($812 \mathrm{mg}, 2.54 \mathrm{mmol}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.84(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.64-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=194.8,163.9(\mathrm{~d}, \mathrm{~J}=251.8 \mathrm{~Hz}), 144.4,141.2(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz})$, $134.8,133.7,131.6,131.0(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}), 129.1,128.0(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}), 126.0$, $118.4(\mathrm{~d}, \mathrm{~J}=22.4$ $\mathrm{Hz}), 112.6(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 20.8(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz})$.
$\underline{\left.{ }^{19} \mathbf{F} \text { NMR (} \mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=-109.1 . ~}$
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNaFO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 340.9953$; found: 340.9948
IR (neat) : $v=1625,1456 \mathrm{~cm}^{-1}$

(E)-1-(4-amino-2-methylphenyl)-3-(2-bromophenyl)prop-2-en-1-one 3g:

Following the general procedure for aldolisation reaction, 2-bromobenzaldehyde ($555 \mathrm{mg}, 3$ mmol, 1 equiv), N-(4-acetyl-3-methylphenyl)acetamide ($574 \mathrm{mg}, 3 \mathrm{mmol}, 1$ equiv), and NaOH ($120 \mathrm{mg}, 3 \mathrm{mmol}$, 1 equiv) were reacted in $\mathrm{EtOH} /$ water at $45^{\circ} \mathrm{C}$. After completion, the crude was extracted and purified by chromatography on silica gel to afford $\mathbf{3 g}$ as a yellowish oil (178 $\mathrm{mg}, 0.56 \mathrm{mmol}, 19 \%)$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\boldsymbol{\delta}=7.91(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.65-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.45(\mathrm{~m}, 2 \mathrm{H}), 4.01$ (br. s, 2H), $2.52(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=192.4,149.7,142.2,141.8,135.6,133.6,132.5,131.0,129.0$, 128.3, 127.9, 127.8, 125.7, 117.8, 111.2, 22.0.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrNO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 316.0337; found: 316.0334

IR (neat) : $v=1652,1449 \mathrm{~cm}^{-1}$

6- Scheme S1: Experiments with deuterated substrates:

The deuteration experiments were run in standard conditions. Starting from 1a-d7, no deuterium incorporation was observed on the aromatic ring. Proton incorporation on the γ-lactam brings evidence for the reversibility of the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation step, This H / D exchange can be assigned to an external proton source (presumably from mesitylene or traces of water) exchanging with the deuterium atom on the Pd-bound pivalate, consistent with previous observations. ${ }^{3}$ Similar H/D exchanges were observed from partially deuterated substrates 1ad_{6} and 1a-d .

7- $\underline{\mathbf{1 , 4}-\mathrm{Pd} \text { shift } / \mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H} \text { activation products: }}$

(E)-3-benzylidene-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one 2a:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4}$
Exact Mass: 367.1784

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 a}(45 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}\left(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5\right.$ equiv) in mesitylene $(4 \mathrm{~mL})$ at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 a}$ was obtained as a yellowish oil ($36.5 \mathrm{mg}, 0.099 \mathrm{mmol}, 100 \%$).
${ }^{1}$ HNMR ($\mathbf{4 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.23(\mathrm{~m}$, $1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=14.1,1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.2,1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.48$ $-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=17.0 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.3,3 \mathrm{H})$.
${ }^{13}{ }^{13} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.1,161.1,160.1,136.5,132.1,129.5,129.4,128.7,128.1$, 104.7, $90.5,55.9,55.4,50.2,33.7,33.3,20.9$.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 390.1681$; found: 390.1676

IR (neat) : $v=2362,1682,1607,1417 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one 2a-

 d:
$\underline{{ }^{1} \mathbf{H} \text { NMR (} \mathbf{4 0 0} \mathbf{~ M H z} \text {, Chloroform- } \boldsymbol{d} \text {) } \boldsymbol{\delta}=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28}$ (m, 1H), $6.12(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79$
(s, 6H), $3.46-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 0.59 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 0.58 \mathrm{H}), 1.22-1.15(\mathrm{~m}$, 1.63 H).
${ }^{13}{ }^{1} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.2,161.2,160.2,136.5,129.5,128.7,128.1,104.7,90.5$, 55.9, 55.5, 33.3, 26.5.

(E)-3-benzylidene-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one 2a-

d:

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.26$ (m, 1H), $6.12(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}$, $6 \mathrm{H}), 3.47-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 0.51 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 0.50 \mathrm{H}), 1.22-1.18(\mathrm{~m}$, 1.59 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=168.2,161.2,160.2,136.5,129.5,128.7,128.1,104.7,90.5$, 55.9, 55.5, 33.3, 26.5.

(E)-3-benzylidene-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one 2a-

d:

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.28$ (m, 1H), $6.12(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79$ $(\mathrm{s}, 6 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{ddd}, \mathrm{J}=17.4,8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.21$ (d, J = 6.2 Hz, 3H).

