Effect of Equation of States on High Pressure Volumetric Measurements of Methane-Coal Sorption

Isotherms - Part 1: Volumes of Free Space and Methane Adsorption Isotherms

Jamiu M. Ekundayo* and Reza Rezaee

* Corresponding Author’s E-mail Address: Jamiu.Ekundayo@student.curtin.edu.au

This supporting information for our manuscript titled "Effect of Equation of States on High Pressure Volumetric Measurements of Methane-Coal Sorption Isotherms - Part 1: Volumes of Free Space and Methane Adsorption Isotherms" contains the appendices mentioned in the manuscript. It contains (a) appendix A - description of the comparison equations of state (b) appendix B - description of the adsorption steps and (c) appendix C - volume of free space calculated by different equations of state

Appendix A - Description of the Comparison Equations of State

A1. Cubic Equations of State

In terms of molar volume, Van der Waal type cubic equations of state assume the following general mathematical form:

$$
\begin{equation*}
P=\frac{R T}{\left(v_{m}+\beta\right)}-\frac{a(T)}{\left(v_{m}+\delta\right)\left(v_{m}+\gamma\right)} \tag{A1}
\end{equation*}
$$

Where the parameters P, R and T are the pressure, gas constant and temperature respectively; δ and γ are EOS-specific parameters while parameters $a(T)$ and β are similarly defined for all Van der Waal type equations of state as:

$$
\begin{align*}
& a(T)=a=\frac{\Omega_{a} \alpha(T) R^{2} T_{c}^{2}}{P_{c}} \\
& \beta=-b \tag{A3}
\end{align*}
$$

The parameter b is given as:

$$
b=\frac{\Omega_{b} R T_{c}}{P_{c}}
$$

Where Ω_{a}, Ω_{b} EOS-specific constants and $T c, P c$ are the critical temperature and critical pressure of the gas respectively. The temperature dependent parameter $\alpha(T)$ is also EOS-specific and is given as:

$$
\alpha(T)=\left(1+m\left(1-T_{r}^{\frac{1}{2}}\right)\right)^{2}
$$

Where:
$T_{r}=\frac{T}{T_{c}}$ is the reduce temperature and m is EOS-specific.
In terms of the molar volume, the equation Al can be expanded to yield

$$
\begin{align*}
v_{m}^{3}+v_{m}^{2}(\beta & \left.+\delta+\gamma-\frac{R T}{P}\right)+v_{m}\left(\beta \delta+\beta \gamma+\delta \gamma-\frac{R T}{P} \delta-\frac{R T}{P} \gamma+\frac{a}{P}\right)+\left(\frac{a}{P} \beta-\frac{R T}{P} \delta \gamma+\beta \delta \gamma\right) \\
& =0
\end{align*}
$$

The molar volume of the gas can be obtained as the lowest root of equation A6 for a given EOS. Alternatively, equation $A 6$ can be expressed in terms of the gas compressibility factor, Z as:

$$
\begin{gather*}
Z^{3}+Z^{2}\left(\frac{P}{R T}(\beta+\delta+\gamma)-1\right)+Z\left(\frac{P^{2}}{R^{2} T^{2}}(\beta \delta+\beta \gamma+\delta \gamma)-\frac{P}{R T} \delta-\frac{P}{R T} \gamma+\frac{P}{R^{2} T^{2}} a\right)+\left(\frac{P^{2}}{R^{3} T^{3}} a \beta-\frac{P^{2}}{R^{2} T^{2}} \delta \gamma\right. \\
\left.+\frac{P^{3}}{R^{3} T^{3}} \beta \delta \gamma\right)=0
\end{gather*}
$$

The largest root of equation $A 7$, solved iteratively, is the z-factor of the gas for the given EOS parameters a, β, δ and γ.

