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Structural Reassignment of  [Mn3MO2(H)] Clusters (M = Na+, Sr2+, Ca2+, Zn2+, Y3+). 
As previously reported, modification of  the synthetic protocol (including use of  
iodosobenzene (PhIO) in place of  potassium superoxide as oxygen atom transfer agent) 
enables access to tetrametallic clusters incorporating two oxygen atoms ([MnIII

3MO(OH)], 
[MnIIMnIII

2MO(OH)], Figure 1). These complexes were obtained from the same 
LMnII

3(OAc)3 precursor used for preparing [Mn3MO4] cubane clusters.1 Structural 
characterization of  these materials by XRD revealed tetrametallic clusters containing a µ4-oxo 
ligand. A second oxygen atom was incorporated as a µ 2-bridge between the apical (redox-
inactive) metal and one of  the basal Mn centers. The oxidation states of  the three Mn centers 
in these clusters were originally assigned, based a combination of  magnetic susceptibility, 
XRD, and XAS data, as [MnIII

2MnIVMO2] and [MnIII
3MO2] clusters. This interpretation of  

the available data led to assignment of  the µ 2-bridges as oxo (O2–) moieties based on charge 
balance in the overall structures.  
Although these measurements were consistent with the one-electron change in redox state, 
assignment of  the absolute oxidation states remained inconclusive.1 Subsequently, the 
isostructural Fe3 clusters ([FeIII

3MO(OH)], [FeIIFeIII
2MO(OH)], Figure 1), were prepared 

and the µ2 bridging moiety was conclusively identified as a hydroxo (HO–) ligand.2 The Fe 
oxidation states in Fe3 clusters were unambiguously determined via Mössbauer spectroscopy 
as FeIII

3 and FeIII
2FeII in complexes [FeIII

3MO(OH)] and [FeIIFeIII
2MO(OH)], respectively. 

The hydroxide assignment was derived from charge-balance of  the XRD structures. 
Comparison of  the structural metrics of  Fe3 and Mn3 clusters show elongation of  a single M–
(µ4-O) bond in reduced complexes [FeIIFeIII

2MO(OH)] and the Mn analog, initially assigned 
as MnIII

3M (Table S1), suggesting the presence of  a single reduced Mn center as MnIIMnIII
2M 

clusters, and therefore supporting assignment of  Mn oxidation states in the oxidized and 
reduced Mn clusters as MnIII

3 and MnIII
2MnII, respectively. Thus, by charge-balance of  the 

solid-state structure, the µ2 bridging moiety is assigned as OH– as in the Fe3 clusters resulting 
in reassigned complexes as [MnIII

3MO(OH)] and [MnIIMnIII
2MO(OH)].  

Density functional theory (DFT) calculations were carried out to further corroborate the 
structural reassignment of  complexes [MnIII

3MO(OH)] and [MnIIMnIII
2MO(OH)]. 

Clusters [MnIII
3CaO(OH)] and [MnIIMnIII

2CaO(OH)] were modeled using Jaguar 8.43 (see 
page S6 for the full computational protocol) both as originally assigned–[MnIII

2MnIVCaO2] 
(oxCa’) and [MnIII

3CaO2] (redCa’), respectively–and also according to the new structural 
assignment proposed herein–[MnIII

3CaO(OH)] (oxCa’’) and [MnIIMnIII
2CaO(OH)] (redCa’’). 