(E)-3-benzylidene-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one 2b:

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4}$ Exact Mass: 353.1627

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 b}(43.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$), PCy_{3} ($2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 b}$ was obtained as a yellow oil ($16 \mathrm{mg}, 0.045 \mathrm{mmol}, 45 \%$).
${ }^{1}$ HNMR ($500 \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}$, $1 \mathrm{H}), 6.13(\mathrm{~s}, 2 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=7.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (ddd, J = 8.9, 5.9, 2.9 Hz, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=168.4,161.2,160.0,136.3,132.2,129.4,129.0,128.6,128.0$, 104.4, 90.3, 55.8, 55.3, 43.5, 35.3, 24.3.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 376.1525 ; found: 376.1519

IR (neat) : $v=2362,1604 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-5,5-dimethyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-2-one

2c:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}$ Exact Mass: 381.1940

Following the general procedure for the 1,4-Pd shift/C(sp^{3})-H activation, $1 \mathbf{c}(46.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene $(4 \mathrm{~mL})$ at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 c}$ was obtained as a colorless oil ($19.5 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, $1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 9 \mathrm{H}), 2.80(\mathrm{~s}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=168.3,161.0,159.8,136.6,131.7,129.6,129.4,128.7$, 128.1, 107.0, 90.5, 59.3, 55.9, 55.4, 42.5, 32.3, 27.7.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 382.2018$; found: 382.2013

IR (neat) : $v=2363,912 \mathrm{~cm}^{-1}$

(E)-4-benzylidene-2-(2,4,6-trimethoxybenzyl)-2-azabicyclo[3.1.0]hexan-3-

 one 2d:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$
Exact Mass: 365.1627

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathbf{d}(44.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$)
and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene $\left(4 \mathrm{~mL}\right.$) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 d}$ was obtained as a colorless oil ($25.5 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 3.01-2.92(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{dt}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.49-0.44(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.0,161.3,160.1,136.2,134.6,130.0,129.6,129.4,128.7$, 128.5, 128.3, 104.9, 90.4, 55.9, 55.5, 35.2, 35.2, 20.4, 13.1.

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 388.1525$; found: 388.1519

IR (neat) : $v=1681,1612,1419 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-1-isopropylindolin-2-one 2e:

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$
Exact Mass: 263.1310

Following the general procedure for the 1,4-Pd shift/C(sp $\left.{ }^{3}\right)$-H activation, $1 \mathbf{e}(34.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $2 \mathbf{e}$ was obtained as a yellow oil ($12.5 \mathrm{mg}, 0.048 \mathrm{mmol}, 48 \%$).
${ }^{1}$ H NMR (400 MHz , Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.83(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{sept}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (d, J = 7.0 Hz, 6H).
${ }^{13}{ }^{13}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.0,142.9,136.9,135.1,129.5,129.4,129.2,128.6,127.5$, 122.9, 121.7, 121.2, 109.8, 43.8, 19.5.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 286.1208; found: 286.1202
IR (neat) : $v=2361,1701,1463 \mathrm{~cm}^{-1}$

(E)-1-benzylidene-4-methyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-

2(1H)-one 2f:

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}$ Exact Mass: 275.1310

Following the general procedure for the 1,4-Pd shift/C(sp $\left.\mathrm{sp}^{3}\right)$ - H activation, $\mathbf{1 f}(36 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 f}$ was obtained as a yellow oil ($24 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$).
${ }^{1}$ H NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.82(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H})$, $7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dt}, \mathrm{J}$ $=16.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=167.3,139.9,137.0,135.3,129.6,129.5,128.7,128.7,128.5$, 121.2, 120.8, 120.0, 119.9, 44.2, 27.0, 20.8, 18.5.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 298.1208; found: 298.1202

IR (neat) : $v=2363,1701,1460 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-1-isopropyl-5-methylpyrrolidin-2-one 2g:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}$
Exact Mass: 229.1467

Following the general procedure for the 1,4-Pd shift/C(sp ${ }^{3}$)-H activation, $\mathbf{1 g}(31 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 g}$ was obtained as a colorless oil ($21 \mathrm{mg}, 0.097 \mathrm{mmol}, 97 \%$).
${ }^{1}$ HNMR ($\mathbf{4 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, 1 H), $4.23(\mathrm{sept}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{ddd}, \mathrm{J}=17.4,8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ $-2.59(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 6 M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.8,136.2,131.6,129.6,129.6,128.7,128.3,50.9,45.2,34.4$, 23.8, 21.8, 19.6.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 252.1364; found:252.1360

IR (neat) : $v=2363,1682,1423 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-1-ethylpyrrolidin-2-one 2h:

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$
Exact Mass: 201.1154

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathrm{~h}(28.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 h}$ was obtained as a yellow oil ($6.3 \mathrm{mg}, 0.031 \mathrm{mmol}, 31 \%$).
$\underline{{ }^{1} \text { H NMR }(400 ~ M H z, ~ C h l o r o f o r m-d) ~} \boldsymbol{\delta}=7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28$ (m, 2H), $3.55-3.47(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.9,136.1,131.5,129.8,129.6,128.8,128.4,44.1,37.9,24.5$, 12.7.

HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 224.1051; found: 224.1046

IR (neat) : $v=2364,1679,1608,1419 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-5-methyl-1-(3-phenylpropyl)pyrrolidin-2-one 2i:

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}$
Exact Mass: 305.1780

Following the general procedure for the $1,4-\mathrm{Pd}$ shift/ $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation, $\mathbf{1 i}(39 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 i}$ was obtained as a yellowish oil ($25 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(126 \mathbf{M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=169.1,141.6,136.1,131.0,130.0,129.6,128.8,128.6,128.5$, $128.4,126.1,51.1,40.6,33.8,33.5,29.2,20.9$.
HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 306.1858$; found: 306.1852

IR (neat) : $v=1679,1423 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-1-(cyclopentylmethyl)-5-methylpyrrolidin-2-one 2j:

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$
Exact Mass: 269.1780

Following the general procedure for the 1,4-Pd shift/ $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H activation, $\mathbf{1 j}$ ($35 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}\left(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5\right.$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 j}$ was obtained as a colorless oil ($18 \mathrm{mg}, 0.067 \mathrm{mmol}, 67 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=13.7,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, J=17.4,7.8,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(126 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=169.2,136.2,131.2,129.9,129.6,128.8,128.4,51.1,45.3,38.1$, $33.9,31.0,30.4,25.4,25.1,20.8$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 270.1858$; found: 270.1852

IR (neat) : $v=1685,1419 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-1-(3-methoxypropyl)-5-methylpyrrolidin-2-one 2k:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$ Exact Mass: 245.1416

Following the general procedure for the $1,4-\mathrm{Pd}$ shiff/C($\left(\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 k}(34 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 k}$ was obtained as a yellowish oil $(15.5 \mathrm{mg}, 0.060 \mathrm{mmol}, 60 \%)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\boldsymbol{\delta}=7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, $2 \mathrm{H}), 3.87-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=169.1,136.0,130.9,129.7,129.5,128.6,128.3,70.4,58.7,51.3$, 38.2, 33.7, 27.8, 20.9.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NaNO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 282.1470$; found: 282.1465
IR (neat) : $v=1681,1421,1115 \mathrm{~cm}^{-1}$

(E)-3-(3-benzylidene-5-methyl-2-oxopyrrolidin-1-yl)propanenitrile 21:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$
Exact Mass: 240.1263

Following the general procedure for the 1,4-Pd shiff/C(sp $\left.{ }^{3}\right)$-H activation, $\mathbf{1 1}$ ($32 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, 2 l was obtained as a colorless oil ($12 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$).
${ }^{1}$ HNMR ($\mathbf{4 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.33$ (m, $2 \mathrm{H}), 4.03-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dt}, \mathrm{J}=13.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{ddd}, \mathrm{J}=$ $17.5,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=169.6,135.5,131.1,129.6,129.4,128.7,118.1,52.0,37.4,33.8$, 20.9, 16.6.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaN}_{2} \mathrm{O}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$263.1160; found: 263.1155

IR (neat) : $v=2362,1682,1615 \mathrm{~cm}^{-1}$

(E)-3-benzylidene-5-methyl-1-(2-(phenylsulfonyl)ethyl)pyrrolidin-2-one 2m:

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$
Exact Mass: 355.1242

Following the general procedure for the 1,4-Pd shiff/C($\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathbf{m}(43.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}\left(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5\right.$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 m}$ was obtained as a colorless oil ($14.5 \mathrm{mg}, 0.040 \mathrm{mmol}, 40 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.96-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55$ $(\mathrm{m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 1 \mathrm{H})$, $3.92-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59$ $(\mathrm{m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=169.5,139.2,135.7,134.1,130.8,129.8,129.7,129.6,128.8$, 128.8, 128.0, 53.3, 52.0, 35.5, 33.8, 21.0.

HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NaNO}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 378.1140; found: 378.1137

IR (neat) : $v=1681,1614,1419 \mathrm{~cm}^{-1}$

ethyl (E)-3-(3-benzylidene-5-methyl-2-oxopyrrolidin-1-yl)propanoate 2n:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ Exact Mass: 287.1521

Following the general procedure for the 1,4-Pd shift/C(sp ${ }^{3}$)-H activation, $\mathbf{1 n}(37 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 n}$ was obtained as a yellowish oil ($18 \mathrm{mg}, 0.062 \mathrm{mmol}, 62 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29$ (m, 2H), $4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dt}, \mathrm{J}=14.3$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, \mathrm{J}=17.4,7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dt}, \mathrm{J}=16.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.54$ (m, 2H), $1.30(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=171.8,169.1,135.8,130.4,130.1,129.5,128.7,128.4,60.8$, 51.6, 36.8, 33.7, 32.8, 20.9, 14.2.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NaNO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 310.1419$; found: 310.1414

IR (neat) : $v=2361,1978,1732,1419 \mathrm{~cm}^{-1}$

(E)-3-(3-fluorobenzylidene)-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-

2-one 20:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNO}_{4}$
Exact Mass: 385.1689

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 0}(46.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene $\left(4 \mathrm{~mL}\right.$) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 0}$ was obtained as a colorless oil ($19.5 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$).
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\boldsymbol{\delta}=7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}$, $1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=14.2,1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}$ $=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}$, Chloroform- d) $\boldsymbol{\delta}=167.7,162.9(\mathrm{~d}, \mathrm{~J}=245.5 \mathrm{~Hz}$), 161.2, 160.1, 138.6 (d, J $=7.7 \mathrm{~Hz}), 133.5,130.1(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 128.2(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 125.5(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}$ $=21.7 \mathrm{~Hz}), 115.0(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 104.5,90.4,55.9,55.4,50.2,33.6,33.3$, 20.9.
$\underline{\left.{ }^{19} \text { F NMR (} \mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta=-113.01 .}$

HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 408.1587$; found: 408.1582
IR (neat) : $v=1679,1608,1419 \mathrm{~cm}^{-1}$

(E)-5-methyl-3-(4-(trifluoromethyl)benzylidene)-1-(2,4,6-

trimethoxybenzyl)pyrrolidin-2-one 2p:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4}$ Exact Mass: 435.1657

Following the general procedure for the 1,4-Pd shift/C(sp $\left.{ }^{3}\right)$-H activation, $1 \mathbf{p}(51.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 p}$ was obtained as a colorless oil ($33.5 \mathrm{mg}, 0.077 \mathrm{mmol}, 77 \%$).
${ }^{1}$ H NMR (400 MHz , Chloroform-d) $\boldsymbol{\delta}=7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, \mathrm{J}=17.4,8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}$, $1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=167.6,161.2,160.1,137.2,134.2,132.7,131.3,131.0,129.2$, $127.8,125.6(\mathrm{q}, \mathrm{J}=3.9 \mathrm{~Hz}), 124.6(\mathrm{q}, \mathrm{J}=3.1 \mathrm{~Hz}), 124.3(\mathrm{q}, \mathrm{J}=271.3 \mathrm{~Hz}), 104.5,90.5,55.9$, 55.5, 50.2, 33.6, 33.4, 20.9.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=-62.8$.
HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 436.1736$; found: 436.1730

IR (neat) : $v=1681,1609,1329,1132 \mathrm{~cm}^{-1}$

(E)-3-(3-methoxybenzylidene)-5-methyl-1-(2,4,6-

trimethoxybenzyl)pyrrolidin-2-one 2q:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5}$ Exact Mass: 397.1889

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathbf{q}(47.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $2 \mathbf{q}$ was obtained as a yellowish oil ($40 \mathrm{mg}, 0.039 \mathrm{mmol}, 100 \%$).
${ }^{{ }^{1} \mathbf{H}} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- $\boldsymbol{d}) \boldsymbol{\delta} \boldsymbol{\delta}=7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03$ (m, 1H), $7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (d, J = $14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.07$ (ddd, J = 17.4, 8.2, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.47(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=168.0,161.1,160.1,159.7,137.8,132.4,129.6,129.3,122.1$, 115.0, 113.6, 104.6, 90.4, 55.9, 55.4, 55.4, 55.4, 50.2, 33.6, 33.3, 20.9.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NaNO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 420.1787 ; found: 420.1781

IR (neat) : $v=1690,1423 \mathrm{~cm}^{-1}$

(E)-3-(3-(benzyloxy)benzylidene)-5-methyl-1-(2,4,6-

trimethoxybenzyl)pyrrolidin-2-one 2r:

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NO}_{5}$
Exact Mass: 473.2202

Following the general procedure for the 1,4-Pd shiff/C(sp $\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathbf{r}(55 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 r}$ was obtained as a yellowish oil ($34.5 \mathrm{mg}, 0.073 \mathrm{mmol}, 73 \%$).
${ }^{1}$ HNMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}$, $3 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, \mathrm{J}=17.4,8.1,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=167.9,161.0,160.0,158.8,137.7,136.9,132.4,129.5,129.1$, 128.6, 128.0, 127.4, 122.4, 115.7, 114.6, 104.6, 90.3, 70.1, 55.8, 55.7, 50.1, 33.5, 33.2, 20.8.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BrNaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 496.2100; found: 496.2094

IR (neat) : $v=1681,1596,1416 \mathrm{~cm}^{-1}$

(E)-3-(benzo[d][1,3]dioxol-5-ylmethylene)-5-methyl-1-(2,4,6-

trimethoxybenzyl)pyrrolidin-2-one 2s:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}$
Exact Mass: 411.1682

Following the general procedure for the $1,4-\mathrm{Pd}$ shiff/ $/\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ activation, $1 \mathrm{~s}(49 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, 2 s was obtained as a yellowish solid ($29 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%$).
${ }^{1}$ HNMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}$, $1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{ddd}, \mathrm{J}=17.2,8.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}$, $1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=168.3,161.1,160.1,148.0,147.6,130.8,130.1,129.2,124.6$, 109.0, 108.7, 104.8, 101.4, 90.5, 55.9, 55.4, 50.2, 33.6, 33.3, 21.0.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NaNO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 434.1580 ; found: 434.1574

IR (neat) : $v=1679,1608,1416 \mathrm{~cm}^{-1}$
m.p. : $58-60^{\circ} \mathrm{C}$

(E)-3-(4-fluorobenzylidene)-5-methyl-1-(2,4,6-trimethoxybenzyl)pyrrolidin-

2-one 2t:

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNO}_{4}$ Exact Mass: 385.1689

Following the general procedure for the 1,4-Pd shiff/C(sp $\left.{ }^{3}\right)$-H activation, $1 \mathbf{1 t}(47 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 t}$ was obtained as a yellowish oil ($25 \mathrm{mg}, 0.064 \mathrm{mmol}, 64 \%$).
$\underline{{ }^{1} \mathbf{H} \text { NMR (} \mathbf{4 0 0} \mathbf{~ M H z} \text {, Chloroform- } \boldsymbol{d} \text {) } \boldsymbol{\delta}=7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.02}$ $(\mathrm{m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79$ (s, 6H), 3.50-3.40 (m, 1H), $3.04(\mathrm{ddd}, J=17.3,8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=168.0,163.6,161.1,160.1,132.67(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}) 131.6(\mathrm{~d}, \mathrm{~J}=$ $2.4 \mathrm{~Hz}), 131.2(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 128.2,115.7(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 104.6,90.4,55.9,55.5,50.2,33.5$, 33.3, 21.0.
${ }^{19} \mathbf{F}$ NMR ($\left.\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=-112.8$.
HRMS (ESI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNaNO}_{4}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 408.1587 ; found: 408.1583

