Supporting Information

for

Asymmetric Diels-Alder Reaction of 3-Vinylindoles and Nitroolefins Promoted by Multiple Hydrogen Bonds

Xi Yang ${ }^{\dagger}$, Yu-Hao Zhou ${ }^{\dagger}$, Han Yang ${ }^{\dagger}$, Shan-Shan Wang ${ }^{\dagger}$, Qin Ouyang ${ }^{\ddagger}$, Qun-Li Luo ${ }^{\dagger}$,Qi-Xiang Guo ${ }^{\text {** }}$
${ }^{\dagger}$ Key Laboratory of Applied Chemistry of Chongqing Municipality, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
${ }^{\ddagger}$ College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.E-Mail: qxguo@swu.edu.cn
Table of Contents

1. General data S-2
2. Catalyst synthesis S-2
3. General procedure for the asymmetric reaction S-4
4. Product transformation. S-21
5. Determining the absolute configuration of $4 a$ and 8 a S-24
6. Transition states study S-27
7. References S-37
8. Spectrums of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HPLC. S-38

1. General data

Unless otherwise noted, commercial reagents were used as received.All reactions were monitored by TLC with silica gel coated plates. ${ }^{1} \mathrm{H}$ NMR (600 MHz) and ${ }^{13} \mathrm{C}$ NMR (150 MHz) spectra were recorded on Bruker Avance 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Proton gsignal multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad) or a combination of them. J-values are in Hz. Enantiomer ratios were determined by HPLC with chiral columns(Chiralpak AD-H, IC-H, IA-H, OD-H columns were purchased from Daicel Chemical Industries, LTD.). Optical rotations were determined at $\lambda=589 \mathrm{~nm}$ (sodium D line) by using a Perkin-Elmer-341 polarimeter.

2. Catalyst synthesis.

N, N '-dicyclohexylcarbodiimide ($3.75 \mathrm{mmol}, 1.25 \mathrm{eq}$.) was added to a solution of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10.0 mL) containing N-Boc- L-tert-Leucine ($3.6 \mathrm{mmol}, 1.2$ eq.) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minand then compound $\mathbf{A}^{[1]}(3.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to the solution. The mixture was warmed to room temperature and stirred for additional 24 h . The solid formed was filtrated and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined filtrate was concentrated and purified by flash chromatography on silica gel to afford the desired product B $(88 \%-95 \%$ yield).

Compound B ($2.5 \mathrm{mmol}, 1.0$ eq.) was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, then a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ containing trifluoroacetic acid ($50.0 \mathrm{mmol}, 20.0$ eq.) was added dropwise. The mixture was warmed to room temperature and stirred for 12 h . Aqueous NaHCO_{3} was added to it until the pH to alkaline. The resulting mixture was then extracted with dichloromethane ($30.0 \mathrm{~mL} \times 3$), and the organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, concentrated and purified by flash chromatography on silica gel to afford the desired product C (94\%-99\% yield).

Compound \mathbf{C} ($2.0 \mathrm{mmol}, 1.0$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ at room temperature and was treated with 3,5-bis(trifluoromethyl)phenyl isothiocyanate ($2.4 \mathrm{mmol}, 1.2$ eq.). After stirring for 2 h , the reaction mixture was concentrated under reduced pressure and subjected to flash chromatographic separation to afford product $\mathbf{3 g - 3 j}(94 \%-98 \%$ yield) as a white solid.
(S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N-((1R,2R)-2-(dimethylamino)-1,2-diphe nylethyl)-3,3-dimethylbutanamide (3g)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 5:1); white solid; m.p. $123-124{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $9.10(\mathrm{~s}, 1 \mathrm{H}), 8.07$ (s, 2H), 7.94 (s, 2H), 7.62 (s, 1H), $7.23-7.17$ (m, $3 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=182.03,172.38$, $140.64,139.95,132.02,131.79,131.57,131.36,129.56,127.88,127.80,127.50,126.97,125.88$, 124.07, 123.21, 122.26, 120.45, 117.85, 73.23, 66.26, 55.92, 40.44, 34.80, 27.22, 26.92; HRMS(ESI): calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}: 625.2430$, found: 625.2437.
(S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N-((1R,2R)-2-(diethylamino)-1,2-diphen ylethyl)-3,3-dimethylbutanamide (3h)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=10: 1$);white solid; m.p. $210-212{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=8.74(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H})$, $7.00(\mathrm{~s}, 3 \mathrm{H}), 6.85(\mathrm{~s}, 3 \mathrm{H}), 6.79(\mathrm{~s}, 4 \mathrm{H}), 4.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (dd, $J=11.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{dd}, J=11.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 6 \mathrm{H}$), 0.68 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=181.83,172.09,140.71,140.45,133.38$, 131.60, 131.38, 129.43, 127.94, 127.90, 127.81, 127.30, 126.86, 124.11, 122.44, 122.30, 117.40, 68.41, 66.28, 56.04, 42.90, 34.69, 27.34, 14.13; HRMS(ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}$: 653.2743, found: 653.2746.
(S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N-((1R,2R)-1,2-diphenyl-2-(pyrrolidin-1 -yl)ethyl)-3,3-dimethylbutanamide (3i)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=5: 1$); white solid; m.p.101-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta=10.45(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.39(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{t}, J=8.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.03(\mathrm{dd}, J=19.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta=181.18,169.55,142.50,141.72,136.80,131.02,130.80,130.59$, $129.69,128.37,127.91,127.18,126.82,126.43,124.62,122.81,121.99,121.00,116.57,69.95$, 64.56, 55.25, 49.26, 35.46, 27.09, 23.01; HRMS(ESI): calcd. for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}$: 651.2587, found:651.2580.
(S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N-((1R,2R)-1,2-diphenyl-2-(piperidin-1-yl)ethyl)-3,3-dimethylbutanamide (3j)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=5: 1$); white solid; m.p. $165-166{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta=10.45(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.34(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{dt}, J=22.7,7.4 \mathrm{~Hz}, 5 \mathrm{H}), 6.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=11.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ $(\mathrm{d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.45(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta=181.28$, $169.29,142.52,141.76,134.73,131.00,130.78,130.56,130.34,129.68,128.64,127.99,127.81$, $127.20,126.82,126.41,124.60,122.79,122.25,120.98,116.54,73.38,64.66,52.72,50.09,35.65$, 27.09, 26.23, 24.82; HRMS(ESI): calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{OS}(\mathrm{M}+\mathrm{H})^{+}: 665.2743$, found: 665.2747.
3. General procedure for the asymmetric reaction.

A dry tube was charged with $\mathbf{1}^{[2]}(0.2 \mathrm{mmol}), \mathbf{2}^{[3][4]}(0.1 \mathrm{mmol})$ and $\mathbf{3 j}(0.01 \mathrm{mmol})$. After the addition of xylene $(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mu \mathrm{~L})$, the mixture was effectively stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. Upon the complete consumption ofnitroolefins 2, the mixture was concentrated in vacuo and purified by flash chromatography on silica gel to afford thetarget compound 4/5. The analytic data of compounds 4 and 5 were listed below.

