Effects of heat setting on the morphology and performances of polypropylene separator for lithium ion batteries

Fangxinyu Zeng ¹, Ruizhang Xu¹, Lei Ye ¹, Bijin Xiong ², Jian Kang ^{1,*}, Ming Xiang ¹, Lu Li ³, Xingyue Sheng ³, Zengheng Hao ³

Jian Kang, e-mail: jiankang@scu.edu.cn

¹ State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China

² School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China

³ Chongqing Zhixiang Paving Technology Engineering Co., Ltd., Chongqing, 401336, China

^{*} Corresponding author.

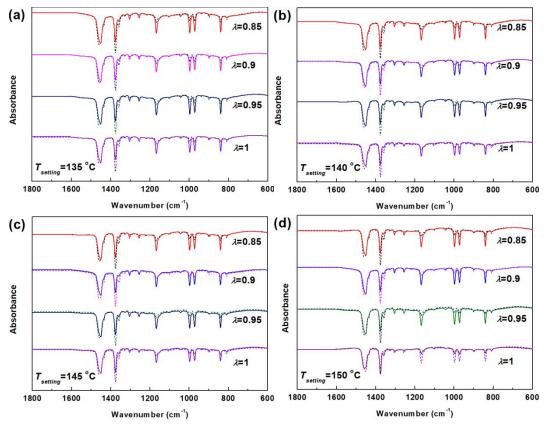


Figure S1 Infrared dichroism spectra of the separators after heat setting treatment at the indicated temperature ($T_{setting}$) and heat setting ratio (λ). The solid lines correspond the spectra obtained parallel to the machine direction, while the dashed lines correspond to the spectra obtained perpendicular to the machine direction.