IR (neat) : $v=1677,1608,1422 \mathrm{~cm}^{-1}$

(E)-5-methyl-3-(4-methylbenzylidene)-1-(2,4,6-

trimethoxybenzyl)pyrrolidin-2-one 2u:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}$ Exact Mass: 381.1940

Following the general procedure for the $1,4-\mathrm{Pd}$ shift/ $/\left(\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 u}(46 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}\left(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5\right.$ equiv) in mesitylene $(4 \mathrm{~mL})$ at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 u}$ was obtained as a colorless oil ($25 \mathrm{mg}, 0.076 \mathrm{mmol}, 76 \%$).
$\underline{\left.{ }^{1} \mathbf{H} \text { NMR (} \mathbf{5 0 0} \mathbf{~ M H z} \text {, Chloroform- } \boldsymbol{d}\right) \boldsymbol{\delta}=7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}),}$ $5.11(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{ddt}, J=$ $8.3,6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (ddd, $J=17.2,8.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.48$ (m, 1H), 2.36 (s, 3H), $1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=168.2,161.0,160.0,138.1,133.6,130.9,129.4,129.3,129.2$, 104.7, 90.3, 55.8, 55.3, 50.1, 33.6, 33.1, 21.3, 20.8.

HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 382.2018; found: 382.2013
IR (neat) : $v=2361,1680,1608,1416 \mathrm{~cm}^{-1}$

(E)-2-benzylidenehexahydro-3H-pyrrolizin-3-one 2v:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}$
Exact Mass: 213.1154

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 v}(29.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic
acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, 2 v was obtained as a yellowish oil ($11 \mathrm{mg}, 0.051 \mathrm{mmol}, 51 \%$).
${ }^{1}$ HNMR ($\mathbf{4 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}$, $2 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{dt}, \mathrm{J}=12.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.78(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=170.4,136.0,133.9,130.5,129.7,128.8,128.6,59.3,42.2,32.4$, 31.4, 26.3.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 236.1051$; found: 236.1046
IR (neat) : $v=2361,1681,1419 \mathrm{~cm}^{-1}$

($\boldsymbol{R}, \boldsymbol{E}$)-2-benzylidenehexahydro-3H-pyrrolizin-3-one (\boldsymbol{R})-2v:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}$
Exact Mass: 213.1154
Following the general procedure for the 1,4-Pd shift/C(sp ${ }^{3}$)-H activation, (\boldsymbol{S}) - 1v ($29.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, (\boldsymbol{R})-2v was obtained as a yellowish oil ($10.5 \mathrm{mg}, 0.050 \mathrm{mmol}$, 50\%).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.49-7.45(\mathrm{~m}, \mathbf{2 H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29$
$(\mathrm{m}, 2 \mathrm{H}), 3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dt}, \mathrm{J}=17.6,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=170.4,136.0,133.9,130.6,129.7,128.8,128.6,59.3,42.2$, 32.4, 31.5, 26.3.

(E)-2-benzylidenehexahydroindolizin-3(2H)-one 2w:

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$
Exact Mass: 227.1310

Following the general procedure for the 1,4-Pd shiff/C(sp^{3})-H activation, $\mathbf{1 w}(30.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 w}$ was obtained as a colorless oil ($22.2 \mathrm{mg}, 0.098 \mathrm{mmol}, 98 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}$, 1 H), $7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.24$ (ddd, J = 17.5, 7.8, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.57-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 6 M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=167.7,136.2,131.0,129.9,129.6,128.8,128.4,55.2,40.9,34.1$, 32.3, 24.8, 24.1.

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 250.1208; found: 250.1202

IR (neat) : $v=2937,1632,1444 \mathrm{~cm}^{-1}$

(E)-2-benzylideneoctahydro-3H-pyrrolo[1,2-a]azepin-3-one 2x:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}$
Exact Mass: 241.1467

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 x}(32.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 x}$ was obtained as a yellowish oil ($9.5 \mathrm{mg}, 0.039 \mathrm{mmol}, 40 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 3.94-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=169.4,136.2,131.8,129.6,129.1,128.8,128.3,57.0,43.5,36.8$, 33.6, 29.6, 27.4, 25.3.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NaNO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 264.1364$; found: 264.1359

IR (neat) : $v=1650,1421 \mathrm{~cm}^{-1}$

(E)-7-benzylidenetetrahydro-2H-pyrrolo[2,1-b] $[1,3]$ oxazin-6(7H)-one 2y:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ Exact Mass: 229.1103