Table S1. Substrate scope of nitroolefins. ${ }^{a}$

		 2	$\xrightarrow[\text { xylene, } 0^{\circ} \mathrm{C}]{\substack{10 \mathrm{~mol} \% \mathbf{3 j} \\ \mathrm{H}_{2} \mathrm{O}(20 \mu \mathrm{~L})}}$		
entry	4	R^{2}	time (h)	yield (\%) ${ }^{b}$	ee (\%) ${ }^{c}$
1	4s	$4-\mathrm{FC}_{6} \mathrm{H}_{5}$	48	61	91
2	4t	$4-\mathrm{BrC}_{6} \mathrm{H}_{5}$	48	60	92
3	4u	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	48	69	90
4	4v	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{6} \mathrm{H}_{5}$	72	63	91
5	4w	4-MeC66 H_{5}	48	48	90
6	4x	$4-{ }^{\text {t }} \mathrm{BuC}_{6} \mathrm{H}_{5}$	72	62	86
7	4 y	$3-\mathrm{FC}_{6} \mathrm{H}_{5}$	48	51	89
8	4z	$3-\mathrm{ClC}_{6} \mathrm{H}_{5}$	48	57	83
9	4aa	$2-\mathrm{FC}_{6} \mathrm{H}_{5}$	48	54	88
10	4ab	$2-\mathrm{ClC}_{6} \mathrm{H}_{5}$	48	62	87
11	4 ac	$2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	72	65	86
12	4ad	$2,6-2 \mathrm{ClC}_{6} \mathrm{H}_{5}$	60	19	90

${ }^{a}$ Reaction conditions: $\mathbf{1}(0.20 \mathrm{mmol}), \mathbf{2}(0.10 \mathrm{mmol}), \mathbf{3 j}(0.01 \mathrm{mmol})$, xylene $(1.0 \mathrm{~mL}) .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by chiral HPLC.
(1S,2S,9aS)-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazole (4a)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($18.4 \mathrm{mg}, 63 \%$ yield); m.p. $132-133{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+86.25\left(\mathrm{c}=0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.28-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.11-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.65$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=11.6,9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddt}, J=19.4,6.9,3.4 \mathrm{~Hz}$, 1H), $2.65-2.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.03,138.99,136.51,129.74$,
$129.02,127.90,127.51,126.34,120.78,120.26,114.71,111.34,92.15,64.37,44.31,35.44$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} (minor) $=11.758$ min, t_{R} (major) $=8.660 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}:$ 293.1285, found: 293.1283.
(1S,2S,9aS)-2-(4-chlorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4b)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 30:1); yellow solid ($21.5 \mathrm{mg}, 66 \%$ yield); m.p. $117-118{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+57.91\left(\mathrm{c}=0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.98(\mathrm{~m}$, $1 \mathrm{H}), 4.88(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=18.2,11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.98,137.47$, $136.59,133.77,129.84,129.25,128.89,126.22,120.82,120.35,114.38,111.40,91.94,64.25$, 43.72, 35.32 ; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=10.575 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=7.304 \mathrm{~min}, 92 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 327.0895$, found: 327.0899 .
(1S,2S,9aS)-1-nitro-2-(4-(trifluoromethyl)phenyl)-2,3,9,9a-tetrahydro-1H-carbazole (4c)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($24.5 \mathrm{mg}, 68 \%$ yield $) ;$ m.p. $72-73{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+43.27(\mathrm{c}=$ $\left.0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{q}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{td}, J=10.9$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{ddt}, J=19.3,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=151.97,143.15,136.72,130.36,130.14,129.92,127.97,126.15,126.04,124.83$, 123.03, 120.86, 120.40, 114.16, 111.43, 91.66, 64.21, 44.02, 35.23; HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=7.991 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $5.821 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 361.1158$, found: 361.1159 .

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($16.7 \mathrm{mg}, 52 \%$ yield); m.p.192-193 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+63.61\left(\mathrm{c}=0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{dt}, J=12.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J$ $=19.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.57(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddt}, J=19.4,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.55$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.19,152.02,136.43,130.77,129.70,128.57,126.37$, $120.76,120.25,114.83,114.42,111.33,92.42,64.37,55.25,43.65,35.49$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=15.701 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $10.999 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 323.1390$, found: 323.1391 .
(1S,2S,9aS)-2-(3-bromophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4e)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid (19.6 mg, 53\% yield); m.p.145-146 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+53.76\left(\mathrm{c}=0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=18.2,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.94,141.39$, $136.64,131.11,130.80,130.58,129.85,126.17,126.05,122.96,120.83,120.33,114.22,111.36$, 91.75, 64.22, 43.85, 35.28; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.787 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.616 \mathrm{~min}, 91 \%$ ee; $\operatorname{HRMS}(E S I):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 371.0390$, found: 371.0391 .
(1S,2S,9aS)-1-nitro-2-(3-nitrophenyl)-2,3,9,9a-tetrahydro-1 H-carbazole (4f)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 20:1); yellow solid ($21.9 \mathrm{mg}, 65 \%$ yield); m.p. $89-90{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+48.62\left(\mathrm{c}=0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.91(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{td}, J=10.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddt}, J=19.2,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=151.98,148.65,141.24,136.83,133.66,130.11,129.99,126.06$, 123.06, 122.73, 120.91, 120.44, 113.82, 111.45, 91.56, 64.07, 43.93, 35.18; HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=16.643 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=20.932$ min, 89% ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 338.1135$, found: 338.1135.
(1S,2S,9aS)-2-(3-methoxyphenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4g)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid ($17.7 \mathrm{mg}, 55 \%$ yield); m.p. $134-135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+63.92\left(\mathrm{c}=0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.80(\mathrm{ddd}, J=13.4,12.8,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03(\mathrm{dt}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.59(\mathrm{td}, J=10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.49(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.97,152.01,140.59,136.45,130.05,129.73,126.34,120.78,120.26,119.66$, 114.70, 113.63, 113.02, 111.35, 92.04, 64.36, 55.23, 44.24, 35.35; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=13.536 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $10.451 \mathrm{~min}, 91 \%$ ee; $\operatorname{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 323.1390$, found: 323.1386 .
(1S,2S,9aS)-2-(2-bromophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4h)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($22.2 \mathrm{mg}, 60 \%$ yield); m.p. $85-86{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+33.56(\mathrm{c}=$ $\left.0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.93,138.56,136.52,132.40,129.12,127.41,124.78,122.82$, 120.82, 120.32, $114.49,111.72,111.36,100.07,90.61,64.31,42.34,34.29$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=8.997 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=7.872 \mathrm{~min}, 87 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 371.0390$, found: 371.0386.
(1S,2S,9aS)-1-nitro-2-(2-(trifluoromethyl)phenyl)-2,3,9,9a-tetrahydro-1H-carbazole (4i)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($25.2 \mathrm{mg}, 70 \%$ yield); m.p. $68-70{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+6.13(\mathrm{c}=$ $\left.0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{td}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=22.6,6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ $-2.40(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.99,138.33,136.61,132.56,129.84,129.30$, $129.10,127.65,126.26,125.07,123.26,120.85,120.37,114.28,111.41,90.95,64.14,39.54$, 36.34; HPLC: Chiralpak IC-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=11.290 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.662 \mathrm{~min}, 86 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 361.1158$, found: 361.1155 .
(1S,2S,9aS)-2-(3,4-dimethylphenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4j)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid (19.8 mg, 62% yield); m.p. $153-155{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=$ $+62.44\left(\mathrm{c}=0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=$ $16.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-$ $5.86(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{td}, J=8.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{td}, J=11.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddt}, J=19.4,6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.06,137.14$, 136.40, 136.33, $136.21,130.21,129.67,128.86,126.42,124.69,120.75,120.21,114.92,111.32,92.27,64.43$, 43.93, 35.53, 19.81, 19.38; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.973 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=6.797 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(E S I):$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 321.1598$, found: 321.1602.

