Supporting Information

N-doped 3D porous Ni/C bifunctional electrocatalysts for alkaline water electrolysis

Jieting Ding,¹ Shan Ji,^{2,*} Hui Wang,¹ Vladimir Linkov,³ Hengjun Gai,¹ Fusheng Liu,¹ Quanbing liu,^{4,*} Rongfang Wang^{1,5*}

¹ State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

² College of Biological, Chemical Science and Chemical Engineering, Jiaxing University, Jiaxing, 314001, China

³ South African Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town, 7535, South Africa.

⁴ School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

total number of pages : 8; total number of figures : 9;

total number of tables : 2; total number of equations : 1

Figure 2 shows the particle size distribution histogram for the Ni/C electrocatalyst, determined neglecting the few agglomerated or very large nanoparticles. The diameters of 300 randomly selected particles were measured and the Ni/C nanoparticles particle averaged diameter was calculated to be 16 nm according to the formula:

$$\mathbf{d} = \sum \mathbf{f}_i \mathbf{d}_i^3 / \sum \mathbf{f}_i \mathbf{d}_i^2$$

where f_i is the ratio of particles, d_i is diameter.

Figure S1. Experiment procedure of preparing Ni/C samples.

Figure S2. (a) SEM images of the C; (b) the low magnification SEM image of Ni-2;(c) SEM images of the C synthesized products without NaCl.

Figure S3. C (a) and N (b) surface composition of C and Ni-2.

Figure S4. Electrochemical double-layer capacitance measurements. (a-d) Electrochemical cyclic voltammogram of as-grown catalysts at different potential scanning rates. The scan rates are 20, 40, 60, 80, 100 and 120 mV s⁻¹. The selected potential range where current was observed is 0.516 to 0.616 V vs. RHE.

Figure S5. (a) HER LSV of the different cycle points on the Pt/C electrode during stability testing; (b) OER LSV of the different cycles points on the RuO_2 electrode during stability testing.

Figure S6. (a) HER LSV and (b) OER LSV of the different cycles points on the C electrode during stability testing; Morphology of C after 3000 cycles (c) SEM and (d) TEM.

Figure S7. (a) HER LSV and (b) OER LSV of the different cycles points on the Ni-1 electrode during stability testing; Morphology of Ni-1 after 3000 cycles (c) SEM and (d) TEM.

Figure S8. (a) HER LSV and (b) OER LSV of the different cycles points on the Ni-3 electrode during stability testing; Morphology of Ni-3 after 3000 cycles (c) SEM and (d) TEM.

Table S1. A benchmark of our Ni/C with the value obtained from some other independent literaures.

Samples	Electrolyte	HER	Tafel Slope		Reference
		Overpotential	(mVdec ⁻¹)		
		(10 mA cm ⁻²)			
Ni-2	1M KOH	94 mV	52		This Work
Ni ₃ Se ₂ /EG	1M KOH	150 mV	83	Nano	Lett,2017,17,4202-4209
CoOx@NC	1M KOH	250			J. Am. Chem.
				So	c2015,137,2688-2694
Mo ₂ C/C	1M KOH	100mV	72	ACS	Appl. Mater. Interfaces
				2	2017,9,41314-41322
NiO/Ni-CNT	1M KOH	85 mV	82	Nat.	Commun. 2014, 5, 4695

N,S-CNT	1M KOH	400	133	Adv. Energy Mater. 2017,
				1602068
CoP-NW/Hb	1M KOH	100	88	Nano Eesearch
				2017,10(3);1010-1020
Ni@NC	0.1M KOH	190 mV		Adv. Energy Mater. 2015, 5,
				1401660.

 Table S2. A benchmark of our Ni/C with the value obtained from some other

 independent literatures.

Samples	Electrolyte	OER	Tafel Slope		Reference
		Overpotential	(mVdec ⁻¹)		
		(10 mA cm^{-2})			
Ni-2	1M KOH	350 mV	56		This Work
NiNCN-22	0.1M KOH	470 mV	139	J. Mat	er. Chem. A, 2016,4,
					4864-4870
NiOx-N/C	1M KOH	250 mV		Natur	re communications 4
					(2013): 2390
Ni@NC	0.1M KOH	390 mV	44	Adv. E	nergy Mater. 2015, 5,
					1401660.
Co-N-GCI	0.1M KOH	420 mV	69	A	ACS Sustainable
				Chem.H	Eng.2016,4,4131-4136
S,N-Fe/N-CNT	0.1M KOH	370 mV	82	Angew	. Chem. Int. Ed. 2017,
					56, 610 –614
Ni ₃ Se ₂	0.3M KOH	370 mV	99.6	Ene	ergy Environ. Sci.,
				20	016,9, 1771-1782
N,P-GCNs	0.1M KOH	356 mV	70		ACS Catal.
				20	015,5,4133-4142

Figure S9. (a) XRD patterns of the post-stability Ni-2. Deconvoluted high resolution XPS spectra of Ni 2p (b), C 1s (c), N 1s (d).