Following the general procedure for the 1,4-Pd shift/C(sp $\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{1 y}$ ($31 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene $\left(4 \mathrm{~mL}\right.$) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $2 \mathbf{y}$ was obtained as a colorless oil ($20.5 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\left.\boldsymbol{d}\right) \boldsymbol{\delta}=7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.30$ $(\mathrm{m}, 1 \mathrm{H}), 5.06(\mathrm{dd}, \mathrm{J}=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{ddt}, \mathrm{J}=13.3,5.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddt}, \mathrm{J}=11.6$, $4.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (ddd, J = 12.6, 11.8, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (ddd, J = 17.9, 6.6, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.17-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dt}, \mathrm{J}=17.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H})$.
$\left.{ }^{{ }^{13} \mathbf{C N M R}(101 ~ M H z, ~ C D C l} 3\right) \boldsymbol{\delta}=167.6,135.6,131.4,129.7,128.8,128.4,127.9,85.4,67.2,39.0$, 32.7, 24.8.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 230.1181$; found: 230.1178

IR (neat) : $v=2364,1685,1449 \mathrm{~cm}^{-1}$

(E)-7-benzylidenehexahydro-6H-pyrrolo[2,1-c][1,4]oxazin-6-one 2z:

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$ Exact Mass: 229.1103

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$ - H activation, $\mathbf{1 z}(31 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{2 z}$ was obtained as a colorless oil ($16 \mathrm{mg}, 0.069 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.34(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=13.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, \mathrm{J}=11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.91$ $-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.12(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(126 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=167.6,135.7,131.1,129.7,129.4,128.9,128.8,72.6,66.5,53.2$, 41.1, 27.5.

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 230.1181$; found: 230.1176

IR (neat) $: v=2361,1682,1447 \mathrm{~cm}^{-1}$

tert-butyl (E)-7-benzylidene-6-oxohexahydropyrrolo[1,2-a]pyrazine-2(1H)-

 carboxylate 2aa:

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$
Exact Mass: 328.1787

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $1 \mathbf{a a}$ ($41 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.5 equiv) in mesitylene $(4 \mathrm{~mL})$ at $160^{\circ} \mathrm{C}$ for 16 h . After purification, 2aa was obtained as a colorless oil ($17 \mathrm{mg}, 0.052 \mathrm{mmol}, 52 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.32$ (m, 1H), 4.35 (br. s, 1H), $4.25-4.19$ (m, 1H), 4.15 (br. s, 1H), $3.72-3.65$ (m, 1H), 3.22 (ddd, $\mathrm{J}=17.7,7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.47$ (br. $\mathrm{s}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=167.7,154.5,135.7,131.1,129.7,129.5,129.0,128.9,128.8$, 127.9, 80.8, 53.4, 40.3, 28.8, 28.5.

HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaN}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 351.1685 ; found: 351.1679

IR (neat) : $v=2361,1688,1422 \mathrm{~cm}^{-1}$

(E)-2-benzylidene-2,3-dihydro-1H-inden-1-one 4a:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}$
Exact Mass: 220.0888

Following the general procedure for the 1,4-Pd shift/C($\left(\mathrm{sp}^{3}\right)$-H activation, $\mathbf{3 a}$ ($30 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic $\operatorname{acid}(3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $4 \mathbf{a}$ was obtained as a white solid ($14.5 \mathrm{mg}, 0.066 \mathrm{mmol}, 66 \%$).

The physical and spectroscopic properties matched those described in the literature. ${ }^{4}$
$\underline{{ }^{1} \mathbf{H}} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- $\boldsymbol{d}) \boldsymbol{\delta}=7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{{ }^{13}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=194.5,149.8,138.2,135.6,134.9,134.8,134.1,130.9,129.8$, 129.1, 127.8, 126.3, 124.6, 32.6.

(E)-2-benzylidene-7-methyl-2,3-dihydro-1H-inden-1-one 4b:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 234.1045

Following the general procedure for the 1,4-Pd shift/C(sp $\left.{ }^{3}\right)$-H activation, $\mathbf{3 b}(31.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{4 b}$ was obtained as a white solid ($16.5 \mathrm{mg}, 0.070 \mathrm{mmol}, 70 \%$).
$\underline{{ }^{1} \mathbf{H} \text { NMR }(400 \mathrm{MHz}, \text { Chloroform- } \boldsymbol{d}) \boldsymbol{\delta}=7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.43}$ $(\mathrm{m}, 3 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.75$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=195.4,150.4,139.7,135.7,135.6,135.4,134.1,133.1,130.8$, 129.7, 129.8, 129.0, 123.6, 32.3, 18.7.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 235.1123; found: 235.1118

IR (neat) : $v=1693,1629 \mathrm{~cm}^{-1}$
m.p.: $230-232^{\circ} \mathrm{C}$ (decomp.)

(E)-2-benzylidene-5-methoxy-2,3-dihydro-1H-inden-1-one 4c:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$
Exact Mass: 250.0994

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{3 c}$ ($33 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $4 \mathbf{c}$ was obtained as a white solid ($20 \mathrm{mg}, 0.081 \mathrm{mmol}, 81 \%$).

The physical and spectroscopic properties matched those described in the literature. ${ }^{5}$
${ }^{1}$ H NMR ($\mathbf{5 0 0} \mathbf{M H z}$, Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.88-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.61(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (d, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=192.9,165.4,152.7,135.8,135.4,132.8,131.6,130.7,129.5$, 129.0, 126.4, 115.4, 109.9, 55.9, 32.7.