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$
$30: 1$); yellow solid ($20.5 \mathrm{mg}, 57 \%$ yield); m.p. $86-87^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}=$ $+10.39\left(\mathrm{c}=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta=7.77(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}$, $J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{ddt}, J=18.6,6.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 1H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.93,136.68,135.32,134.71,134.08,130.20,129.89$, $129.68,127.96,126.19,120.84,120.35,114.06,111.38,90.15,64.24,53.40,33.71$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=13.178$ $\min , \mathrm{t}_{\mathrm{R}}($ major $)=10.616 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 361.0505$, found: 361.0501 .
(1S,2S,9aS)-2-(naphthalen-1-yl)-1-nitro-2,3,9,9a-tetrahydro-1 H-carbazole (41)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($23.6 \mathrm{mg}, 69 \%$ yield); m.p. $91-92{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+61.65(\mathrm{c}=$ $\left.0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dt}, J=15.0,7.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 7.13$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{t}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=18.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.15-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.62-$ $2.48(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.01,136.58,135.80,134.12,131.60,129.81$, $129.14,128.10,126.58,126.37,125.89,125.63,122.94,122.27,120.84,120.30,115.01,111.37$, 91.24, 65.02, 37.77, 35.83; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=12.116 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.068 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 343.1441$, found: 343.1441 .
(1S,2S,9aS)-2-(naphthalen-2-yl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4m)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid ($21.2 \mathrm{mg}, 62 \%$ yield); m.p. $177-178{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+63.44\left(\mathrm{c}=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; S-10
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{td}, J=8.1,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{dd}, J=11.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=10.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.89(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=15.0,9.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.05$, $136.58,136.33,133.47,132.95,129.78,128.98,127.81,127.71,127.06,126.39,126.35,126.15$, 124.66, 120.82, 120.29, 114.68, 111.37, 92.09, 64.35, 44.44, 35.37; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=14.594 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $9.430 \mathrm{~min}, 92 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 343.1441$, found: 343.1438 .
(1S,2R,9aS)-2-(furan-2-yl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4n)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($13.8 \mathrm{mg}, 49 \%$ yield); m.p. $99-100{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+29.71\left(\mathrm{c}=0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=19.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-$ $2.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.93,151.53,142.53,136.33,129.77,126.22$, 120.78, 120.26, 113.92, 111.32, 110.32, 107.51, 90.71, 63.76, 37.52, 31.59; HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=12.280 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.595 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 283.1077$, found: 283.1077.
(1S,2R,9aS)-1-nitro-2-(thiophen-2-yl)-2,3,9,9a-tetrahydro-1 H-carbazole (4o)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid (17.9 mg, 60% yield $)$; m.p. $54-55{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+112.64\left(\mathrm{c}=0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=11.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.08-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.70(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.98,141.64$, $136.54,129.83,127.03,126.20,125.99,124.71,120.81,120.32,114.15,111.38,93.30,64.17$, S-11
39.45, 36.06; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=12.159 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.188 \mathrm{~min}, 92 \%$ ee; $\mathrm{HRMS}(E S I):$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H})^{+}: 299.0849$, found: 299.0847 .
(1S,2R,9aS)-1-nitro-2-propyl-2,3,9,9a-tetrahydro-1H-carbazole (4p)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=50: 1$); yellow solid ($14.7 \mathrm{mg}, 57 \%$ yield); m.p. $85-87{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+7.14\left(\mathrm{c}=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.25(\mathrm{dd}, J=12.6,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{td}, J$ $=7.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dt}, J=7.7,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{dd}, J=11.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddt}, J=19.0,6.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21-$ $2.09(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.20(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $151.91,136.34,129.55,126.41,120.65,120.10,114.44,111.26,93.13,64.01,36.58,34.22,31.87$, 19.01, 13.92; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=7.746 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=6.239 \mathrm{~min}, 89 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 259.1441$, found: 259.1448.
(1S,2R,9aS)-2-butyl-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4q)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 50:1); yellow solid ($12.0 \mathrm{mg}, 44 \%$ yield); m.p. $80-82{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+$ $85.83\left(\mathrm{c}=0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{q}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.86(\mathrm{~m}$, $1 \mathrm{H}), 4.41(\mathrm{dd}, J=11.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddt}, J=19.0,6.9,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{qd}, J=9.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{ddd}, J=24.1,13.4$, $7.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.91,136.32,129.55$, $126.41,120.65,120.11,114.47,111.26,93.14,64.02,36.73,31.91,31.70,27.90,22.57,13.86$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=$ $7.833 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=6.121 \mathrm{~min}, 88 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 273.1598, found: 273.1593 .
(1S,2S,9aS)-2-cyclohexyl-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4r)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=50: 1$); yellow solid ($16.7 \mathrm{mg}, 56 \%$ yield); m.p. $113-114{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+67.77(\mathrm{c}$ $\left.=0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.88(\mathrm{~m}, 1 \mathrm{H})$, $4.65-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddt}, J=17.8,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=$ $10.1,9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{ddd}, J=17.8,8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{dd}, J=$ $22.3,12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{td}, J=11.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{dd}, J=20.4$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.92$, $136.16,129.52,126.36,120.63,120.07,114.67,111.24,90.82,64.41,41.56,38.34,30.86,26.72$, 26.63, 26.44, 26.21, 25.81; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}$ (minor) $=8.390 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=6.087 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 299.1754$, found: 299.1757.
(1S,2S,9aS)-2-(4-fluorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4s)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid ($18.9 \mathrm{mg}, 61 \%$ yield); m.p. $134-135^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+$ $91.57\left(\mathrm{c}=0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.19(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dt}, \mathrm{J}=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, \mathrm{J}=9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{tt}, \mathrm{J}=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{td}, \mathrm{J}=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddt}, \mathrm{J}=19.4,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.52(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=163.10,161.47,152.00,136.53,134.63,129.81,129.12,126.27$, 120.81, 120.33, $116.05,115.90,114.52,111.40,92.17,64.29,43.64,35.46$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.997 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)$ $=7.144 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. forC ${ }_{18} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 311.1190$, found: 311.1191 .

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ $30: 1$); yellow solid ($22.2 \mathrm{mg}, 60 \%$ yield); m.p. $183-185^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+$ $46.19\left(\mathrm{c}=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.94-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=$ 18.2, 10.9 Hz, 1H), $2.94-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.49(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $151.98,138.00,136.59,132.21,129.85,129.24,126.22,121.84,120.83,120.35,114.38,111.41$, 91.85, 64.24, 43.78, 35.27; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=11.108 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.565 \mathrm{~min}, 92 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 371.0390$, found: 371.0388.
(1S,2S,9aS)-1-nitro-2-(4-nitrophenyl)-2,3,9,9a-tetrahydro-1H-carbazole (4u)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=20: 1$); yellow solid ($23.3 \mathrm{mg}, 69 \%$ yield); m.p. $112-113{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}$ $=+24.03\left(\mathrm{c}=0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{td}, J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=11.5,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{td}, J=10.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddt}, J=19.2,6.9,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68-2.54(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.95,147.64,146.54,136.89,130.03$, 128.57, 126.02, 124.31, 120.91, 120.47, 113.74, 111.47, 91.48, 64.05, 43.97, 35.05; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=19.984$ $\min , \mathrm{t}_{\mathrm{R}}($ major $)=14.175 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 338.1135$, found: 338.1135 .
(1S,2S,9aS)-2-([1,1'-biphenyl]-4-yl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazol (4v)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1)$; yellow solid (23.2, 63% yield $)$; m.p. $157-159{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+17.60(\mathrm{c}=$ $\left.0.47, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.55(\mathrm{dd}, J=7.7,3.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}$, S-14

