Supporting Information for

Large Negative Thermal Expansion Induced by Synergistic Effects of Ferroelectrostriction and

Spin Crossover in PbTiO₃-Based Perovskites

Zhao Pan,^{1,2} Jun Chen,^{3,4,*} Runze Yu,² Lokanath Patra,^{5,6} Ponniah Ravindran,^{5,6} Andrea Sanson,⁷ Ruggero Milazzo,⁷ Alberto Carnera,⁷ Lei Hu,⁴ Lu Wang,⁴ Hajime Yamamoto,² Yang Ren,⁸ Qingzhen Huang,⁹ Yuki Sakai,² Takumi Nishikubo,² Takahiro Ogata,² Xi'an Fan,¹ Yawei Li,¹ Guangqiang Li,¹ Hajime Hojo,² Masaki Azuma,² and Xianran Xing^{3,4}

¹State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

²Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama,

226-8503, Japan

³Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China

⁴Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China

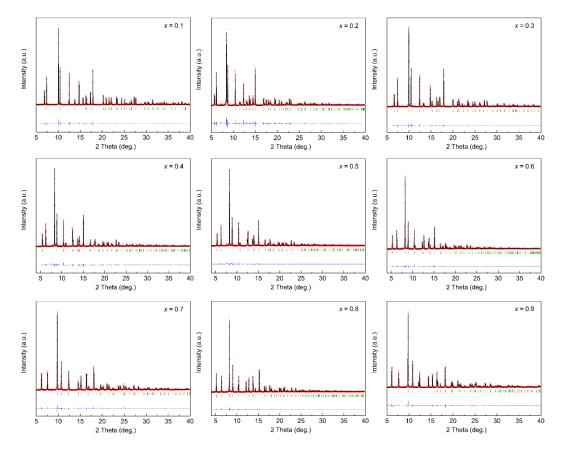
⁵Department of Physics, Central University of Tamil Nadu, Thiruvarur, 610101, India

⁶Simulation Center for Atomic and Nanoscale MATerials (SCANMAT), Central University of Tamil Nadu,

Thiruvarur, Tamil Nadu, 610101, India

⁷Department of Physics and Astronomy, University of Padova, Padova I-35131, Italy

⁸X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States


⁹Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland

20899-6102, United States

*Corresponding author: junchen@ustb.edu.cn

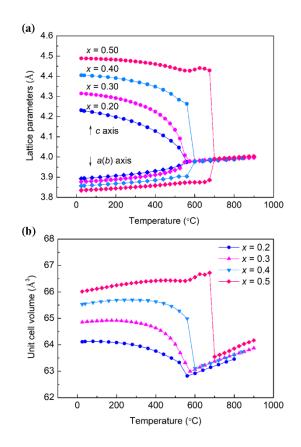

Figure S1. Crystal structure in *ABO*₃ perovskite-type ferroelectric of (1-x)PT-*x*BC at RT. The normal (a) *BO*₆ octahedron is transformed to (b) *BO*₅ pyramidal coordination with the increase in *x*. (c) *P*_S displacement of δ_{ZA} and δ_{ZB} of (1-x)PT-*x*BC as a function of *x*. The error bars are smaller than the symbols.

Figure S2. Rietveld refinement of SXRD patterns of tetragonal (1-x)PT-xBC (x = 0.1- 0.9) at room temperature. Observed (red circles), calculated (black line), and their difference profiles (bottom line) are shown. The Bragg reflection positions are indicated by the green ticks. The related wavelength (λ) is 0.419552 Å for x = 0.2, 0.4, 0.5, 0.6, 0.8, and 0.500000 Å for x = 0.1, 0.3, 0.7, and 0.9, respectively.

Figure S3. Rietveld refinement of SXRD patterns of tetragonal BiCoO₃ (x = 1.0 for (1-x)PT-xBC) at room temperature. Observed (red circles), calculated (black line), and their difference profiles (bottom line) are shown. The Bragg reflection positions are indicated by the green ticks. The related wavelength (λ) is 0.500000 Å

Figure S4. Structural parameters of (a) a(b), c, and (b) unit cell volume as a function of temperature for (1-x)PT-*x*BC (x = 0.2, 0.3, 0.4, and 0.5). The error bars are smaller than the symbols.

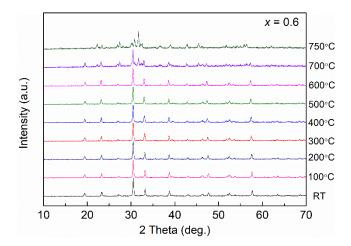
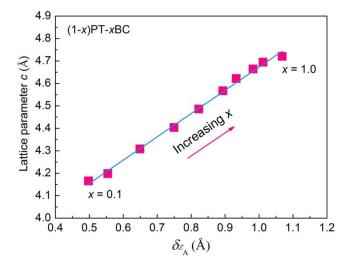



Figure S5. Temperature dependence of X-ray diffraction patterns of 0.4PbTiO₃-0.6BiCoO₃.