Also, for use in subsequent subsections, two additional parameters $A \& B$ are generally defined as

$$
\begin{align*}
& A=\frac{a P}{R^{2} T^{2}} \tag{A8}\\
& B=\frac{b P}{R T}
\end{align*}
$$

A1.1 Soave-Redlich-Kwong (SRK) Equation of State

The SRK-EOS is given as:

$$
\begin{equation*}
P=\frac{R T}{\left(v_{m}-b\right)}-\frac{a(T)}{v_{m}\left(v_{m}+b\right)} \tag{A10}
\end{equation*}
$$

Compared to equation A1, it can be seen that $\beta=-b ; \delta=0$ and $\gamma=b$. The SRK-EOS is also characterized by $\Omega_{a}=0.42747 ; \Omega_{b}=0.08664$ and the parameter m is given as:

$$
m=0.480+1.574 \omega-0.176 \omega^{2}
$$

ω is the acentric factor of the fluid/gas being studied.

Substituting for the parameters β, δ and γ in equation $A 7$ and simplifying with equations $A 8 \& A 9$, the SRK-EOS can be written in terms of gas compressibility as:

$$
Z^{3}-Z^{2}+Z\left(A-B-B^{2}\right)-A B=0
$$

A1.2 Peng-Robinson (PR) Equation of State

The PR-EOS is given as:

P

$$
=\frac{R T}{\left(v_{m}-b\right)}-\frac{a(T)}{\left(v_{m}^{2}+2 b v_{m}-b^{2}\right)}=\frac{R T}{\left(v_{m}-b\right)}-\frac{a(T)}{\left[\left(v_{m}+(1-\sqrt{2}) b\right)\right]\left[\left(v_{m}+(1+\sqrt{2}) b\right)\right]}
$$

A13

Compared to equation $A 1$, it can be seen that $\beta=-b ; \delta=(1-\sqrt{2}) b$ and $\gamma=(1+\sqrt{2}) b$. The PREOS is also characterized by $\Omega_{a}=0.457535 ; \Omega_{b}=0.077796$ and m is given as:

$$
m=0.37464+1.54226 \omega-0.26992 \omega^{2}
$$

Substituting for the parameters β, δ and γ in equation $A 7$ and simplifying with equations $A 8 \& A 9$, the PR-EOS can be written in terms of gas compressibility as:

$$
Z^{3}+(B-1) Z^{2}+Z\left(A-2 B-3 B^{2}\right)+\left(B^{3}+B^{2}-A B\right)=0
$$

A1.3 SRK-Peneloux Equation of State

The SRK-Peneloux EOS is given as:

$$
P=\frac{R T}{\left(v_{m}-b\right)}-\frac{a(T)}{\left(v_{m}+c\right)\left(v_{m}+b+2 c\right)}
$$

Compared to equation $A 1$, it can be seen that $\beta=-b ; \delta=c$ and $\gamma=b+2 c$. Parameter c is the volume shift factor introduced by Peneloux et al, to modify the SRK-EOS and given as:

$$
c=0.40768 \frac{R T_{c}}{P_{c}}\left(0.29441-Z_{R A}\right)
$$

Where $Z_{R A}$ is known as the Rackett compressibility factor [1] given as:

$$
Z_{R A}=0.29056-0.08775 \omega
$$

Introducing a parameter C defined as:

$$
C=\frac{c P}{R T}
$$

Substituting for the parameters β, δ and γ in equation $A 7$ and simplifying with the definitions of $A, B \& C$, the SRK-Peneloux EOS can be written in terms of gas compressibility as:

$$
\begin{align*}
Z^{3}+(3 C-1) & Z^{2}+\left[A-B-B^{2}-2 B C-3 C+2 C^{2}\right] Z-\left(A B+B C+B^{2} C+2 B C^{2}+2 C^{2}\right) \\
& =0 \tag{A20}
\end{align*}
$$

A1.4 PR-Peneloux Equation of State

The PR-Peneloux EOS is given as:

$$
P=\frac{R T}{\left(v_{m}-b\right)}-\frac{a(T)}{\left\{v_{m}+[b(1-\sqrt{2})+c(2-\sqrt{2})]\right\}\left\{v_{m}+[b(1+\sqrt{2})+c(2+\sqrt{2})]\right\}}
$$

Comparing equation A21 to equation A1, it can be seen that $\beta=-b ; \delta=b(1-\sqrt{2})+c(2-\sqrt{2})$ and $\gamma=b(1+\sqrt{2})+c(2+\sqrt{2})$. The volume shift factor, c is defined in equation Al7 above. With these and the definition of C given in equation A19, the PR-Peneloux EOS can be written in terms of Z-factor as:

$$
\begin{aligned}
Z^{3}+(B+4 C & -1) Z^{2}+\left[A-2 B-3 B^{2}-4 B C-2 C+2 C^{2}\right] Z-\left(A B-B^{2}-B^{3}+2 B C^{2}+2 C^{2}\right) \\
& =0
\end{aligned}
$$

A2. Non-Cubic Equations of State

Two virial-type equations of state have been selected for comparison with the cubic equations presented in section A1.