Selected bond metrics for the optimized structures as well as the values observed 
experimentally (XRD) are shown in Table S3. For both oxidized and reduced complexes, 
modeling of  the clusters as the more reduced oxo-hydroxo species provides structural 
parameters in closer agreement with the experimental values than those calculated for the 
more oxidized dioxo clusters. In particular, the Mn(1)–O(2) distance, which is expected to be 
sensitive to the nature of  the µ2-ligand, is calculated to be considerably shorter for clusters 
containing a µ2-O2– ligand (1.683 Å and 1.697 Å for oxCa’ and redCa’, respectively) than for 
hydroxide-bridged clusters (1.830 Å and 1.907 Å for oxCa’’ and redCa’’, respectively). The 
experimental values (1.842(3) Å and 1.887(3) Å) agree more closely with the bond distances 
from the computational studies, supporting the assignment of  [MnIII

3CaO(OH)] and 
[MnIIMnIII

2CaO(OH)] as oxo-hydroxo clusters. 
The new structural assignment for clusters [MnIII

3MO(OH)] and [MnIIMnIII
2MO(OH)], is 

further supported by electron paramagnetic resonance (EPR) spectroscopy. Normal-mode X-
band EPR characterization obtained in CH2Cl2 glass at cryogenic temperatures revealed weak 
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signals for [MnIII
3CaO(OH)] and [MnIII

3SrO(OH)] (Figure S1a and S2a), consistent with 
integer-spin systems, and more intense signals for [MnIIMnIII

2CaO(OH)] and 
[MnIIMnIII

2SrO(OH)] (Figure S1b and S2b), consistent with half-integer systems. These 
observations are inconsistent with the original oxidation state assignment for these clusters: a 
MnIII

2MnIVM complex would be a half-integer spin system (d4, d4, d3), whereas a MnIII
3M 

species would be an integer-spin system (d4, d4, d4). The EPR data is consistent with the newly 
proposed assignments of  [MnIII

3MO(OH)] as [MnIII
3] (d4, d4, d4, an integer-spin system) and 

of  [MnIIMnIII
2MO(OH)] as [MnIII

2MnII] (d4, d4, d5, a half-integer spin system). It should be 
noted that the changes in assignment of  the oxidation states and identity of  bridging ligands 
in clusters [MnIII

3MO(OH)] and [MnIIMnIII
2MO(OH)] bear no effect on the conclusions 

of  earlier studies on these complexes regarding the effect of  the redox inactive metal on 
reduction potentials.1 All comparisons within this series of  complexes remain valid, as changes 
affect compounds across the entire series. The reactivity studies described next were focused 
on the available oxo-hydroxo complexes.  
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Table S1. Bond Parameters (Measured in Å) from Computation 

 

Bond 
oxCa  

(XRD)1 
oxCa’ oxCa’’ 