2H), $7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{q}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{td}, J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{dd}, J=11.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ $(\mathrm{d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=152.02,140.85,140.54,137.94,136.53,129.77,128.77,127.93$, 127.74, 127.39, 127.07, 126.33, 120.80, 120.29, 114.71, 111.36, 92.11, 64.39, 43.98, 35.45; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=$ $13.952 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=9.513 \mathrm{~min}, 91 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 369.1598, found: 369.1596.
(1S,2S,9aS)-1-nitro-2-(p-tolyl)-2,3,9,9a-tetrahydro-1H-carbazole (4w)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 30:1); yellow solid ($14.7 \mathrm{mg}, 48 \%$ yield); m.p. $136-137{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+75.92\left(\mathrm{c}=0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{tt}, J=8.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{dd}, J=11.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{ddt}, J=19.5,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=152.03,137.60,136.43,135.86,129.69,127.37,126.38,122.21,120.76,120.24,114.83,111.33$, 92.28, 64.38, 43.98, 35.46, 21.06; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate 1 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=11.406 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.673 \mathrm{~min}, 90 \%$ ee; $\operatorname{HRMS}(E S I):$ calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 307.1441$, found: 307.1439.
(1S,2S,9aS)-2-(4-(tert-butyl)phenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4x)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid (21.6 mg, 62% yield); m.p. $190-192{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+51.21\left(\mathrm{c}=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{dd}, J=14.8,7.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-$ $4.98(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{ddt}, J=19.5,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=152.03,150.74,136.40,135.79,129.69,127.14,126.40,125.90,120.76,120.25,114.93,111.33$, 92.18, 64.46, 43.81, 35.48, 34.51, 31.29; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow S-15
rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.430 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=6.258 \mathrm{~min}, 86 \%$ ee; $\operatorname{HRMS}(E S I):$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 349.1911$, found: 349.1913.
(1S,2S,9aS)-2-(3-fluorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4y)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 30:1); yellow solid ($15.8 \mathrm{mg}, 51 \%$ yield); m.p. $122-123{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+70.89\left(\mathrm{c}=0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.30(\mathrm{dd}, J=16.8,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=18.4$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=163.83$, $162.19,151.98,141.53,136.62,130.57,129.84,126.19,123.15,120.82,120.33,115.00,114.86$, 114.70, 114.55, 114.27, 111.37, 91.88, 64.23, 43.94, 35.21; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.307 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $7.045 \mathrm{~min}, 89 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 311.1190$, found: 311.1187 .
(1S,2S,9aS)-2-(3-chlorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4z)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 30:1); yellow solid ($18.6 \mathrm{mg}, 57 \%$ yield); m.p. $71-72{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+55.14\left(\mathrm{c}=0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.20(\mathrm{t}, J=19.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{dd}, J=15.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=18.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.98,141.09,136.61,134.80,130.32,129.85,128.18,127.89$, 126.19, 125.61, 120.83, 120.34, 114.28, 111.38, 91.75, 64.23, 43.90, 35.25; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=9.438 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)$ $=7.265 \mathrm{~min}, 83 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 327.0895$, found: 327.0896.
(1S,2S,9aS)-2-(2-fluorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4aa)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($16.7 \mathrm{mg}, 54 \%$ yield $)$; m.p. $125-126{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+41.32\left(\mathrm{c}=0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$
$(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=10.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{td}, J=10.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddt}, J=19.2,6.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta=161.83,160.20,151.90,136.44,129.77,129.62,126.34,124.67$, $120.80,120.28,116.29,116.15,114.43,111.34,90.34,64.20,39.37,33.67$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=12.729 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=8.502 \mathrm{~min}, 88 \%$ ee; $\operatorname{HRMS}(E S I):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 311.1190$, found: 311.1190
(1S,2S,9aS)-2-(2-chlorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4ab)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($20.2 \mathrm{mg}, 62 \%$ yield); m.p. $78-79{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+33.28\left(\mathrm{c}=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta=7.66(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.25(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{dd}, J=11.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dt}, J=8.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 2.76(\mathrm{ddt}, J=18.7,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=151.97,136.56,133.98,130.41,129.79,128.87,127.60,126.31,120.81,120.28,114.44$, 111.35, $90.25,64.37,40.07,33.43$; HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate 1 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=10.776 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.264 \mathrm{~min}, 87 \%$ ee; HRMS(ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 327.0895$, found: 327.0895 .
(1S,2S,9aS)-1-nitro-2-(2-nitrophenyl)-2,3,9,9a-tetrahydro-1 \boldsymbol{H}-carbazole (4ac)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=20: 1$); yellow solid (21.9 mg, 65% yield); m.p. $193-194{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+52.04\left(\mathrm{c}=0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=11.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.91(\mathrm{~m}$, $1 \mathrm{H}), 4.30(\mathrm{dd}, J=18.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{ddt}, J=19.1,6.8,3.3 \mathrm{~Hz}$, 1H), $2.67-2.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.84,150.38,136.62,133.93$, $133.35,129.89,128.54,128.18,126.14,124.98,120.87,120.39,114.19,111.33,90.70,64.25$,
38.60, 34.83; HPLC: Chiralpak AS-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $t_{R}($ minor $)=21.202 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=13.668 \mathrm{~min}, 86 \%$ ee; $\mathrm{HRMS}(E S I):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 338.1135$, found: 338.1138.
(1S,2S,9aS)-2-(2,6-dichlorophenyl)-1-nitro-2,3,9,9a-tetrahydro-1H-carbazole (4ad)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($6.8 \mathrm{mg}, 19 \%$ yield); m.p. $112-114{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+109.28\left(\mathrm{c}=0.14, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta=7.51(\mathrm{ddd}, J=12.1,8.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{q}, J=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=12.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{dt}, J=11.9,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.95-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta=153.47,137.23$, $136.43,134.47,133.47,131.09,130.80,129.98,129.68,126.26,119.21,114.04,111.23,88.55$, 67.49, 64.04, 30.15, 25.60; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=7.263 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=6.458 \mathrm{~min}, 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 361.0505$, found: 361.0503 .
(1S,2S,9aS)-6-bromo-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazole (5a)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($22.6 \mathrm{mg}, 61 \%$ yield); m.p. $76-77{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+55.47\left(\mathrm{c}=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=18.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=$ $19.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=150.94,138.67,135.31$, $132.23,129.06,128.47,128.01,127.48,123.77,116.33,112.62,112.27,91.80,64.60,44.16$, 35.36; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), t_{R} $($ minor $)=10.029 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=7.827 \mathrm{~min}, 93 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+}: 371.0390$, found: 371.0389 .

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($17.3 \mathrm{mg}, 53 \%$ yield); m.p. $141-142{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+109.48\left(\mathrm{c}=0.37, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=18.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.58$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.49,138.68,135.48,129.41,129.06,128.00,127.97$, 127.48, 125.25, 120.87, 116.24, 112.12, 91.84, 64.69, 44.18, 35.36;HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=16.673 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $11.328 \mathrm{~min} ; 90 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 327.0895$, found: 327.0894 .
(1S,2S,9aS)-6-methyl-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazole (5c)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($12.5 \mathrm{mg}, 41 \%$ yield); m.p. $81-82{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+100.33\left(\mathrm{c}=0.35, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J=16.6,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.93$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=8.7,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{td}, J=11.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.69-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.83,139.03,136.67,130.39$, $129.72,128.99,127.87,127.51,126.49,121.21,114.31,111.26,92.23,64.58,44.35,35.44,20.82$; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=$ $15.020 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=11.434 \mathrm{~mm}, 84 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}:$ 307.1441, found: 307.1443.
(1S,2S,9aS)-7-bromo-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1 H-carbazole (5d)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=$ 30:1); yellow solid (14.1 mg, 38% yield); m.p. $152-153^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+44.2\left(\mathrm{c}=0.28, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{q}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{td}, J=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.59(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddt}, J=19.6,7.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.55(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta=153.14,138.72,135.29,129.06,127.99,127.49,125.43,123.20$, 123.17, 121.77, 115.62, 114.31, 91.82, 64.50, 44.15, 35.39; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=19.205 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $11.322 \mathrm{~min}, 88 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI})$: calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 371.0390$, found: 371.0386 .
(1S,2S,9aS)-7-methyl-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazole (5e)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid (9.2 mg, 30\% yield); m.p. $129-131{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+66.67\left(\mathrm{c}=0.19, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.24(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.4,6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dt, $J=7.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, J=10.0,6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{td}, J=11.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddt}, J=19.3,6.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.33,140.15,139.12,136.39,128.99,127.85,127.52$, 123.79, 121.20, 120.49, 113.54, 112.02, 92.25, 64.55, 44.35, 35.42, 21.75; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=12.801 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $8.488 \mathrm{~min}, 78 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 307.1441$, found: 307.1443.

(1S,2S,9aS)-5-methyl-1-nitro-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazole (5f)

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($8.9 \mathrm{mg}, 29 \%$ yield); m.p. $130-132{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+49.44(\mathrm{c}=$ $\left.0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.26(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.92$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.00-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=11.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=$ $10.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddt}, J=19.4,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.44,139.09,137.02,134.37,129.01,127.88,127.32,124.38$, $122.30,117.12,108.73,92.32,64.46,43.99,35.77,20.07$; HPLC: Chiralpak IC-H (hexane $/ i-\operatorname{PrOH}$ $=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=11.646 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.142 \mathrm{~min}, 86 \%$ ee; $\operatorname{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 307.1441$, found: 307.1437 .

According to the general procedure, the title compound was obtained by silica-gel column chromatography (petroleum ether/ethyl acetate $=30: 1$); yellow solid ($4.9 \mathrm{mg}, 16 \%$ yield); m.p. $80-89{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+122.81\left(\mathrm{c}=0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.33(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=11.3,7.5,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.44$ (m, 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.37,137.46,137.02,129.65,128.79,128.60,128.19$, 126.27, 120.72, 120.00, 114.03, 111.41, 93.89, 68.33, 48.12, 32.46, 10.91; HPLC: Chiralpak IC-H (hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=6.782 \mathrm{~min} ; \mathrm{t}_{\mathrm{R}}($ major $)=$ $5.984 \mathrm{~min} ; 93 \%$ ee; $\mathrm{HRMS}(\mathrm{ESI}):$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 307.1441$, found: 307.1440.

4. Product transformation

1) Preparation of 8 from 4 a

A suspension of the product $\mathbf{4 a}(2.69 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in methanol (45.0 \mathrm{~mL}$) was carefully treated with concentrated HCl ($53.8 \mathrm{mmol}, 20.0$ eq.) at $0^{\circ} \mathrm{C}$. After 2 min , zinc dust (107.6 mmol , 40.0 eq.) was slowly added to the suspension. The suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and warmed to $25{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was filtered through celite, eluting with EtOAc , adding aqueous NaHCO_{3} solution to the filtrate to adjust the pH to alkaline. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$), and the organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (petroleum ether/ethyl acetate $=2: 1$) on silica gel to afford the desired product $\mathbf{6 a}(493.3 \mathrm{mg}, 70 \%$ yield $)$.

Benzoyl chloride ($2.2 \mathrm{mmol}, 2.2$ eq.) and DMAP ($0.1 \mathrm{mmol}, 0.1$ eq.) were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10.0 mL), then a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ containing compound $\mathbf{6 a}$ ($\left.1.0 \mathrm{mmol}, 1.0 \mathrm{eq}.\right)$ and triethylamine ($2.2 \mathrm{mmol}, 2.2$ eq.) was added dropwise to the solution. The mixture was stirred for 2 h at room temperature and monitored by TLC. Upon completion, the reaction mixture was concentrated under reduced pressure and subjected to flash chromatographic separation (ethyl acetate/petroleum ether $=1: 10)$ to afford product $7 \mathbf{a}(296.1 \mathrm{mg}, 63 \%$ yield $)$ as a white solid.

The compound $7 \mathbf{7 a}$ ($0.8 \mathrm{mmol}, 1.0$ eq.) and nitrosobenzene ($0.8 \mathrm{mmol}, 1.0$ eq.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ at room temperature. After stirring for 1 h , the reaction mixture was concentrated under reduced pressure and subjected to flash chromatographic separation (ethyl acetate/petroleum ether= 1:10) to afford product $\mathbf{8 a}(415.4 \mathrm{mg}, 90 \%$ yield) as a white solid.
N-((1S,2S,9aS)-9-benzoyl-2-phenyl-2,3,9,9a-tetrahydro-1H-carbazol-1-yl)benzamide (7a)

white solid (63% yield); m.p. $255-257{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.20\left(\mathrm{c}=0.375, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.55(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~s}, 4 \mathrm{H}), 7.26(\mathrm{dd}, J=13.2,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{dt}, J=22.6,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{q}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.32(\mathrm{dd}, J=18.3,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=19.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=12.4,7.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.82,167.66,144.64,142.50,136.82,135.87,135.31,131.48$, 130.61, 128.94, 128.63, 128.56, 128.51, 128.14, 128.07, 126.77, 126.58, 123.46, 120.69, 116.16, 114.45, $64.33,55.87,46.79,36.12$; $\operatorname{HRMS}(E S I)$: calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 471.2067$, found: 471.2060 .
N-((1S,2S,4R)-9-benzoyl-4-(hydroxy(phenyl)amino)-2-phenyl-2,3,4,9-tetrahydro-1H-carbazo 1-1-yl)benzamide (8a)

white solid (90\% yield); m.p. $155-156{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=-48.74\left(\mathrm{c}=0.595, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d6) $\delta=8.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.77$ $-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{dd}, J=12.3,5.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 9 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, 1H), $2.44(\mathrm{dd}, J=9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta=$ 169.66, 166.07, 152.92, 143.26, 137.92, 137.38, 135.05, 134.89, 133.95, 131.28, 130.02, 129.35, $129.04,128.52,128.33,128.01,127.71,126.73,123.88,122.32,121.40,121.02,119.52,116.86$, 113.27, 60.23, 58.16, 48.83, 44.66, 28.80, 21.23, 14.56; HPLC: Chiralpak As-H (hexane i i-PrOH $=$ $70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=12.374 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=22.941 \mathrm{~min}, 96 \%$ ee; $\operatorname{HRMS}(E S I)$: calcd. for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 578.2438$, found: 578.2430.

2) Preparation of 7b from 4h

A suspension of the product $\mathbf{4 h}(2.3 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in methanol (30.0 \mathrm{~mL})$ was carefully treated with concentrated $\mathrm{HCl}\left(46 \mathrm{mmol}, 20.0\right.$ eq.) at $0^{\circ} \mathrm{C}$. After 2 min , zinc dust ($92 \mathrm{mmol}, 40.0 \mathrm{eq}$.) was slowly added to the suspension. The suspension was stirred at $0^{\circ} \mathrm{C}$ for 10 min and warmed to $25{ }^{\circ} \mathrm{C}$ for 4 h . The mixture was filtered through celite, eluting with EtOAc, adding aqueous NaHCO_{3} solution to the filtrate to adjust the pH to alkaline. The mixture was extracted with EtOAc ($30.0 \mathrm{~mL} \times 3$), and the organic extracts were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (petroleum ether/ethyl acetate $=2: 1$) on silica gel to afford the desired product $\mathbf{6 b}$ ($625.6 \mathrm{mg}, 80 \%$ yield).

A dry tube was charged with compound $\mathbf{6 b}(0.3 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathrm{CuI}(0.03 \mathrm{mmol}, 0.1 \mathrm{eq}$.$) ,$ L-proline ($0.06 \mathrm{mmol}, 0.2 \mathrm{eq}$.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(0.6 \mathrm{mmol}, 2.0 \mathrm{eq}\right.$.) at N_{2}. After addition of DMSO (3.0 mL), the reaction mixture was effectively stirred at room temperature and monitored by TLC. After completion of the reaction, the system was diluted with an appropriate amount of ethyl acetate and washed twice with water to remove DMSO. The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (petroleum ether/ethyl acetate $=10: 1$) on silica gel to afford the desired product $7 \mathbf{b}$ ($58.5 \mathrm{mg}, 75 \%$ yield).
(1S,2S,9aS)-2-(2-bromophenyl)-2,3,9,9a-tetrahydro-1H-carbazol-1-amine (6b)

white solid (80% yield); m.p. $121-122{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+47.86\left(\mathrm{c}=0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{ddd}, J=20.5,11.6,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.72(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=17.1,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.90,142.13,138.19,133.31,129.06,128.33,128.13,127.70,127.65$, 126.28, 120.60, 119.48, 114.34, 110.92, 67.75, 56.33, 46.05, 34.73; HRMS(ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrN}_{2}(\mathrm{M}+\mathrm{H})^{+}: 341.0648$, found: 341.0648.
(4bS,11aS,11bS)-4b,5,11,11a,11b,12-hexahydroindolo[2,3-a]carbazole (7b)

white solid (75\% yield); m.p. $174-175{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}=+3.04\left(\mathrm{c}=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) \delta=7.28(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.04-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.57(\mathrm{~m}, 4 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=26.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}$,
$1 \mathrm{H}), 3.20(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz , DMSO-d6) $\delta=154.22,152.80,140.18,131.83,129.31,127.47,122.70,120.85,118.44,118.38$, $115.54,110.91,110.16,69.82,67.09,43.50,28.75$; HPLC: Chiralpak IA-H (hexane $/ i-\operatorname{PrOH}=$ $70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=6.931 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=10.468 \mathrm{~min}, 86 \% \mathrm{ee} ;$ HRMS(ESI): calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2}(\mathrm{M}+\mathrm{H})^{+}:$261.1386, found: 261.1386 .
5. Determination of absolute configurations of 4 a and 8a

1) X-ray crystal analysis data of $4 a$

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	292.33
Temperature	150 K
Wavelength	1.54184
Crystal system, space group	hexagonal, P 65
a, Á	$10.86074(5)$
b, Á	$10.86074(5)$
c, A	$21.89996(14)$
$\alpha,{ }^{o}$	90
$\beta,{ }^{o}$	90
$\gamma,{ }^{\circ}$	120
$\mathrm{~V}, \mathrm{~A}^{\wedge} 3$	$2237.14(3)$
Z, Calculated density	$6,1.302 \mathrm{~g} / \mathrm{cm}^{\wedge} 3$

2) Determining the absolute configuration of 8a by 2D NMR

${ }^{1} \mathrm{H}$ NMR of 8a

HMBC of 8a

NOE of 8a (full)

6. Transition states study

Figure S1. Two optimal transition states by DFT calculation.

Computational method:

All calculations were carried out with the GAUSSIAN 09 packages. ${ }^{[5]}$ The recently developed M06-2x functional, ${ }^{[6]}$ together with the standard $6-31 G(d)$ basis set, were used for optimizing the geometry. All the optimized structures were confirmed by frequency calculations to be minima states using the same level of theory. To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries. ${ }^{[7]}$ The solution-phase single point energy calculations were done using M06-2x method at a larger basis set $6-31++G(d, p)$. Solvent effect was accounted for using self-consistent reaction field (SCRF) method, using SMD model and UAKS radii. ${ }^{[8]}$ Xylene-mixture was used as the solvent. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. All of these energies correspond to the reference state of $1 \mathrm{~mol} / \mathrm{L}, 298 \mathrm{~K}$. Structures were generated using GaussView5.0.8 and CYL view.

Computational data for TS I:

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
0.996211 (Hartree/Particle)
1.059387
1.060331
$\mathrm{E}($ sov $)=-3564.38604027 \quad$ A.U.

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	6	0	0.841765	0.418407	-1.361010
2	6	0	1.446319	-0.644703	-2.078708
3	6	0	2.730928	-0.461825	-2.612005
4	6	0	3.363410	0.759176	-2.444911
5	6	0	2.734631	1.813026	-1.753827
6	6	0	1.472869	1.657150	-1.199612
7	6	0	-0.579097	-1.297829	-1.365505
8	6	0	0.519092	-1.747876	-2.059332
9	1	0	3.232527	-1.271666	-3.135091
10	1	0	4.358672	0.908719	-2.851778
11	1	0	3.242556	2.769862	-1.667774
12	1	0	0.973219	2.470753	-0.678479
13	1	0	-1.503037	-1.820058	-1.157314
14	6	0	0.719542	-3.080099	-2.621151
15	6	0	0.088027	-4.182836	-2.208441
16	1	0	1.455251	-3.160006	-3.421084
17	1	0	0.271541	-5.145945	-2.671915
18	1	0	-0.608550	-4.157709	-1.372515
19	7	0	-0.386847	-0.014796	-0.918567
20	1	0	-1.147639	0.589953	-0.575655
21	6	0	5.624731	6.226450	-0.233821
22	6	0	4.743595	5.382404	0.425628
23	6	0	4.938939	3.993934	0.390840
24	6	0	$\begin{aligned} & 6.036020 \\ & \mathbf{S - 2 8} \end{aligned}$	3.469869	-0.306501

25	6	0	6.911480	4.318967	-0.973256
26	6	0	6.707130	5.695766	-0.937167
27	1	0	5.473577	7.300360	-0.197392
28	1	0	3.914063	5.800962	0.988519
29	1	0	6.183354	2.393790	-0.336603
30	1	0	7.754224	3.905623	-1.517643
31	1	0	7.394233	6.359669	-1.452498
32	6	0	4.024198	3.057535	1.035586
33	6	0	2.763395	3.330442	1.393205
34	7	0	1.943966	2.276439	1.924173
35	8	0	2.477979	1.265644	2.371333
36	8	0	0.732046	2.438159	1.889926
37	1	0	4.381323	2.039965	1.183071
38	1	0	2.205601	4.240576	1.223800
39	6	0	-3.782661	0.749736	-1.019597
40	6	0	-4.204204	0.185552	0.359862
41	7	0	-2.706741	1.744057	-0.923446
42	6	0	-5.113623	-1.020361	0.180274
43	6	0	-5.012379	1.169781	-1.817552
44	7	0	-3.056936	-0.133498	1.194916
45	6	0	-2.951563	0.357278	2.462950
46	8	0	-3.666675	1.250088	2.893851
47	6	0	-1.849736	-0.339852	3.284829
48	6	0	-2.782730	2.839465	0.050090
49	6	0	-3.395071	4.147446	-0.468270
50	6	0	-2.732300	4.579823	-1.775586
51	6	0	-2.827011	3.444881	-2.795884
52	6	0	-2.175332	2.184190	-2.219001
53	6	0	-5.980932	2.029524	-1.289682
54	6	0	-7.061354	2.443742	-2.061418

55	6	0	-7.197582	1.994924	-3.374034
56	6	0	-6.253059	1.120886	-3.902530
57	6	0	-5.172807	0.710186	-3.124457
58	6	0	-4.597230	-2.253582	-0.224150
59	6	0	-5.434224	-3.350719	-0.400052
60	6	0	-6.803238	-3.226595	-0.177166
61	6	0	-7.326947	-2.002419	0.227186
62	6	0	-6.485277	-0.908326	0.406228
63	7	0	-0.624180	-0.387718	2.503899
64	6	0	-1.598318	0.229321	4.702327
65	6	0	-0.075487	-1.500970	1.957360
66	7	0	1.221207	-1.295676	1.603124
67	16	0	-0.949600	-2.929220	1.751041
68	6	0	2.157353	-2.042690	0.875753
69	6	0	3.322756	-1.341549	0.537932
70	6	0	4.327832	-1.954831	-0.186154
71	6	0	4.200487	-3.274655	-0.606725
72	6	0	3.041546	-3.959587	-0.265209
73	6	0	2.024437	-3.376229	0.483486
74	6	0	2.904301	-5.376785	-0.749184
75	9	0	1.755440	-5.943790	-0.368898
76	9	0	3.906025	-6.144562	-0.288148
77	9	0	2.965602	-5.439512	-2.090333
78	6	0	5.561038	-1.188459	-0.562103
79	9	0	5.770502	-1.198284	-1.887837
80	9	0	6.661145	-1.704764	0.003085
81	9	0	5.493199	0.104424	-0.180167
82	6	0	-0.479700	-0.601224	5.347425
83	6	0	-1.177176	1.703027	4.664230
84	6	0	-2.872200	0.068053	5.542867
			S-30		