A2.1 LK-EOS

Lee and Kesler [2] presented a modification of Benedict-Webb-Rubin (BWR) EOS following the principle of corresponding states $[2,3]$. In terms of the reduced parameters $\left(P_{r}, T_{r} \& v_{r}\right)$, the LK-EOS is given as:

$$
1+\frac{B}{v_{r}}+\frac{C}{v_{r}^{2}}+\frac{D}{v_{r}{ }^{5}}+\frac{c_{4}}{T_{r} v_{r}^{2}}\left(\beta+\frac{\gamma}{v_{r}^{2}}\right) \exp \left(-\frac{\gamma}{v_{r}^{2}}\right)-\frac{P_{r} v_{r}}{T_{r}}=0
$$

The values of the variables $B, C \& D$ are given by the following auxiliary equations:

$$
B=b_{1}-\frac{b_{2}}{T_{r}}-\frac{b_{3}}{T_{r}{ }^{2}}-\frac{b_{4}}{T_{r}{ }^{3}} ; C=c_{1}-\frac{c_{2}}{T_{r}}+\frac{c_{3}}{T_{r}{ }^{3}} ; D=d_{1}+\frac{d_{2}}{T_{r}}
$$

The compressibility, Z of any fluid of known acentric factor (ω) is given in terms of the compressibility Z^{0} of a simple fluid $(\omega=0)$ and the compressibility $Z^{\text {ref }}$ of a reference fluid $\left(\omega=\omega^{r e f}\right)$ as follows:

$$
Z=Z^{0}+\frac{\omega}{\omega^{r}}\left(Z^{r e f}-Z^{0}\right)
$$

Where:

$$
\begin{aligned}
& Z^{0}=\frac{P_{r} v_{r}^{0}}{T_{r}} \\
& Z^{r e f}=\frac{P_{r} v_{r}^{r e f}}{T_{r}}
\end{aligned}
$$

$v_{r}^{0} \& v_{r}^{r e f}$ are respective the reduced specific molar volumes of the simple fluid (rare gas) and reference fluid (n-octane) determined by solving the equation $A 23$ for v_{r} using the corresponding values of the coefficients $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}, \mathrm{~d}_{1}, \mathrm{~d}_{2}, \beta$ and γ from table $A 1$ below.

Table A1: Numerical Values of the coefficients of the LK-EOS [2]

Coefficient	Simple fluid	Reference fluid
b_{1}	0.1181193	0.2026579
$\mathrm{~b}_{2}$	0.265728	0.331511
$\mathrm{~b}_{3}$	0.15479	0.027655
$\mathrm{~b}_{4}$	0.030323	0.203488
c_{1}	0.0236744	0.0313385
c_{2}	0.0186984	0.0503618
c_{3}	0	0.016901
c_{4}	0.042724	0.041577
$\mathrm{~d}_{1}$	1.55488×10^{-5}	4.87360×10^{-5}
$\mathrm{~d}_{2}$	6.23689×10^{-5}	74.0336×10^{-5}
β	0.65392	1.226
γ	0.060167	0.03754

A2.2 SBWR-EOS

Soave [4]'s modification represented an attempt to reduce the number of terms while improving the accuracy of the BWR-EOS. The SBWR-EOS is given in terms of the 3 parameters ($P_{r}, T_{r} \& v_{r}$) as:

$$
1+\frac{B}{v_{r}}+\frac{D}{v_{r}{ }^{4}}+\frac{E}{v_{r}^{2}}\left(1+\frac{F}{v_{r}^{2}}\right) \exp \left(-\frac{F}{v_{r}^{2}}\right)-\frac{P_{r} v_{r}}{T_{r}}=0
$$

The variables B, D, E and F are defined as given in the following auxiliary equations:

$$
\begin{align*}
& B=\frac{R T_{c}}{P_{c}}\left[b Z_{c}+0.422\left(1-\frac{1}{T_{r}^{1.6}}\right)+0.234 \omega\left(1-\frac{1}{T_{r}^{3}}\right)\right] \\
& D=d\left(\frac{R T_{c} Z_{c}}{P_{c}}\right)^{4}\left[1+d_{1}\left(\frac{1}{T_{r}}-1\right)+d_{2}\left(\frac{1}{T_{r}}-1\right)^{2}\right] \\
& E=\left(\frac{R T_{c}}{P_{c}}\right)^{2}\left[e Z_{c}^{2}+e_{1}\left(\frac{1}{T_{r}}-1\right)+e_{2}\left(\frac{1}{T_{r}}-1\right)^{2}+e_{3}\left(\frac{1}{T_{r}}-1\right)^{3}\right] \\
& F=f\left(\frac{R T_{c} Z_{c}}{P_{c}}\right)^{2}
\end{align*}
$$

P_{c}, T_{c} and Z_{c} are respectively the critical pressure, critical temperature and critical z-factor of a given fluid whose acentric factor is ω. The critical z-factor can be calculated from the Rackett equation [4] given as:

$$
Z_{c}=0.2908-0.099 \omega+0.04 \omega^{2}
$$

The coefficients in equations $2.27 a-d$ can be obtained as follows:

$$
\begin{aligned}
& b=Z_{c}-1-d-e(1+f) \exp (-f) \\
& d=\frac{1-2 Z_{c}-e\left(1+f-2 f^{2}\right) \exp (-f)}{3} \\
& e=\frac{2-5 Z_{c}}{\left(1+f+3 f^{2}-2 f^{3}\right) \exp (-f)} \\
& f=0.77 \\
& d_{1}=0.4912+0.6478 \omega \\
& d_{2}=0.3000+0.3619 \omega \\
& e_{1}=0.0841+0.1318 \omega+0.0018 \omega^{2}
\end{aligned}
$$

$$
\begin{array}{lc}
e_{2}=0.0750+0.2408 \omega-0.0140 \omega^{2} & A 28 i \\
e_{3}=-0.0065+0.1798 \omega-0.0078 \omega^{2} & A 28 j
\end{array}
$$

The compressibility of any fluid of known acentric factor can then be calculated from equation A29 below once the reduced specific molar volume is obtained from equation A26 above.

$$
Z=\frac{P_{r} v_{r}}{T_{r}}
$$

Appendix B - Description of the Adsorption Steps

B1. Adsorption Steps

Consider two consecutive adsorption steps $i-1 \& i$ as illustrated in figure Bl below. Each adsorption step involves 3 processes discussed as follows:

Figure B1: Schematic of 2 consecutive adsorption pressure steps
a. Filling the manifold with the adsorbate: The amount of gas that enters into the manifold at pressure, $P_{m A}^{i}$ and temperature, $T_{m A}^{i}$ (where $\mathrm{i}=1,2,3, \ldots, \mathrm{n}$) is given as:

$$
N_{m A}^{i}=\frac{P_{m A}^{i}}{T_{m A}^{i} Z_{m A}^{i}} \times \frac{V_{m a n}}{R}
$$

The equivalent volume at STP is given as:

$$
\begin{equation*}
V_{m A}^{i} \approx \frac{P_{m A}^{i} V_{m a n}}{T_{m A}^{i} Z_{m A}^{i}} \times \frac{V_{S T P}}{R} \tag{B2}
\end{equation*}
$$