(E)-2-benzylidene-5-(benzyloxy)-2,3-dihydro-1H-inden-1-one 4d:

Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2}$
Exact Mass: 326.1307

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{3 d}(41 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{4 d}$ was obtained as a white solid ($26 \mathrm{mg}, 0.080 \mathrm{mmol}, 80 \%$).
${ }^{1}$ HNMR (500 MHz , Chloroform- d) $\boldsymbol{\delta}=7.87-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.61(\mathrm{~m}$, $1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=192.9,164.5,152.6,136.2,135.7,135.4,132.9,131.8,130.7$, $129.5,129.0,128.9,128.5,127.6,126.4,116.1,110.9,70.6,32.7$.
HRMS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.1385$; found: 327.1380

IR (neat) : $v=1682 \mathrm{~cm}^{-1}$
m.p.: 256-258 ${ }^{\circ} \mathrm{C}$ (decomp.)

(E)-2-benzylidene-5-methyl-2,3-dihydro-1H-inden-1-one 4e:

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}$
Exact Mass: 234.1045

Following the general procedure for the 1,4-Pd shift/C(sp $\left.{ }^{3}\right)$-H activation, $3 \mathrm{e}(31.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ ($35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene $(4 \mathrm{~mL})$ at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{4 e}$ was obtained as a white solid ($11.5 \mathrm{mg}, 0.050 \mathrm{mmol}, 50 \%$).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\boldsymbol{\delta}=7.81(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.51-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H})$, 2.48 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}=193.9,150.1,145.9,135.8,135.5,135.2,133.4,130.6,129.5,128.9$, 128.9, 126.5, 124.3, 32.3, 22.3.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 235.1123; found: 235.1117

IR (neat) : $v=1692,1631,1273 \mathrm{~cm}^{-1}$
m.p.: $222-224^{\circ} \mathrm{C}$ (decomp.)

(E)-2-benzylidene-5-fluoro-2,3-dihydro-1H-inden-1-one 4f:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FO}$
Exact Mass: 238.0794

Following the general procedure for the 1,4-Pd shiff/C(sp $\left.{ }^{3}\right)$-H activation, $\mathbf{3 f}$ ($32 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\operatorname{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic $\operatorname{acid}(3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, 4 f was obtained as a white solid ($21 \mathrm{mg}, 0.089 \mathrm{mmol}, 89 \%$).

The physical and spectroscopic properties matched those described in the literature. ${ }^{6}$
${ }^{1}$ H NMR (400 MHz , Chloroform- \boldsymbol{d}) $\boldsymbol{\delta}=7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.50-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=192.7,167.2(\mathrm{~d}, \mathrm{~J}=256.2 \mathrm{~Hz}), 152.5(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 135.3$, 134.6 (d, J = 1.9 Hz), 134.4, 134.2, 130.8, 129.9, 129.1, 126.9 (d, J = 10.2 Hz), 116.1 (d, J = 23.8 Hz), $113.1(\mathrm{~d}, \mathrm{~J}=22.9 \mathrm{~Hz}), 32.6(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz})$.
$\underline{\left.{ }^{19} \mathbf{F} \text { NMR (} \mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta}=-102.5 .}$

(E)-5-amino-2-benzylidene-2,3-dihydro-1H-inden-1-one 4g:

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$
Exact Mass: 235.0997

Following the general procedure for the 1,4-Pd shift/C($\left.\mathrm{sp}^{3}\right)$-H activation, $\mathbf{3 g}(31.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) was reacted with $\mathrm{Pd}\left(\mathrm{PCy}_{3}\right)_{2}(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \mathrm{PCy}_{3}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, pivalic acid ($3.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and $\mathrm{Rb}_{2} \mathrm{CO}_{3}(35 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in mesitylene (4 mL) at $160^{\circ} \mathrm{C}$ for 16 h . After purification, $\mathbf{4 g}$ was obtained as a white solid ($14 \mathrm{mg}, 0.060 \mathrm{mmol}, 60 \%$).

The physical and spectroscopic properties matched those described in the literature. ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- d) $\boldsymbol{\delta}=7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 1 \mathrm{H})$, 4.30 (br. s, 2H), 3.91 (d, J = $2.1 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}=192.3,152.9,152.8,135.9,135.9,131.7,130.4,129.2,129.1$, 128.8, 126.6, 114.9, 109.5, 32.3.

8- Checkcif for compound 2y:

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) RR2369_130K_0m
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report
Datablock: RR2369_130K_0m

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0020$	Wavelength=1.54178
Cell:	$a=11.7451$ (8)	$\mathrm{b}=9.8812(7) \quad \mathrm{c}=19.5125(14)$
	alpha=90	beta=95.463(3) gamma=90
Temperature:	130 K	
	Calculated	Reported
Volume	2254.3(3)	2254.2 (3)
Space group	C $2 / \mathrm{c}$	C $12 / \mathrm{c} 1$
Hall group	-C 2yc	-C 2yc
Moiety formula	C14 H15 N O2	C14 H15 N O2
Sum formula	C14 H15 N O2	C14 H15 N O2
Mr	229.27	229.28
Dx,g cm-3	1.351	1.351
Z	8	8
Mu (mm-1)	0.727	0.727
F000	976.0	979.1
F000'	978.92	
h, k, 1 max	14,12,23	14,11,23
Nref	2152	2084
Tmin, Tmax	0.890, 0.971	$0.860,0.970$
Tmin'	0.890	
Correction method= \# Reported T Limits: Tmin=0.860 Tmax=0.970 AbsCorr $=$ MULTI-SCAN		
Data completeness $=0.968$		Theta $(\max)=70.240$
$\mathrm{R}($ reflections $)=0.0400(1939)$		wR2 $($ reflections $)=0.1016(2084) \mid$
$S=1.054$	Npar	154