redCa  

(XRD)1 
redCa’ redCa’’ redCa’’-

noH 

Mn2–N4 2.095 2.122 2.140 2.089 2.176 2.278 2.277 

Mn2–N3 2.241 2.292 2.251 2.341 2.264 2.254 2.341 

Mn2–O3 1.884 1.908 1.893 1.936 1.876 2.101 2.106 

Mn2–O4 2.265 2.224 2.248 2.111 2.281 2.282 2.262 

Mn2–O7 1.913 1.922 1.906 1.971 1.922 2.096 2.094 

Mn2–O1 1.913 1.889 1.918 2.159 1.906 2.203 2.195 

Mn3–N5 2.161 2.107 2.255 2.290 2.287 2.256 2.194 

Mn3–N6 2.124 2.166 2.125 2.205 2.142 2.219 2.170 

Mn3–O5 2.232 2.226 2.379 2.322 2.149 2.308 2.397 

Mn3–O4 1.872 1.857 1.911 2.092 1.935 1.939 1.910 

Mn3–O9 1.910 1.896 1.867 2.129 1.938 1.928 1.884 

Mn3–O1 2.017 2.054 1.944 1.939 1.848 1.827 1.907 

Mn1–N1 2.170 2.208 2.161 2.211 2.151 2.278 2.303 

Mn1–N2 2.129 2.145 2.143 2.156 2.187 2.131 2.159 

Mn1–O3 2.215 2.279 2.261 2.250 2.281 2.142 2.178 

Mn1–O5 1.878 1.908 1.896 1.900 2.029 1.941 1.912 

Mn1–O1 1.958 1.972 2.006 1.860 2.141 1.958 1.894 

Mn1–O2 1.842 1.683 1.830 1.887 1.697 1.837 1.907 

Ca1–O1 2.452 2.445 2.479 2.397 2.474 2.424 2.410 

Ca1–O2 2.349 2.556 2.422 2.368 2.394 2.389 2.504 

O2–OTf (2.847)a -- 2.692 2.742 -- 2.664 -- 
a distance between O2 and H-bonded 1,2-dimethoxyethane (DME) solvent molecule  
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Calculation of Mulliken Spin Populations 
Mulliken population analysis was employed to assign oxidation states of all atoms based 
on the number of unpaired spins. The bridging alkoxides exhibited α spins on the order 
of ~ 0.10 due to the highly covalent Mn-O bonds. Spin on the remaining scaffold was 
found to be negligible ( < 0.02 α spins per remaining atoms). For redCa’’, Mulliken spin 
population revealed an alternative oxidation state assignment in which Mn2 is assigned as 
Mn(II) as Mn3 is assigned as Mn(III).  
 

Table S2. Mulliken Spin Populations. 
Atom oxCa’ oxCa’’ redCa’ redCa’’ redCa’’-noH 

Mn1 3.49 3.83 3.72 3.82 3.85 

Mn2 3.87 3.87 3.88 3.86 3.87 

Mn3 3.86 3.88 3.84 4.82 4.81 

Ca1 0.01 0.00 0.00 0.00 0.00 

O1 0.00 0.00 0.00 0.00 0.00 

O2 -0.61 0.00 0.18 0.00 0.00 

 
 
Table S3. Comparison of  Selected Bond Distances (in Å) for Complexes 
[FeIII

3CaO(OH)] (oxFe), [FeIIFeIII
2CaO(OH)] (redFe), [MnIII

3CaO(OH)] (oxCa), 
[MnIIMnIII

2CaO(OH)] (redCa) (XRD), oxCa’, oxCa’’, redCa’, and redCa’’ (DFT). 

Bond 
oxFe 

(XRD) 
redFe 
(XRD) 

oxCa 
(XRD) 

redCa 
(XRD) 

oxCa’ 
(DFT) 

oxCa’’ 
(DFT) 

redCa’ 
(DFT) 

redCa’’ 
(DFT) 

M1–O1 2.023(2) 1.928(5) 1.958(3) 1.860(3) 1.972 2.006 2.141 1.894 
M2–O1 1.927(2) 1.904(5) 1.913(3) 2.159(3) 1.889 1.918 1.906 2.195 
M3–O1 1.945(2) 2.140(5) 2.017(3) 1.939(3) 2.054 1.944 1.848 1.907 
M1–O2 1.881(2) 1.923(5) 1.842(3) 1.887(3) 1.683 1.830 1.697 1.907 
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EPR Spectroscopy 

 

Figure S1. Temperature-dependent CW X-Band EPR perpendicular-mode spectra of  the 
frozen solutions of  (a) [MnIII

3CaO(OH)] and (b) [MnIIMnIII
2CaO(OH)] dissolved in 

dichloromethane. Experimental parameters: microwave frequency = 9.36–9.38 GHz; power 
= 0.07962 mW for (a) and 0.1589 mW for (b); modulation amplitude = 10.0 G; modulation 
frequency = 100 kHz.  

  

[MnIII3CaO(OH)] 

[MnIIMnIII2CaO(OH)] 
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Figure S2. Temperature-dependent CW X-Band EPR perpendicular-mode spectra of the 
frozen solutions of (a) [MnIII

3SrO(OH)] and (b) [MnIIMnIII
2SrO(OH)] dissolved in 

dichloromethane. Experimental parameters: microwave frequency = 9.36–9.38 GHz; 
power = 0.07962 mW for (a) and 0.1589 mW for (b); modulation amplitude = 10.0 G; 
modulation frequency = 100 kHz. 
 