85	1	0	-3.330458	-0.089695	-1.572867
86	1	0	-4.756700	0.947995	0.914274
87	1	0	-2.533410	-0.985943	1.000015
88	1	0	-2.174042	-1.382172	3.395537
89	1	0	-3.300874	2.498397	0.949679
90	1	0	-1.745281	3.053412	0.356895
91	1	0	-3.276641	4.916150	0.304101
92	1	0	-4.469296	4.024875	-0.639896
93	1	0	-3.194702	5.493935	-2.162472
94	1	0	-1.672486	4.809338	-1.588859
95	1	0	-2.313250	3.712672	-3.726228
96	1	0	-3.877841	3.254261	-3.043392
97	1	0	-2.240448	1.343320	-2.919052
98	1	0	-1.102646	2.394013	-2.083080
99	1	0	-5.893648	2.384999	-0.265469
100	1	0	-7.801140	3.115799	-1.636783
101	1	0	-8.041396	2.317397	-3.976106
102	1	0	-6.357348	0.753075	-4.918734
103	1	0	-4.439723	0.021026	-3.538112
104	1	0	-3.527935	-2.377000	-0.387435
105	1	0	-5.014848	-4.303349	-0.708557
106	1	0	-7.457711	-4.081926	-0.314134
107	1	0	-8.392281	-1.897641	0.408557
108	1	0	-6.896725	0.046266	0.723639
109	1	0	-0.109792	0.488714	2.433009
110	1	0	1.591745	-0.390240	1.883175
111	1	0	3.410799	-0.292747	0.804032
112	1	0	4.979685	-3.754449	-1.191412
113	1	0	1.134752	-3.938292	0.727674
114	1	0	-0.346235	-0.294223	6.390198

115	1	0	-0.721531	-1.670525	5.335120
116	1	0	0.476929	-0.465354	4.831990
117	1	0	-1.031219	2.067890	5.687090
118	1	0	-1.940256	2.317721	4.181258
119	1	0	-0.226106	1.837959	4.135642
120	1	0	-3.192022	-0.980655	5.566581
121	1	0	-3.688672	0.675210	5.150211
122	1	0	-2.669345	0.376402	6.574399

Computational data for TS II:

Zero-point correction $=$	0.997353 (Hartree/Particle)
Thermal correction to Energy=	1.060018
Thermal correction to Enthalpy=	1.060962
Thermal correction to Gibbs Free Energy=	0.894267

```
E(sov) = -3564.39848436 A.U.
```


Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z

---$).$

7	6	0	-2.167941	-0.820771	-1.273944
8	6	0	-3.068911	-1.833225	-1.534855
9	1	0	-4.078634	-4.561643	-1.003910
10	1	0	-3.008988	-6.010848	0.693084
11	1	0	-1.023964	-5.240680	1.952867
12	1	0	-0.052570	-2.976778	1.541791
13	1	0	-2.097243	0.163236	-1.719117
14	6	0	-4.207225	-1.828146	-2.446925
15	6	0	-4.530178	-0.865922	-3.315589
16	1	0	-4.856565	-2.701664	-2.373342
17	1	0	-5.415940	-0.951160	-3.936272
18	1	0	-3.934684	0.034826	-3.429669
19	7	0	-1.276674	-1.216440	-0.313052
20	1	0	-0.457900	-0.719575	0.026785
21	6	0	-6.869667	-3.558908	0.148870
22	6	0	-5.848085	-2.885208	0.804146
23	6	0	-5.643674	-1.517071	0.570401
24	6	0	-6.485544	-0.843752	-0.324582
25	6	0	-7.508708	-1.520021	-0.977872
26	6	0	-7.702043	-2.878319	-0.741535
27	1	0	-7.021291	-4.617737	0.334368
28	1	0	-5.202463	-3.423341	1.491574
29	1	0	-6.309473	0.208823	-0.527607
30	1	0	-8.148012	-0.988678	-1.675522
31	1	0	-8.501362	-3.409520	-1.249188
32	6	0	-4.579923	-0.755971	1.212705
33	6	0	-3.583002	-1.254322	1.958280
34	7	0	-2.611973	-0.344027	2.500335
35	8	0	-2.835979	0.868258	2.457154
36	8	0	$\begin{gathered} -1.596893 \\ \mathbf{S - 3 3} \end{gathered}$	-0.812767	2.990702

$\left.\begin{array}{llllll}37 & 1 & 0 & -4.595345 & 0.321379 & 1.063940 \\ 38 & 1 & 0 & -3.338800 & -2.289400 & 2.157612 \\ 39 & 6 & 0 & 4.513800 & -1.317031 & -0.897129 \\ 40 & 6 & 0 & 3.083528 & -1.318081 & -0.307908 \\ 41 & 7 & 0 & 5.241830 & -0.107290 & -0.490284 \\ 42 & 6 & 0 & 2.471364 & -2.703438 & -0.386854 \\ 43 & 6 & 0 & 4.519846 & -1.607172 & -2.390093 \\ 44 & 7 & 0 & 3.177027 & -0.816251 & 1.055463 \\ 45 & 6 & 0 & 2.056424 & -0.494535 & 1.724468 \\ 46 & 8 & 0 & 0.934660 & -0.799125 & 1.319879 \\ 47 & 6 & 0 & 2.197447 & 0.305375 & 3.030304 \\ 48 & 6 & 0 & 6.680009 & -0.216143 & -0.731291 \\ 49 & 6 & 0 & 7.424423 & 0.918766 & -0.032776 \\ 50 & 6 & 0 & 6.897997 & 2.275010 & -0.502618 \\ 51 & 6 & 0 & 5.381569 & 2.333683 & -0.323129 \\ 65 & 6 & 0 & 0 & 4.713843 & 1.152674\end{array}-1.022156\right\}$

67	16	0	2.108492	2.789422	1.262127
68	6	0	-0.995625	3.206312	0.890459
69	6	0	-2.007891	2.654511	0.105583
70	6	0	-2.597962	3.411821	-0.898424
71	6	0	-2.189082	4.716755	-1.144352
72	6	0	-1.174528	5.252526	-0.357476
73	6	0	-0.576989	4.516890	0.660305
74	6	0	-0.689491	6.649644	-0.631139
75	9	0	-0.273993	7.256218	0.488158
76	9	0	-1.655321	7.407395	-1.171553
77	9	0	0.340045	6.653776	-1.488972
78	6	0	-3.633131	2.774481	-1.777607
79	9	0	-4.523753	3.659233	-2.235921
80	9	0	-4.309193	1.803850	-1.137107
81	9	0	-3.064391	2.196252	-2.855040
82	6	0	2.571761	0.351826	5.496694
83	6	0	1.077321	-1.421102	4.540991
84	6	0	3.539614	-1.504443	4.133628
85	1	0	5.042827	-2.144562	-0.404451
86	1	0	2.436286	-0.636972	-0.878027
87	1	0	4.048005	-0.330264	1.262515
88	1	0	3.078992	0.949735	2.962355
89	1	0	7.018787	-1.186362	-0.348736
90	1	0	6.902336	-0.196155	-1.814428
91	1	0	8.498236	0.825103	-0.227883
92	1	0	7.273305	0.821107	1.049566
93	1	0	7.387196	3.089827	0.040905
94	1	0	7.141154	2.405985	-1.566346
95	1	0	4.971910	3.267811	-0.721907
96	1	0	5.124228	2.298092	0.743156
			S-35		