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level	C	
PLAT029 ALERT 3 C	diffrn_measured_fraction_theta_full value Low .	0.968 Wh :
PLAT094 ALERT 2 C	Ratio of Maximum / Minimum Residual Density	2.14 Re]
PLAT906_ALERT 3 3 C	Large K Value in the Analysis of Variance	2.341 Ch
PLAT911 ALERT 3 C	Missing FCF Refl Between Thmin \& STh/L= 0.600	6 Re]

Alert level G		
PLAT068 ALERT 1	Reported F000 Differs from Calcd (or Missing)	Please
PLAT073 ALERT 1 G	H-atoms ref, but _hydrogen_treatment Reported as	constr
PLAT398 ALERT 2	Deviating C-O-C Angle From 120 for 01	109.5
PLAT793 ALERT 4	Model has Chirality at C8 (Centro SPGR)	R
PLAT912_ALERT 4_-	Missing \# of FCF Reflections Above STh/L= 0.600	60
PLAT960 ALERT 3	Number of Intensities with I	1
PLAT978 ALERT 2	Number C-C Bonds with Positive Residual Density.	8
PLAT982_ALERT 1 1	The $\mathrm{C}-\mathrm{f}^{\prime}=\quad 0.019$ Deviates from IT-value $=$	0.018
PLAT982 ALERT 1	The $\mathrm{N}-\mathrm{f}^{\prime}=\quad 0.033$ Deviates from IT-value $=$	0.031
PLAT982_ALERT 1_	The 0 -f' $=0.052$ Deviates from IT-value $=$	0.049

> 0 ALERT level $A=$ Most likely a serious problem - resolve or explain
> 0 ALERT level $B=A$ potentially serious problem, consider carefully
> 4 ALERT level $C=$ Check. Ensure it is not caused by an omission or oversight
> 10 ALERT level $G=$ General information/check it is not something unexpected
> 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
> 3 ALERT type 2 Indicator that the structure model may be wrong or deficient
> 4 ALERT type 3 Indicator that the structure quality may be low
> 2 ALERT type 4 Improvement, methodology, query or suggestion
> 0 ALERT type 5 Informative message, check

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF

```
# start Validation Reply Form
_vrf_PLAT029_RR2369_130K_0m
PROBLEM: _diffrn_measured_fraction_theta_full value Low .
RESPONSE:`
_vrf_PLAT094_RR2369_130K_0m
PROBLEM: Ratio of Maximum / Minimum Residual Density .... 2.14 Report
RESPONSE: 
_'vrf_PLAT906_RR2369_130K_0m
PROBLEM: Large K Value in the Analysis of Variance ...... 2.341 Check
RESPONSE: ...
; _Vrf_PLAT911_RR2369_130K_0m
; PROBLEM: Missing FCF Refl Between Thmin \& STh/L= \(0.600 \quad 6\) Report
RESPONSE: ...
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $19 / 10 / 2018$; check.def file version of $15 / 10 / 2018$

Datablock RR2369_130K_0m - ellipsoid plot

9- NMR Spectras:

[^0]

savary.507.2.fid
13Ccpd_ns256 CDCl3 /opt/topspin savary 51

Group baudoin
H1 CDCl3 /opt/topspin3.5pl7 baudoin_group_nmr500 26

12000

11000

19F_ns16 CDCl3 /opt/topspin savary 8

$1 t$

rockaboy.3377.1.fid
RR2684p1car

User baudoin_gr
Group baudoin
H1 CDCl3/opt/topspin3.5pl7 baudoin_group_nmr500 15
-55000

rockaboy.3441.1.fid

${ }^{1}$ D. Dailler, R. Rocaboy, O. Baudoin, Angew. Chem. Int. Ed. 2017, 56, 7218
${ }^{2}$ S. Sangeetha, G. Sekar, Org. Lett. 2017, 19, 7, 1670-1673
${ }^{3}$ P. Holstein, M. Vogler, P. Larini, G. Pilet, E. Clot, O. Baudoin, ACS Catal. 2015, 5, 7, 4300-4308
${ }^{4}$ S. Park, T. Kadayat, K. Jun, T. Bahadur, T. Magar, G. Bist, A. Shrestha, E. Lee, Y. Kwon, Eur. J. Med. Chem, 2017, 125, 14-28
${ }^{5}$ M. Nel, A. Petzer, J. Petzer, L. Legoabe, Bio. Med. Chem. Lett. 2016, 26, 4599-4605
${ }^{6}$ S. Kayal, S. Mukherjee, Org. Biomol. Chem. 2016, 14, 10175-10179
${ }^{7}$ T. Ren, W. Xu, Q. Zhang, X. Zhang, S. Wen, H. Yi, L. Yuan, X. Zhang, Angew. Chem. Int. Ed, 2018, 57, 7473

- 7477

[^0]:

