Support Information for

Visbreaking of Heavy Oil in Supercritical Benzene

Xue-Qin Liu^a, Hao Qu^a, Jing-Yi Yang^b, Pei-Qing Yuan^{a*}, Wei-Kang Yuan^a

^a State Key Laboratory of Chemical Engineering, East China University of Science and

Technology, Shanghai 200237, China

^b Research Institute of Petroleum Processing, East China University of Science and Technology,

Shanghai 200237, China

* Corresponding author.

State Key Laboratory of Chemical Engineering

East China University of Science and Technology

130 Meilong Road

Shanghai, 200237

People's Republic of China

Tel.: +86 21 64253529; fax: +86 21 64253528.

E-mail address: pqyuan@ecust.edu.cn (P.Q. Yuan).

ORCID: 0000-0003-0797-963X

H atom type	chemical shift (ppm)	number of H atoms
-CR=CH ₂	4.5-4.7	2
-CH=CH ₂	4.7-5.0	3
-CR=CH-	5.0-5.2	1
-CH=CH-	5.2-5.5	2

Table S1. Chemical Shift of H Atoms Relating to Olefins Contained in Oil Samples

parameter	equation	parameter	equation
M _n	from VPO	f	$12 \times n/(2 \times n+1-2 \times r)$
β, γ	from ¹ H-NMR	BI	γ/β
H/C	H%×12/C%	C_S	$f \times (H_{\alpha} + H_{\beta} + H_{\gamma}) \times H\%/100$
п	$(H_{\alpha}+H_{\beta}+H_{\gamma})/H_{\alpha}$	C_A	C%-Cs
r	(0.25×(BI+4.12)-1)/2×(<i>n</i> -1)	C_1	$(12 \times H_{aro} + f \times H_{\alpha}) \times H\%/100$
R _A	(#C _A -#C ₁)/2+1	$\#C_1$	$C_1 \times Mn/1200$
$R_{\rm N}$	%AS×C1×r/100	%AS	$f \times H_{\alpha} \times H\%/C_1$
Rs	%AS×#C1/100	$\#C_A$	$C_A \times M_n / 1200$

Table S2. Equations Adopted in Modified Brown-Ladner Method for DeterminingAverage Molecular Structure Parameters of Raw Heavy Oil or Liquid Products

Nomenclature

M_n	= number average molecular weight of oil samples, Da
С%	= weight percentage of carbon, wt%
Н%	= weight percentage of hydrogen, wt%
H_{α}	= aliphatic hydrogen α to aromatic ring with chemical shift of 2.0-4.5 ppm
H_{β}	= aliphatic hydrogen β or further from aromatic ring with chemical shift of 1.05-2.0 ppm
H_{γ}	= methyl hydrogen γ or further from aromatic ring with chemical shift of 0.5-1.05 ppm
Haro	= aromatic hydrogen with chemical shift of 6.0-9.0 ppm
γ, β	= peak height of H_{γ} or H_{β} from ¹ H-NMR
BI	= branchiness index.
H/C	= H/C atomic ratio
n	= average carbon number of alkyl substituents
r	= number of naphthene rings per substituent
f	= average C/H weight ratio of alkyl groups.
C_S	= fraction of non-aromatic C atoms in total C atoms contained in oil samples, %
C_A	= fraction of aromatic C atoms in total C atoms contained in oil samples, %
C_1	= fraction of non-bridge aromatic ring carbons
$\#C_1$	= average number of non-bridge aromatic ring carbon atoms per average molecule
%AS	= percent substitution of alkyl groups on non-bridge aromatic ring carbons
$\#C_A$	= average number of aromatic ring carbon atoms per average molecule.
RA	= average number of aromatic rings per average molecule
$R_{\rm N}$	= average number of naphthenic rings per average molecule
R_S	= average number of alkyl substituents per average molecule