Supporting Information

For

Preparation and Controlled Degradation of Model Amphiphilic Long-Subchain Hyperbranched Copolymers: Hyperblock versus Hypergraft

Jinxian Yang,^{1,2} Yixia Li,¹ Nairong Hao,¹ Ahmad Umair,¹ Anhong Liu,¹ Lianwei Li,^{1,*} and Xiaodong Ye^{1,3,*}

- 1) Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- 2) Shenzhen Key Laboratory for Functional Polymer, School of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
- 3) CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

*To whom correspondence should be addressed: <u>xdye@ustc.edu.cn</u> and

llw@mail.ustc.edu.cn

		GPC			¹ H NMR
	Samples	$M_{\rm n}/({\rm g/mol})$	$M_{\rm w}/({\rm g/mol})$	$M_{\rm w}/M_{\rm n}$	M _w /(g/mol)
For	PCL ₂₆ -OH-Br	3.4×10^{3}	4.8×10^{3}	1.41	3.3×10 ³
Hyperblock	PCL ₂₆ - <i>b</i> -PTEGMA ₁₂ -2N ₃	7.5×10^3	9.8×10^3	1.31	6.0×10 ³
	HB-PCL ₂₆ - <i>b</i> -PTEGMA ₁₂	3.54×10^4	1.22×10^{5}	3.45	-
For	PTEGMA ₁₃	2.7×10^{3}	3.4×10^{3}	1.22	3.2×10 ³
Hypergraft	PCL ₂₃ -2N ₃	4.2×10^{3}	5.1×10^{3}	1.21	2.9×10 ³
	HB-PCL ₂₃	8.7×10^{3}	2.34×10^4	2.69	-
	HB-PCL ₂₃ -g-PTEGMA ₁₃	5.47×10^{4}	9.32×10^4	1.70	-

Table S1. Molar mass information from GPC and ¹H NMR.

Table S2. Molar mass information of the degradation products from GPC.

	Time/h	$M_{\rm n}/({\rm g/mol})$	$M_{\rm w}/({ m g/mol})$	$M_{\rm w}/M_{\rm n}$
Fractionated	0	5.82×10^4	9.58×10^4	1.65
HB-PCL ₂₆ - b -PTEGMA ₁₂ in	30	1.10×10^{4}	1.61×10^4	1.45
10mM DTT			1.01 ^ 10	1.43
Fractionated	0	5.47×10^{4}	9.32×10^4	1.70
$HB-PCL_{23}-g-PTEGMA_{13}$	26	3.7×10^{3}	5.2×10^{3}	1.31
in 10mM DTT		10		

Table S3. Molar mass information of the fractioned hyperbranched copolymers used for SAs from GPC.

	GPC						
		Fractionated samples	$M_{\rm n}/({\rm g/mol})$	$M_{ m w}/(m g/mol)$	$M_{\rm w}/M_{\rm n}$		
For	With disulfide	HB-PCL ₂₅ - <i>b</i> -PTEGMA ₆	3.89×10^4	6.10×10^{4}	1.56		
Hyperblock	bonds	HB-PCL ₂₆ - <i>b</i> -PTEGMA ₁₂	5.82×10^4	9.58×10^4	1.65		
		HB-PCL ₂₅ - <i>b</i> -PTEGMA ₂₆	6.78×10^4	1.11×10^{5}	1.65		
	Without disulfide	<i>R</i> -HB-PCL ₂₆ - <i>b</i> -PTEGMA ₁₂	5.67×10^4	1.20×10^4	2.12		
For	With disulfide	HB-PCL ₂₃ -g-PTEGMA ₁₃	5.47×10^4	9.32×10^4	1.70		
Hypergraft	bonds	HB-PCL ₂₅ -g-PTEGMA ₂₁	5.48×10^4	9.14×10^4	1.66		
	Without disulfide	<i>R</i> -HB-PCL ₂₂ - <i>g</i> -PTEGMA ₁₄	4.97×10^4	7.95×10^4	1.60		

Scheme S1. Schematic illustration of the synthesis of reference sample *R*-HB-PCL-*b*-PTEGMA without disulfide linkages.

Scheme S2. Schematic illustration of the synthesis of reference sample *R*-HB-PCL-*g*-PTEGMA without disulfide linkages.

Figure S1. Standard curve of DOX in DMSO obtained by UV-vis spectrometer at 485 nm.

Figure S2. Plots of intensity ratio I₃₃₈/I₃₃₅ from pyrene excitation spectra versus log C for (a) HB-PCL₂₆-*b*-PTEGMA₁₂, (b) *R*-HB-PCL₂₆-*b*-PTEGMA₁₂, (c) HB-PCL₂₃-*g*-PTEGMA₁₃, (d) *R*-HB-PCL₂₂-*g*-PTEGMA₁₄. Emission wavelength: 390 nm.

Figure S3.¹H NMR spectra of (a) initiator I and (b) initiator III used in the main text.