Where V_{man} is the volume of the manifold, $R=$ gas constant, Z is the gas compressibility factor and $V_{S T P}$ is the molar gas volume at $\operatorname{STP}(\approx 22400 c c)$.
b. Expanding gas from the manifold to the sample cell: The final pressure and temperature in the manifold are $P_{m B}^{i}$ and $T_{m B}^{i}$ respectively. Hence, the amount of gas expanded/dosed into the sample cell and the equivalent volume at STP can be calculated as:

$$
\begin{align*}
& N_{\text {dosed }}^{a d s, i}=\Delta\left(\frac{P}{Z T}\right)_{\operatorname{man}}^{i} \times \frac{V_{m a n}}{R} \tag{B3}\\
& V_{\text {dosed }}^{i} \approx\left(\frac{P_{m A}^{i} V_{m a n}}{T_{m A}^{i} Z_{m A}^{i}}-\frac{P_{m B}^{i} V_{m a n}}{T_{m B}^{i} Z_{m B}^{i}}\right) \times \frac{V_{S T P}}{R}
\end{align*}
$$

c. Equilibrating the gas in the system: The volume, at STP, of gas in equilibrium is given as:

$$
\begin{equation*}
V_{\text {free }}^{i}=\left(V_{e q}^{i}-V_{e q}^{i-1}\right) \tag{B5}
\end{equation*}
$$

The free space available to gas is composed of three parts, the lower stem of volume, $V_{l s}$, the upper stem of volume, $V_{u s}=7 \mathrm{cc}$ [5] and the sample cell of volume, $V_{s c}$. Therefore:

$$
\begin{equation*}
V_{f r e e}^{i}=\frac{V_{s T P}}{R}\left[\left(\frac{P_{s c}^{i} V_{s c}}{T_{s c}^{i} Z_{s c}^{i}}+\frac{P_{s c}^{i} V_{u s}}{T_{u S}^{i} Z_{u s}^{i}}+\frac{P_{s c}^{i} V_{l s}}{T_{l s}^{i} Z_{l s}^{i}}\right)-\left(\frac{P_{s c}^{i-1} V_{s c}}{T_{s c}^{i-1} Z_{s c}^{i-1}}+\frac{P_{s c}^{i-1} V_{u s}}{T_{u s}^{i-1} Z_{u s}^{i-1}}+\frac{P_{s c}^{i-1} V_{l s}}{T_{l s}^{i-1} Z_{l s}^{i-1}}\right)\right] \tag{B6}
\end{equation*}
$$

Writing a volume balance for the system,

$$
\begin{equation*}
V_{\text {dosed }}^{i}=V_{\text {free }}^{i}+\Delta V^{i} \tag{B7}
\end{equation*}
$$

Putting equations B4 and B6 in B7, the differential adsorbed volume per unit mass of the adsorbent can be obtained as follows:

$$
\begin{aligned}
& \Delta \tilde{V}^{i} \\
& =\frac{V_{s T P}}{R M_{s}} \\
& {\left[\left(\frac{P_{m A}^{i} V_{m a n}}{T_{m A}^{i} Z_{m A}^{i}}-\frac{P_{m B}^{i} V_{m a n}}{T_{m B}^{i} Z_{m B}^{i}}\right)-\left(\frac{P_{s c}^{i} V_{s c}}{T_{s c}^{i} Z_{s c}^{i}}+\frac{P_{s c}^{i} V_{u s}}{T_{u s}^{i} Z_{u s}^{i}}+\frac{P_{s c}^{i} V_{l s}}{T_{l s}^{i} Z_{l s}^{i}}\right)+\left(\frac{P_{s c}^{i-1} V_{s c}}{T_{s c}^{i-1} Z_{s c}^{i-1}}+\frac{P_{s c}^{i-1} V_{u s}}{T_{u s}^{i-1} Z_{u s}^{i-1}}+\frac{P_{s c}^{i-1} V_{l s}}{T_{l s}^{i-1} Z_{l s}^{i-1}}\right)\right]}
\end{aligned}
$$

The cumulative volume adsorbed per unit mass at any pressure step is given as:

$$
\tilde{V}_{r}^{a d s}=\sum_{i=1}^{r}\left(\Delta \tilde{V}^{i}\right)
$$

For the first adsorption step, it can be safely assumed that $P_{s c}^{0}=0$ since the system is expected to be in fully evacuated prior to this step.