Figure S6. The coupling between the P_S displacement (δz_A) and the lattice parameter *c* axis of (1-*x*)PT-*x*BC (*x* = 0.0 ~ 1.0). The error bars are smaller than the symbols.

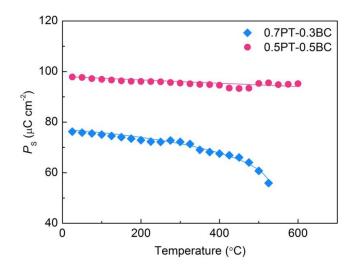
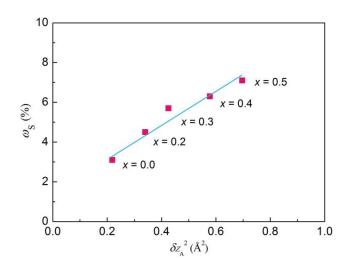



Figure S7. Temperature dependence of calculated *P*_S for 0.7PT-0.3BC and 0.5PT-0.5BC.

Figure S8. The correlation between the spontaneous volume ferroelectrostriction (ω_s) and P_s displacement (δz_A). There is a strong correlation of $\omega_s = \alpha \delta z_A^2$ for (1-*x*)PT-*x*BC (*x* = 0.0, 0.2, 0.3, 0.4, and 0.5) ferroelectrics.

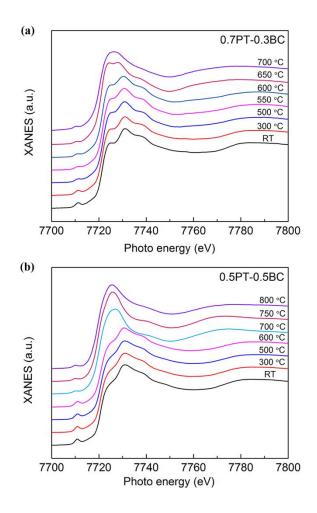


Figure S9. XANES structural analysis. Temperature dependence of Co K-edge XANES spectra for (a) 0.7PT-0.3BC and (b) 0.5PT-0.5BC.

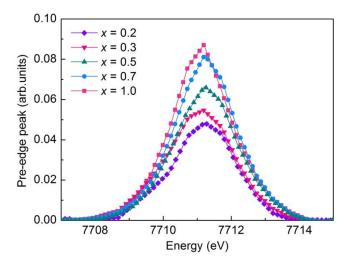


Figure S10. Composition dependence of Co K pre-edge peak for (1-x)PT-xBC (x = 0.2, 0.3, 0.5, 0.7, and 1.0) at RT.

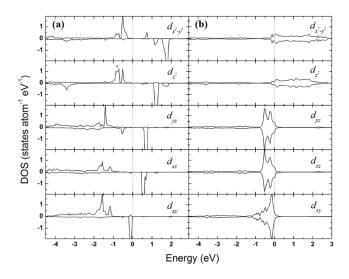


Figure S11. Calculated orbital projected DOS for 0.5PT-0.5BC in the ferroelectric (a) and the paraelectric (b) phases.

content	<i>x</i> = 0	<i>x</i> = 0.2	<i>x</i> = 0.3	<i>x</i> = 0.4	<i>x</i> = 0.5
T _C (°C)	490	560	575	600	700
CTE (×10 ⁻⁵ /°C)	-1.99	-3.78	-5.24		
ΔV	-1.29%	-2.04%	-2.97%	-3.24%	-4.76%

Table S1. The data of the CTE, volume contraction, and $T_{\rm C}$ of (1-x)PT-*x*BC.

Table S2. Structural refinement results of NPD of 0.5PT-0.5BC at 5 K. O1 and O2 were refined by using anisotropic atomic displacement parameters (U_{11} , U_{22} , and U_{33}). Others are isotropic ones. The quality of the agreement between the observed and calculated profiles is indicated by the weighted R_{wp} and the goodness of fit χ^2 .

atom	site	x	у	Z.	$U_{ m iso}/U_{ m ij}$
Pb/Bi	1a	0	0	0	0.02177
Co/Ti	1b	0.5	0.5	0.597305	0.02456
01	1b	0.5	0.5	0.178456	$\begin{array}{c} 0.03044(U_{11})\\ 0.03044(U_{22})\\ 0.01287(U_{33}) \end{array}$
O2	2c	0.5	0	0.684938	$\begin{array}{c} 0.01585(U_{11})\\ 0.00963(U_{22})\\ 0.02077(U_{33}) \end{array}$

*Space group *P4mm*, a(b) = 3.82055(4) Å, c = 4.49313(2) Å, m_z (Co) = 3.24 µB, $\chi^2 = 1.28$, $R_{wp} = 6.82\%$.