  

[MnIIMnIII2SrO(OH)] 

[MnIII3SrO(OH)]  
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NMR Spectroscopy 

 
Figure S3. (Top) 1H NMR (300 MHz, CD2Cl2) spectrum of the intermediate species 
formed from the reaction of [MnIIMnIII

2YO(OH)] with 10 equiv. PPh3 within 30 mins. 
(Bottom) 1H NMR (300 MHz, CD3CN) spectrum [LCaMn3O(OTf)2(OAc)3]2 dimer.4 
 

 
Figure S4. 1H NMR (300 MHz, C6D6) spectrum of [MnIII

3ScO3]. 
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Figure S5. 1H NMR (300 MHz, CD2Cl2) spectrum of [MnIII

3YO(OH)]2. 
 

 
Figure S6. 1H NMR (300 MHz, C6D6) of reaction of [MnIIIMnIV

2ScO4] with PMe3 (10 
equiv). 

[MnIIIMnIV2ScO4] 
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Figure S7. 1H NMR (300 MHz, C6D6) of reaction of [MnIIIMnIV

2ScO4] with PMe3 (10 
equiv) at 50 °C.  
 
Figure S8. 1H NMR (300 MHz, C6D6) of reaction of [MnIIIMnIV

2GdO4] with PMe3 (10 
equiv) at room temperature. 

 

[MnIIIMnIV2ScO4] 

[MnIIIMnIV2GdO4] 

[MnIIIMnIV2GdO4] 
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Figure S9. 1H NMR (300 MHz, C6D6) of reaction of [MnIIIMnIV
2GdO4] with PMe3 (10 

equiv) at 50 °C. 

 
Figure S10. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIII

3YO(OH)]2 with PEt3 (10 
equiv). 

 

[MnIII3YO(OH)]2 

[MnIII3YO(OH)]2 
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Figure S11. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIII
3YO(OH)]2 with PPh3 (10 

equiv). 

 
Figure S12. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIII

3CaO(OH)] with PEt3 
(10 equiv). 

 

[MnIII3CaO(OH)] 

[MnIII3CaO(OH)] 
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Figure S13. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIII
3CaO(OH)] with PPh3 

(10 equiv). 

 
Figure S14. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIIMnIII

2YO(OH)] with PEt3 
(10 equiv). 

 

[MnIIMnIII2YO(OH)] 

[MnIIMnIII2YO(OH)] 
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Figure S15. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIIMnIII
2YO(OH)] with PPh3 

(10 equiv). 

 
Figure S16. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIIMnIII

2CaO(OH)] with 
PEt3 (10 equiv). 

 

[MnIIMnIII2CaO(OH)] 

[MnIIMnIII2CaO(OH)] 
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Figure S17. 1H NMR (300 MHz, CD2Cl2) of reaction of [MnIIMnIII
2CaO(OH)] with 

PPh3 (10 equiv). 

 
Figure S18. 1H NMR (300 MHz, CD3CN) and 31P NMR (121 MHz) of reaction of 
[FeIII

3LaO(OH)] with PPh3 (10 equiv). 

 

[FeIII3LaO(OH)] 

[FeIII3CaO(OH)] 
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Figure S19. 1H NMR (300 MHz, CD3CN) of reaction of [FeIII
3CaO(OH)] with PPh3 

(10 equiv). 

 
Figure S20. 1H NMR (300 MHz, 1:1 CD3CN/CD2Cl2) and 31P NMR (121 MHz) of 
reaction of [FeIIFeIII

2ScO(OH)] with PMe3 (10 equiv). 

 

[FeIIFeIII2ScO(OH)] 

[FeIIFeIII2LaO(OH)] 
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Figure S21. 1H NMR (300 MHz, C6D6) and 31P NMR (121 MHz) of reaction of 
[FeIIFeIII

2LaO(OH)] with PMe3 (10 equiv). 

 
Figure S22. 1H NMR (300 MHz, C6D6) and 31P NMR (121 MHz) of reaction of 
[FeIIFeIII

2CaO(OH)] with PMe3 (10 equiv).  