97	1	0	3.633157	1.192021	-0.844472
98	1	0	4.883840	1.224621	-2.111623
99	1	0	6.010367	-3.141429	-2.198319
100	1	0	6.129174	-3.617342	-4.621617
101	1	0	4.691720	-2.356178	-6.207118
102	1	0	3.142143	-0.618921	-5.343258
103	1	0	3.025481	-0.145486	-2.934094
104	1	0	3.567603	-3.473033	1.293766
105	1	0	2.611328	-5.753927	1.109352
106	1	0	0.966487	-6.270680	-0.679593
107	1	0	0.279906	-4.494316	-2.270617
108	1	0	1.235318	-2.222937	-2.079400
109	1	0	0.181322	0.609409	3.283810
110	1	0	-1.162668	1.805518	2.367448
111	1	0	-2.333007	1.634877	0.288773
112	1	0	-2.657937	5.309381	-1.922336
113	1	0	0.198835	4.953830	1.277038
114	1	0	2.640584	-0.237121	6.417719
115	1	0	3.507322	0.910240	5.379453
116	1	0	1.757283	1.073078	5.607481
117	1	0	1.264448	-2.123040	5.360791
118	1	0	0.794806	-1.994689	3.652149
119	1	0	0.217213	-0.808435	4.829901
120	1	0	4.442720	-0.944804	3.860979
121	1	0	3.362702	-2.263840	3.365755
122	1	0	3.738347	-2.018985	5.079419

7. References.

[1] Ling,S.Tetrahedron: Asymmetry 2014,25, 170.
[2] Zhu, C. J.J. Org. Chem. 2013, 78, 10233.
[3] Russell, P. H.;Gordon, W. G.Org. Lett.2013, 15, 5218.
[4] Liu, X.Y.;Che, C.M. Chem. Commun.2013, 49, 7681.
[5] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
[6] (a) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys.2005, 123.(b) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory. Comput.2006, 2, 364.(c) Zhao, Y.; Truhlar, D. G., J. Chem. Theory Comput.2006, 2, 1009.(d) Zhao, Y.; Truhlar, D. G., Acc. Chem. Res.2008, 41, 157.(e) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc.2008, 120, 215.(f) Zhao, Y.; Truhlar, D. G., Chem. Phys. Lett.2011, 502, 1.
[7] Um, J. M.; DiRocco, D. A.; Noey, E. L.; Rovis, T.; Houk, K. N.J. Am. Chem. Soc. 2011,133, 11249.
[8](a)Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009,113, 6378. (b)Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2011,115, 14556.
8. The spectrums of ${ }^{1} \mathbf{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HPLC.

JJJ \|f $\iiint \iiint$

जे

$4 i$

coccecele

$$
\begin{aligned}
& \text { EN }
\end{aligned}
$$

 nifis ifs ju fis

11115

$\begin{aligned} & \tilde{\Xi} \\ & \stackrel{\sim}{\mathrm{E}} \end{aligned}$			
$\underset{\frac{\pi}{1}}{E}$	$\stackrel{\underset{\sim}{\underset{\sim}{*}}}{\substack{2}}$		$\begin{aligned} & \text { N} \\ & \frac{\pi}{1} \end{aligned}$
		del	1
130	129	$\begin{array}{cc} 128 & 127 \\ \mathrm{fl}^{12(\mathrm{ppm})} & \\ \hline \end{array}$	126

$\iiint \iiint \int J$

5d

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	5.827		0.1623	811.42889	74.32701	51.4154
2	7.995		0.2123	766.75275	53.99635	48.5846

Peak \#	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	5.821		0.1611	713.54327	65.98581	94.9697
2	7.991	BBA	0.2215	37.79490	2.60718	5.0303

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	11.014	BB	0.3029	120.98040	6.21371	50.5893
2	15.724		0.4225	118.16186	4.34020	49.4107

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { o } \end{gathered}$
1	10.999		0.2930	452.44354	23.66241	95.6565
2	15.701		0.4291	20.54402	$7.01375 e-1$	4.3435

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.872		0.2158	1776.49353	126.84616	94.2536
2	8.997	VB	0.2609	108.30882	6.23492	5.7464

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	10.616		0.2984	1035.40869	51.55610	95.1677
2	13.178		0.3653	52.57425	2.16175	4.8323

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { S }} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	9.068	BV	0.2522	940.27649	56.55170	95.3335
2	12.116	BB	0.3688	46.02589	1.90782	4.6665

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} \text { S }\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	9.430		0.2562	3401.98755	200.53830	95.9449
2	14.594		0.4019	143.78503	5.53792	4.0551

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	9.188		0.2185	1319.05713	92.67544	95.7700
2	12.159	BB	0.2985	58.26005	3.05107	4.2300

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	6.121		0.1531	5025.46533	496.30371	93.7525
2	7.833	BB	0.1808	334.88907	27.89371	6.2475

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	6.087		0.1620	5447.03760	500.31613	95.1859
2	8.390	BB	0.2024	275.49011	20.63382	4.8141

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.144	BV	0.1865	859.29773	71.67496	95.5835
2	9.977	BB	0.2498	39.70409	2.41793	4.4165

Peak $\#$ $\#$RetTime [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area \%	
1	14.175 VB	0.4098	2576.53101	96.72379	94.7086
2	$19.984 ~ B B ~$	0.6235	143.95029	3.47157	5.2914

Peak	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	9.513		0.2565	1893.27917	111.41103	95.6271
2	13.952	VBA	0.3858	86.57780	3.45243	4.3729

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.673		0.1932	906.40607	72.14899	94.824
2	11.406		0.2901	49.46930	2.62038	5.1753

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.265		0.1947	631.24097	49.70780	91.3869
2	9.438	VB	0.2573	59.49350	3.48763	8.6131

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~S}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.502		0.2088	1077.44446	77.49831	94.0149
2	12.729		0.3711	68.59143	2.70910	5.9851

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	9.264		0.2449	1459.29480	91.22594	93.5984
2	10.776		0.2897	99.80772	5.29839	6.4016

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	13.668		0.4239	2869.64575	104.92857	92.8210
2	21.202	BBA	0.8057	221.94572	4.30242	7.1790

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	7.827		0.2163	1642.26294	116.87894	96.3455
2	10.029	BB	0.2838	62.29224	3.30742	3.6545

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.405	BV	0.2758	812.12134	44.75503	49.9446
2	16.812	BBA	0.4077	813.92273	31.35397	50.0554

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\mathrm{s}} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	11.328	BV	0.2804	4296.08252	231.67859	95.0467
2	16.673	VB	0.4076	223.88710	8.62644	4.9533

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	11.426		0.2708	1332.21167	75.19160	49.9892
2	14.988	VB	0.3711	1332.78723	55.94923	50.0108

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	8.474		0.2160	764.84943	54.54768	49.7762
2	12.785	BV	0.3179	771.72784	37.17810	50.2238

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	8.488		0.2180	888.08527	62.56037	89.1513
2	12.801	BV	0.3176	108.07005	5.21172	10.8487

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { q } \end{gathered}$
1	9.119	BV	0.2331	42.78351	2.85453	49.3054
2	11.609		0.2962	43.98903	2.26785	50.6946

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$
1	9.142		0.2339	705.68335	46.86735	93.1278
2	11.646	BBA	0.2940	52.07436	2.71053	6.8722

mau						
	-1 + ${ }_{2}$	4	12 min			
$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \& } \end{gathered}$	
1	5.924 BB	0.1665	389.30106387.02151	36.13264	$\begin{aligned} & 50.1468 \\ & 49.8532 \end{aligned}$	
2	6.737 BV	0.1803		33.77393		

