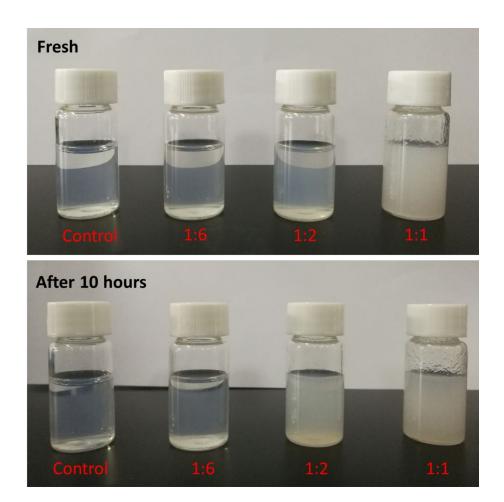
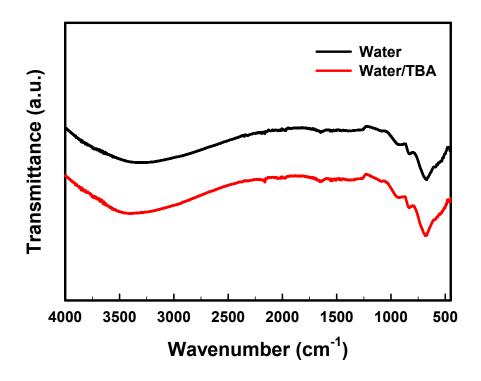
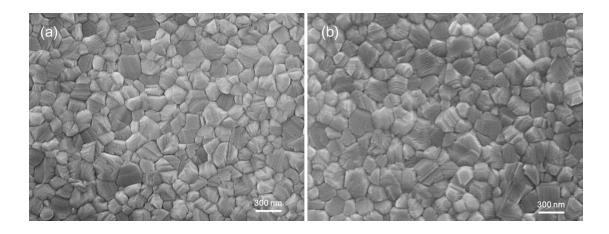
Green Anti-solvent Processed Efficient Flexible Perovskite Solar Cells

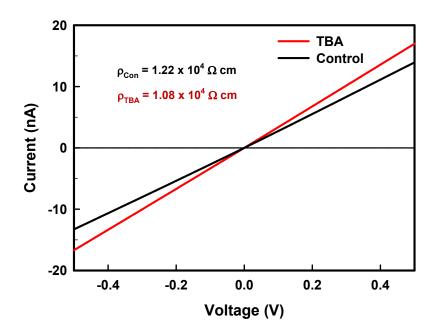

Deyu Xin, Zenghua Wang, Min Zhang, Xiaojia Zheng, Yong Qin, Jianguo Zhu, Wen-Hua Zhang

Total number of pages: 11


Total number of figures: 10

Contents


Figure S1. Photograph of SnO ₂ solutions diluted by H ₂ O/TBA mixture with various volume
ratios
Figure S2. FTIR spectra of SnO_2 films prepared by SnO_2 -colloid precursor diluted with
water and water/TBA mixture3
Figure S3. SEM images for perovskite films prepared on SnO ₂ ETLs: (a) SnO ₂ -control and
(b) SnO ₂ -TBA4
Figure S4. I-V characteristics and corresponding resistivity for SnO ₂ ETLs5
Figure S5. J–V curves for PSC on glass/ ITO based on SnO_2 -control under different scan
directions. PSCs were fabricated by PhOMe green anti-solvent6
Figure S6. J-V curves for PSC on glass/ ITO based on SnO ₂ -TBA under different scan
directions. PSCs were fabricated by PhOMe green anti-solvent7
Figure S7. Equivalent circuit diagram used to fit the Nyquist plots8
Figure S8. J-V curves for PSC on glass/ ITO based on SnO ₂ -TBA under different scan
directions. PSCs were fabricated by CB anti-solvent9
Figure S9. J–V curves for PSC on glass/ ITO based on SnO_2 -control under different scan
directions. The glass/ ITO substrate was treated by UVO for 15 min just before the deposition
of SnO ₂ ETL. PSCs were fabricated by PhOMe green anti-solvent10
Figure S10. J-V curves of the flexible PSC for fresh device and PSC after 2000 h dark
storage in ambient air (~20% RH) without encapsulation


Figure S1. Photograph of SnO₂ solutions diluted by H₂O/TBA mixture with various volume ratios.