[FeIIFeIII2CaO(OH)] 
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Crystallographic Information.  
CCDC 1035222 ([MnIII

3ScO3]) contains the supporting crystallographic data for this 
paper. These data can be obtained free of charge from The Cambridge Crystallographic 
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.  
Refinement details  
In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, then 
placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-ray 
data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray 
tube, Kα = 0.71073 Å). All diffractometer manipulations, including data collection, 
integration, and scaling, were carried out using the Bruker APEXII software.5 Absorption 
corrections were applied using SADABS.6 Space groups were determined on the basis of 
systematic absences and intensity statistics and the structures were solved by direct 
methods using XS7 (incorporated into SHELXTL)8 and refined by full-matrix least 
squares on F2. All non-hydrogen atoms were refined using anisotropic displacement 
parameters. Hydrogen atoms were placed in idealized positions and refined using a riding 
model. The structure was refined (weighted least squares refinement on F2) to 
convergence. Due to the size of the compound, most crystals included solvent accessible 
voids, which tended to contain disordered solvent. In addition, due to a tendency to 
desolvate, the long range order of these crystals and amount of high angle data we were 
able to record was in some cases not ideal. These disordered solvent molecules were 
largely responsible for the alerts generated by the checkCIF protocol.  
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Table S4. Crystal and refinement data for complex [MnIII
3ScO3]  

 [MnIII
3ScO3] 

empirical formula C82 H74 Mn3 N6 O14.14 Sc 
formula wt 1579.44 
T (K) 100 
a, Å 12.2754(13) 
b, Å 15.4073(17) 
c, Å 20.687(2) 
α, deg 85.434(6) 
β, deg 72.878(6) 
γ, deg 76.278(6) 
V, Å3 3632.1(7) 
Z 2 
Cryst. system Triclinic 
Space group P–1 
dcalcd, g/cm3 1.444 
θ range, deg 1.698 – 30.666 
µ, mm-1 0.670 

abs cor Semi-empirical from 
equivalents 

GOFc 1.080 
R1,a wR2b (I > 2σ(I)) 0.0608, 0.1283 

aR1 = S||Fo|-|Fc|| / S|Fo|     b wR2 = # S [w(Fo2-Fc2)2] / S [w(Fo2)2] #1/2     c GOF = S = 
# S [w(Fo2-Fc2)2] / (n-p) #1/2 
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Special refinement details for [MnIII
3ScO3] 

[MnIII
3ScO3] was crystallized from C6H6/Et2O mixture. The compound crystallized with 

two benzene and two diethyl ether solvent molecules in the lattice that were modeled 
successfully. Some constraints were employed to treat the displacement parameters of the 
atoms on some solvent molecules to an acceptable size. One of the benzenes solvents 
was disordered at two positions. An oxygen atom (O4) corresponding to the basal oxygen 
in the cubane motif in starting [MnIIIMnIV

2ScO4] was modeled with 15% occupancy 
(85% occupancy of [MnIII

3ScO3]). The 15% occupancy of O4 may have come from co-
crystallized starting material or uptake of oxygen atom from the air upon crystal 
handling/mounting.  

 
Figure S23. Solid-state structure of [MnIII

3ScO3] as 50% thermal ellipsoids. Hydrogen 
atoms and solvent molecules are omitted for clarity. 
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Optimized Geometries for Calculated Complexes. 
The following color scheme is employed: Ca (silver), C (brown), H (green) O (red), F 
(pink), N (baby blue), S (orange).  
 

 
 
Figure S24. Optimized Structure of oxCa’. 
 

 
Figure S25. Optimized structure of redCa’  
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Figure S26. Optimized structure of oxCa’’  
 
 
 

 
 
 
Figure S27. Optimized structure of redCa’’ (H-bonding between triflate and hydroxide 
ligand) 
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Figure S28. Optimized structure of redCa’’-noH (no H-bonding between triflate and 
hydroxide ligand) 
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