Supporting Information

High Photoresponsivity in Ultrathin 2D Lateral Graphene:WS₂:Graphene Photodetectors Using Direct CVD Growth

Tongxin Chen,¹ Yuewen Sheng,¹ Yingqiu Zhou,¹Ren-jie Chang,¹ Xiaochen Wang,¹ Hefu Huang¹,

Qianyang Zhang¹, Linlin Hou¹, Jamie H. Warner^{1*}

¹Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom

*Jamie.Warner@materials.ox.ac.uk

Device	λ	Р	Vds	Vg	Photoresponsivity	Photogain	Reference
1L MoS2	400-800	100µW	1V	-1V	45.5A/W		1
1-2L MoS2	520	60µW	1V	-1V	3.5A/W		2
1L WS2	532nm	0.1µW	5V	80V	~4A/W	136	3
2L WS2	532nm	2.5×10 ⁷ mW/cm ²	5V	0V	3.5A/W	9.3	4
1L WS2	532nm	2.5×10 ⁷ mW/cm ²	5V	0V	2.5A/W	5.8	4
1-2L WS2	532nm	$2.7 \times 10^5 \text{ mW/cm}^2$	5V	30V	121A/W	4050	This work

Table S1. Comparison of photoresponsivity of TMD-based photodetector

Figure S1. Gr/WS₂/Gr photodetectors made by transfer method (a) SEM image of a Gr/WS₂/Gr photodetectors made by transfer WS₂ triangular domains on pre-patterned graphene gap; (b) I-V curves of Gr:WS₂:Gr FET under various illumination power with 0V gate voltage; (c) I-V_g curve of device made by transfer and CVD method obtained under 2V bias.

Figure S2. Schematic illustration of setup used to measure the Dirac point of graphene after transfer of WS_2 and CVD growth of WS_2

S1 Extraction of Schottky barrier using back-to-back diode model

We introduced a modified thermionic emission equation for Schottky barrier extraction from I-V curves. Given the semi-metal and semiconductor properties of graphene and WS_2 , we simplified it into a back-to-back Schottky diode pair in series. The current of the device could be expressed as following set of equations:

$$I = I_0 \times \exp\left[-\left(1 - \frac{1}{n}\right)e\beta V V_1\right] \times \left[\exp\left(e\beta V_1\right) - 1\right]$$
(1)

$$I = \frac{V_2}{R}$$
(2)

$$I = -I_0 \times \exp\left[-\left(1 - \frac{1}{n}\right)e\beta VV_3\right] \times \left[\exp\left(e\beta V_3\right) - 1\right]$$
(3)

$$U = V_1 + V_2 + V_3 \tag{4}$$

By solving equation (1)-(4), we can obtain:

$$I = I_0 \left[\frac{\cosh\left(\frac{1}{2}(1 - \frac{1}{n})e\beta(U - IR)\right)}{\cosh\left(\frac{1}{2n}e\beta(U - IR)\right)} \right]^{-(1 - \frac{1}{n})} \times \frac{\sinh\left(\frac{1}{2}e\beta(U - IR)\right)}{\cosh\left(\frac{1}{2n}e\beta(U - IR)\right)}$$
(5)

Where I is the source-drain current, U is the source-drain bias, n is the ideality factor, e is the elementary charge unit and $\beta = 1/k_BT$ is the Boltzmann factor, V_i (i =1, 2, 3) are the voltage drop across the left diode, middle resistance, and right diode. I₀ is a constant related to the Schottky barrier height which could be expressed as

$$I_0 = wA_{2d}T^{\frac{3}{2}} \times \exp\left(-\beta e\Phi_{SB}\right) \tag{6}$$

Where w is the contact width of graphene and A_{2d} is the two-dimensional equivalent of Richardson constant, T is the temperature, and Φ_{SB} is the effective Schottky barrier height.

Reference:

- Dhar, S.; Jokerst, N. M. High Responsivity, Low Dark Current, Large Area, Heterogeneously Bonded Annular Thin-Film Silicon Photodetectors. *IEEE Photonics Conference 2012* 2012.
- Sun, B.; Shi, T.; Liu, Z.; Wu, Y.; Zhou, J.; Liao, G. Large-Area Flexible Photodetector Based on Atomically Thin MoS 2 /Graphene Film. *Materials & Design* 2018, 154, 1–7.
- Zhou, Y.; Tan, H.; Sheng, Y.; Fan, Y.; Xu, W.; Warner, J. H. Utilizing Interlayer Excitons in Bilayer WS2 for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors. ACS Nano 2018, 12, 4669–4677.
- Tan, H.; Fan, Y.; Zhou, Y.; Chen, Q.; Xu, W.; Warner, J. H. Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS2 With Graphene Electrodes. *ACS Nano* 2016, *10*, 7866– 7873.