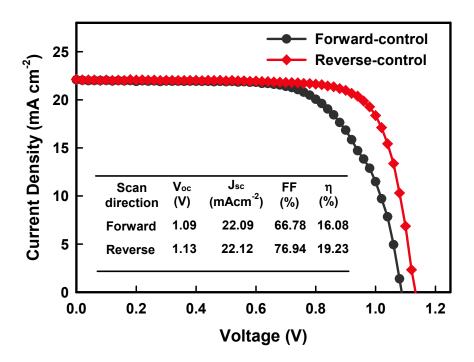

Figure S2. FTIR spectra of SnO₂ films prepared by SnO₂-colloid precursor diluted with water and water/TBA mixture.

Figure S3. SEM images for perovskite films prepared on SnO_2 ETLs: (a) SnO_2 -control and (b) SnO_2 -TBA.

Figure S4. I-V characteristics and corresponding resistivity for SnO₂ ETLs.

Figure S5. J–V curves for PSC on glass/ ITO based on SnO₂-control under different scan directions. PSCs were fabricated by PhOMe green anti-solvent.

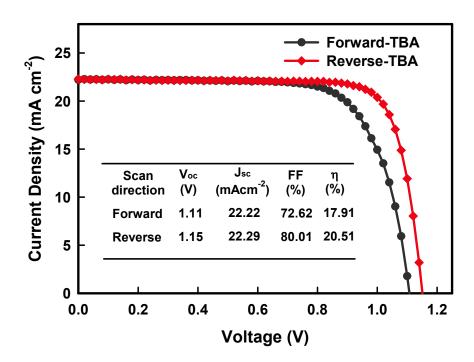
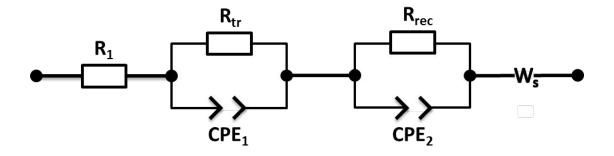
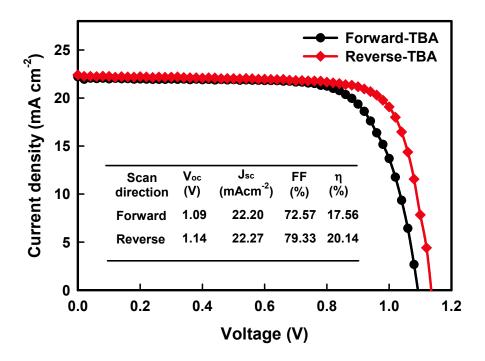
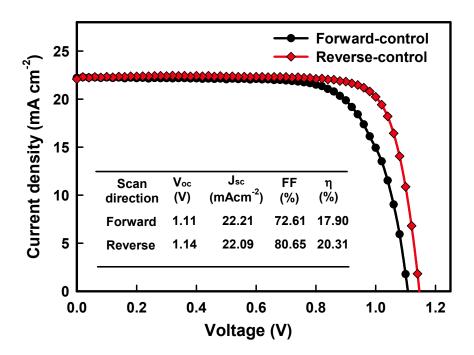


Figure S6. J–V curves for PSC on glass/ ITO based on SnO₂-TBA under different scan directions. PSCs were fabricated by PhOMe green anti-solvent.

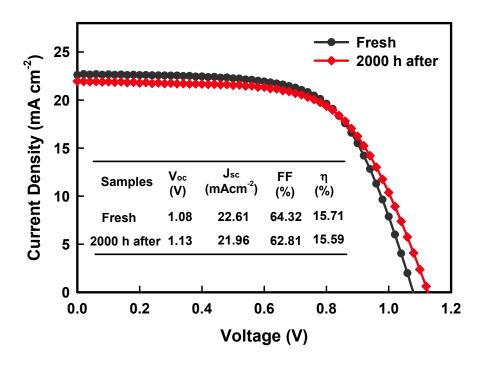

Figure S7. Equivalent circuit diagram used to fit the Nyquist plots.

Figure S8. J–V curves for PSC on glass/ ITO based on SnO₂-TBA under different scan directions. PSCs were fabricated by CB anti-solvent.

Figure S9. J–V curves for PSC on glass/ ITO based on SnO₂-control under different scan directions. The glass/ ITO substrate was treated by UVO for 15 min just before the deposition of SnO₂ ETL. PSCs were fabricated by PhOMe green anti-solvent.

Figure S10. J–V curves of the flexible PSC for fresh device and PSC after 2000 h dark storage in ambient air (~20% RH) without encapsulation.