"Big Dipper" Dynamic Contact Angle Curves for Pt-Cured PDMS on a Thermal Gradient: Interrelationships of Hydrosilylation, Si-H Autoxidation and Si-OH Condensation to a Secondary Network.

Kayesh M. Ashraf, Chenyu Wang, Sithara S. Nair and Kenneth J. Wynne*
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Room 422, Biotech 8, 737 N 5th St, Richmond, Virginia 23219, United States.
*Corresponding author: kjwynne@vcu.edu

Supporting Information

Calculation S1. Penetration depth $\left(\mathrm{d}_{\mathrm{p}}\right)$ for Germanium (Ge) crystal

$$
L=d_{p}=\frac{(\lambda) / n_{c}}{2 \times \pi \times\left[\sin ^{2} \theta-\left(\frac{n_{s}}{n_{g}}\right)^{2}\right]^{1 / 2}}
$$

$\mathrm{L}=$ Diffusion path length $=\mathrm{d}_{\mathrm{p}}=$ effective penetration depth
$\lambda=$ peak wavelength
$\theta=$ angle of incidence
$\mathrm{n}_{\mathrm{g}}=$ crystal refractive index
$\mathrm{n}_{\mathrm{s}}=$ PDMS refractive index
The Si-OH group has an absorbance peak at $\sim 3500 \mathrm{~cm}^{-1}$ (wavenumbers) which corresponds to λ $=2857 \mathrm{~nm}$ (wavelength). For the Smart iTR instrument the angle of incidence is $\theta=45^{\circ}$.

For the germanium crystal, $\mathrm{n}_{\mathrm{g}}=4.0$ for $\lambda=2857 \mathrm{~nm}=2.9 \mu \mathrm{~m}$ which means:

$$
\begin{aligned}
L=d_{p} & =\frac{(2857 \mathrm{~nm}) / 4}{2 \times \pi \times\left[\sin ^{2} 45^{\circ}-(1.4 / 4)^{2}\right]^{1 / 2}} \\
& =185 \mathrm{~nm}
\end{aligned}
$$

The Si-H group has an absorbance peak at $\sim 2150 \mathrm{~cm}^{-1}$ (wavenumbers) which corresponds to $\lambda=$ 4651 nm (wavelength). So, the penetration depth (d_{p}) for the Ge crystal

$$
d_{p}=301 \mathrm{~nm}
$$

Calculation S2: Calculation of mole ratios for the different base:crosslinker systems.
a. Vinyl terminated polydimethylsiloxane (MW 28 kDa)

b. Methylhydrosiloxanedimethylsiloxane copolymer, trimethylsiloxy terminated [crosslinker] (MW 900-1200 Da, approximated to $1 \mathrm{kDa}, \mathrm{SiO}(\mathrm{H})\left(\mathrm{CH}_{3}\right) 50-55 \mathrm{~mole} \%$)

Number of repeat units of $\mathrm{SiO}\left(\mathrm{CH}_{3}\right)_{2}$ in 'a' = 377
Number of repeat units of $\mathrm{SiO}(\mathrm{H}) \mathrm{CH}_{3}$ in ' b ' $=7$ (based on 1 kDa molecular weight and 52.5 $\mathrm{mol} \%$ of $\left.\mathrm{SiO}(\mathrm{H}) \mathrm{CH}_{3}\right)$

For 10:1 PDMS coatings:

Hence, ratio of $\mathrm{SiO}\left(\mathrm{CH}_{3}\right)_{2}$ to $\mathrm{SiO}(\mathrm{H}) \mathrm{CH}_{3}$:

$$
\begin{gathered}
377 \times \frac{10}{28000}: 7 \times \frac{1}{1000} \\
=\mathbf{1 9 : 1}
\end{gathered}
$$

Ratio of $\mathrm{SiO}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}$ to $\mathrm{SiO}(\mathrm{H}) \mathrm{CH}_{3}$:

$$
\begin{gathered}
2 \times \frac{10}{28000}: 7 \times \frac{1}{1000} \\
=\mathbf{1}: \mathbf{1 0}
\end{gathered}
$$

2 repeat units of $\mathrm{SiO}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}=\mathrm{CH}_{2}$ is approximate, taking into account end groups of ' a '.