B2. Ambient Free space Volume Calculation

Figure B2: Schematic of helium expansion step measurement of free-space volume

As shown in figure B2, free space measurement follows the adsorption processes described in section B1 above except that helium gas is used in this case. It is arguably assumed that helium adsorption is negligible ($\Delta V^{a d s, H e} \approx 0$) [5, 6]. Therefore:

$$
\begin{aligned}
& V_{\text {dosed }}^{H e}=V_{e q}^{H e} \\
& \frac{P_{m A}^{H e} V_{m a n}}{T_{m A}^{H e} Z_{m A}^{H e}}-\frac{P_{m B}^{H e} V_{m a n}}{T_{m B}^{H e} Z_{m B}^{H e}}=\frac{P_{s c}^{H e} V_{s c}}{T_{s c}^{H e} Z_{s c}^{H e}}+\frac{P_{s c}^{H e} V_{u s}}{T_{u s}^{H e} Z_{u s}^{H e}}+\frac{P_{s c}^{H e} V_{l s}}{T_{l s}^{H e} Z_{l s}^{H e}}
\end{aligned}
$$B10

The HPVA-II $200 ®$ uses 2 temperature-point steps to determine the volume of free-space and the corresponding values $V_{l s}$, the volume of the lower stem of the sample holder and $V_{s c}$, the volume of the sample cell. Note that the volume of the upper stem $V_{l s} \approx 7 c c$ [5]. For the first step, it is assumed that $T_{s c}^{H e}$ $=T_{l s}^{H e}=$ Ambient temperature. In this case equation 3.3 can be written as [6]:

$$
V_{A m f s}=V_{s c}+V_{l s}+V_{u s}=V_{l s c}+V_{u s}
$$

Which means:

$$
V_{l s c}=V_{s c}+V_{l s}=V_{A m f s}-V_{u s}
$$

Equation All can now be written as:

$$
\begin{equation*}
V_{A m f s}=\frac{T_{s c}^{H e} Z_{s c}^{H e}}{P_{s c}^{H e}}\left(\frac{P_{m A}^{H e} V_{\operatorname{man}}}{T_{m A}^{H e} Z_{m A}^{H e}}-\frac{P_{m B}^{H e} V_{m a n}}{T_{m B}^{H e} Z_{m B}^{H e}}-\frac{P_{s c}^{H e} V_{u s}}{T_{u s}^{H e} Z_{u s}^{H e}}+\frac{P_{s c}^{H e} V_{u s}}{T_{s c}^{H e} Z_{s c}^{H e}}\right) \tag{B13}
\end{equation*}
$$

The second step proceeds at the experimental temperature such that $T_{s c}^{H e} \neq T_{l s}^{H e}$. In this case, equations B11 \& $B 12 a$ are solved for the values of $V_{s c}$ and $V_{l s}$ using the value of $V_{A m f s}$ determined from the previous step [6].

Appendix C - Volume of Free Space for the Different EOS tested

C1. Ambient Volumes of Free Space Calculated by Different EOS

Figure C1: Effect of Equation of State on ambient volume of free space

References

1. Pedersen, K.S. and P.L. Christensen, Chapter 4: Cubic Equations of State in Phase Behavior of Petroleum Reservoir Fluids. 2007, Boca Raton: CRC Press, Taylor \& Francis Group. 399.
2. Lee, B.I. and M.G. Kesler, A Generalized Thermodynamic Correlation Based on ThreeParameter Corresponding States. AIChE Journal, 1975. 21(3): p. 510-527.
3. Jia, W., Z. Li, K. Liao, and C. Li, Using Lee-Kesler equation of state to compute the compressibility factor of CO2-content natural gas. Journal of Natural Gas Science and Engineering, 2016. 34(2016): p. 650-656.
4. Soave, G.S., An effective modification of the Benedict-Webb-Rubin equation of state. Fluid Phase Equilibria, 1999. 164(1999): p. 157-172.
5. Zou, J., R. Rezaee, and K. Liu, Effect of Temperature on Methane Adsorption in Shale Gas Reservoirs. Energy \& Fuels, 2017. 31(2017): p. 12081-12092.
6. Zhang, Y., W. Xing, S. Liu, Y. Liu, M. Yang, J. Zhao, and Y. Song, Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: experiments and modeling. RSC Advances, 2015. 5(65): p. 52612-52623.