Table S1. Temperature and heating times for S-PDMS and Pt-PDMS coverslip coatings cured on thermal gradients. ${ }^{\text {a }}$

Sample ID ${ }^{\mathrm{c}, \mathrm{d}}$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$, time (h) S1 ${ }^{\mathrm{b}}$	Temperature, $\left({ }^{\circ} \mathrm{C}\right)$, time (h) S^{b}	Temperature $\left({ }^{\circ} \mathrm{C}\right)$, time $(\mathrm{h}) \mathrm{S} 1^{\mathrm{b}}$	Temperature, $\left({ }^{\circ} \mathrm{C}\right)$, time (h) S2 ${ }^{\mathrm{b}}$
S-PDMS(45) Pt-PDMS(45)	45,96	45,48	-	-
S-PDMS(140) Pt-PDMS(140)	140,48	140,24	-	-
S-PDMS(45-140) Pt-PDMS(45-140)	45,24	45,12	140,24	140,12
S-PDMS(45-140) Pt-PDMS(45-140)	45,48	45,24	140,48	140,24
S-PDMS(45-140) Pt-PDMS(45-140)	45,96	45,48	140,96	140,48

a. Processing conditions are the same for S-PDMS and laboratory prepared Pt-PDMS (Experimental).
b. S1 and S2 refer to coverslip sides.
c. (45) and (140) indicate cure temperature.
d. Gradients are designated S-PDMS(45-140) or Pt-PDMS(45-140).

Table S2: XPS area calculation for Si 2 p peak.

Binding energy (eV)	Area 1	Area \%*
101.5	19221	96
102.5	800	4

Area ${ }^{1}$ total: 20021
Area ${ }^{2}$: 20139
$\%$ area difference $=0.6 \%$

Binding energy (eV)	Area 1	Area \%*
101.5	18836	96
102.5	883	4

Area ${ }^{1}$ total: 18255
Area ${ }^{2}$: 18419
$\%$ area difference $=0.9 \%$
${ }^{1}$ Determined by CASAv 2.3.16 PR 1.6
${ }^{2}$ Determined by Avantage 4.4

$$
{ }^{*} \text { Area } \%=\frac{\text { Area }(1)+\text { Area }(2)}{\text { Area }(\text { total })}
$$

Table S3. Comparison of θ_{A} and θ_{R} for Pt-PDMS(45-140) coatings on coverslips prepared at two different times. The θ_{A} is always high irrespective of cure conditions but the θ_{R} increases as the cure time increases.

θ_{A}		
θ_{R}		
Ist set of DCA samples		
Pt-PDMS(45-140)-24/12	116	43
Pt-PDMS(45-140)-48/24	113	55
Pt-PDMS(45-140)-96/48	116	68
2nd set of DCA samples		
Pt-PDMS(45-140)-24/12	92	28
Pt-PDMS(45-140)-48/24	100	45
Pt-PDMS(45-140)-96/48	105	60

Table S4. Average θ_{A} and θ_{R} for S-PDMS and Pt-PDMS coatings measured by drop addition-withdrawal (A-W) method at different cure times that correspond to images in Figures 9, S8 and S9.

Sample designations	Cure time	θ_{A}	θ_{R}	θ_{Δ}
S-PDMS(45)	96 h	125	$\mathbf{4 5}$	80
S-PDMS(140)	48 h	110	92	18
S-PDMS(45-140)	24 h	117	$\mathbf{4 4}$	73
S-PDMS(45-140)	24 h	117	105	12
S-PDMS(45-140)	48 h	113	$\mathbf{4 7}$	66
S-PDMS(45-140)	48 h	113	107	6
S-PDMS(45-140)	96 h	113	$\mathbf{4 8}$	65
S-PDMS(45-140)	96 h	113	106	7
Pt-PDMS(45)	96 h	122	$\mathbf{4 7}$	75
Pt-PDMS(140)	48 h	110	100	10
Pt-PDMS(45-140)	24 h	114	$\mathbf{5 1}$	63
Pt-PDMS(45-140)	24 h	114	100	14
Pt-PDMS(45-140)	48 h	114	$\mathbf{5 2}$	62
Pt-PDMS(45-140)	48 h	114	99	15
Pt-PDMS(45-140)	96 h	112	$\mathbf{5 3}$	59
Pt-PDMS(45-140)	96 h	112	96	16

Figure S1. Experimental apparatus for the preparation of coatings cured in a 45 $140^{\circ} \mathrm{C}$ thermal gradient.

Figure S2. Three cycles comprising pre- and post-water check by DCA with a flamed glass slide for S-PDMS(45-140) and Pt-PDMS(45-140) gradients ($T_{\text {cure }}: 48 / 24 \mathrm{~h}$). Black: force distance curves (fdc), Red: contact angles. A, pre-check; B, post-check of S-PDMS(45-140) gradient, \mathbf{C}, pre-check; \mathbf{D}, post-check of Pt-PDMS(45-140) gradient. A detailed procedure has been published: Uilk, J. M. M., A. E.; Fox, R. B.; Wynne, K. J., Hydrosilation-cured poly(dimethylsiloxane) networks: Intrinsic contact angles via dynamic contact angle analysis. Macromolecules 2003, 36 (10), 3689-3694.

Figure S3. Tapping Mode Atomic Force Microscopy 3D height images for A. PtPDMS(45) (cured 96 h) and B. Pt-PDMS(140), cured $48 \mathrm{~h} . r_{\mathrm{sp}}$ was 0.8 . R_{q} is shown in the images. $Z=200 \mathrm{~nm}$.

Peak deconvolution

The peak area was calculated using smart background correction. The area difference between two different area measurement programs, Avantage and CASA software, were in agreement within $<1 \%$. The difference in area when the broad Si 2 p peak was fitted with just one peak (light purple within red curve) was found to be $>3 \%$ (Figure S4). This comparison supports the existance of two peaks from two Si species in the system as shown in Figure 3, as the area match was within 1%.

Figure S4. Si 2 p peak (red) fitted with only one peak (purple curve). Inset shows the area under Si 2 p peak calculated by using Casa and Avantage software. The two peak fit shown and discussed in the text is a better fit (Figure 3).

Figure S5. ATR-IR spectra for S-PDMS coatings prepared on microscope slides uniformly cured at 45 or $140{ }^{\circ} \mathrm{C}$. Absorptions for $\mathrm{Si}-\mathrm{OH}$ at $\sim 3450 \mathrm{~cm}^{-1}$ before (0) and after immersion cycles 1 and 7 . Each cycle consisted of immersion in water for 10 min followed by drying (1 min) in N_{2} and drying in air for 6 h .

Figure S6. ATR-IR spectra of S-PDMS coatings prepared on microscope slides uniformly cured at 40 or $140^{\circ} \mathrm{C}$. Absorptions for Si-H at $\sim 2150 \mathrm{~cm}^{-1}$ before and after immersion in water. Cycle numbers 1 and 7 are indicated. Each cycle consisted of immersion in water for 10 min followed by drying (1 min) in N_{2} and drying in air for 6 h .

Figure S7. DCA data: A, S-PDMS(45) (solid line) and S-PDMS(140) (dashed line); B, Pt-PDMS(45) (solid line) and Pt-PDMS(140) (dashed line). Four DCA and force-distance curves in sequence are superposed.

Figure S8. Force distance curves (fdc's, black) and contact angles (degrees, red), for gradients: A, S-PDMS(45-140)-24/12; B, S-PDMS(45-140)-48/24; C, S-PDMS(45-140)96/48; D, Pt-PDMS(45-140)-24/12; E, Pt-PDMS(45-140)-48/24; F, Pt-PDMS(45-140)$96 / 48$. Curves are superposition of four cycles.

Figure S9. θ_{A} and θ_{R} for $\mathrm{S}-\mathrm{PDMS}(50)$ and $\mathrm{Pt}-\mathrm{PDMS}(50)$ coatings on coverslips. The coverslips were coated on one side (S2) cured at $50^{\circ} \mathrm{C}$ for 24 h , contact angles were taken. Then the other side (S1) of the coverslips were coated and cured for 24 h and contact angles were determined.

Figure S10. Water drop addition/withdrawal images: A, S-PDMS(45-140) ($T_{\text {cure }}: 24 \mathrm{~h}$); B, S-PDMS(45-140) ($T_{\text {cure }}: 96$ h) C, Pt-PDMS(45-140) ($T_{\text {cure: }}: 24$ h); D, Pt-PDMS(45-140) ($\left.T_{\text {cure: }}: 96 \mathrm{~h}\right)$.

Figure S11. Water drop addition/withdrawal images for controls: A, S-PDMS(45); B, S-PDMS(140); C, Pt-PDMS(45) and D, Pt-PDMS(140). One-sided coatings were cured on microscope slides at uniform temperatures.

Figure S12. ATR-IR spectra: One year old samples of A, S-PDMS(25) and C, SPDMS(100); B and D are after immersion of the respective coatings in water.