Figure S4. IR spectra of (a) the precursors and HB-PCL₂₆-*b*-PTEGMA₁₂, (b) the precursors and HB-PCL₂₃-*g*-PTEGMA₁₃.

Figure S5. GPC curves of (a) the precursor and HB-PCL₂₅-*b*-PTEGMA₂₆, (b) the precursors and HB-PCL₂₅-*g*-PTEGMA₂₁ with disulfide linkages.

Figure S6. Evolution of GPC curves as a function of degradation time (*t*) for (a) *R*-HB-PCL₂₆-*b*-PTEGMA₁₂ and (b) *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ without disulfide linkages, where [DTT] = 10 mM.

Figure S7. The hydrodynamic radius distribution $f(R_h)$ of the self-assembly amphiphiles formed from PCL₂₆-*b*-PTEGMA₁₂ diblock copolymer.

Figure S8. TEM micrographs taken from (a) HB-PCL₂₆-*b*-PTEGMA₁₂ SAs; (b) HB-PCL₂₆-*b*-PTEGMA₁₂ SAs after 24 h degradation in an aqueous phase (25 °C, 10 mM DTT). Transmission electron microscopy (TEM) was performed using a FEI T12 Quick CryoEM and CryoET microscope operated at 120 eV.

Figure S9. TEM micrographs taken from (a) HB-PCL₂₃-*g*-PTEGMA₁₃ SAs; (b) HB-PCL₂₃-*g*-PTEGMA₁₃ SAs after 24 h degradation; (c) HB-PCL₂₃-*g*-PTEGMA₁₃ SAs after 75 h degradation in an aqueous phase (25 °C, 10 mM DTT). Transmission electron microscopy (TEM) was performed using a FEI T12 Quick CryoEM and CryoET microscope operated at 120 eV.

Figure S10. ¹H NMR spectra of (a) *R*-initiator I and (b) *R*-initiator III for reference samples.

Figure S11. ¹H NMR spectra of (a) *R*-PCL₂₆-OH-Br; (b) *R*-PCL₂₆-*b*-PTEGMA₁₂-OH-Br; (c) *R*-PCL₂₆-*b*-PTEGMA₁₂-2Br without disulfide linkages.

Figure S12. ¹H NMR spectra of (a) *R*-PCL₂₆-*b*-PTEGMA₁₂-2N₃, (b) *R*-HB-PCL₂₆-*b*-PTEGMA₁₂ without disulfide linkages.

Figure S13. ¹H NMR spectra of (a) *R*-PCL₂₂-2OH, (b) *R*-PCL₂₂-2Br, (c) *R*-PCL₂₂-2N₃ without disulfide linkages.

Figure S14. ¹H NMR spectra of (a) *R*-HB-PCL₂₂, (b) *R*-PTEGMA₁₄, and (c) *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ without disulfide linkages.

Figure S15. GPC curves of (a) the precursors and *R*-HB-PCL₂₆-*b*-PTEGMA₁₂, (b) the precursors and *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ without disulfide linkages.

Figure S16. FTIR spectra of (a) the precursors and *R*-HB-PCL₂₆-*b*-PTEGMA₁₂, (b) the precursors and *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ without disulfide linkages.

Figure S17. DSC curves (10 °C/min) during reheating of (a) the precursor and *R*-HB-PCL₂₆-*b*-PTEGMA₁₂, (b) the precursors and *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ without disulfide linkages.

Figure S18. TGA curves of HB-PCL₂₆-*b*-PTEGMA₁₂ and HB-PCL₂₃-*g*-PTEGMA₁₃.

Figure S19. The hydrodynamic radius distribution $f(R_h)$ of DOX loaded self-assembly amphiphiles: (a) HB-PCL₂₆-*b*-PTEGMA₁₂-DOX, (b) *R*-HB-PCL₂₆-*b*-PTEGMA₁₂-DOX, (c) HB-PCL₂₃-*g*-PTEGMA₁₃-DOX, (d) *R*-HB-PCL₂₂-*g*-PTEGMA₁₄-DOX.

Figure S20. TEM micrographs taken from (a) HB-PCL₂₆-*b*-PTEGMA₁₂ SAs; (b) HB-PCL₂₆-*b*-PTEGMA₁₂-DOX SAs; (c) HB-PCL₂₃-*g*-PTEGMA₁₃ SAs and (d) HB-PCL₂₃-*g*-PTEGMA₁₃-DOX SAs. Transmission electron microscopy (TEM) was performed using a FEI T12 Quick CryoEM and CryoET microscope operated at 120 eV.

Figure S21. Time dependence of ratio ($\langle R_{h,t} \rangle / \langle R_{h,0} \rangle$) of average hydrodynamic radius at t = t ($\langle R_{h,t} \rangle$) and t = 0 ($\langle R_{h,0} \rangle$) for HB-PCL₂₆-*b*-PTEGMA₁₂-DOX SAs in (a) PBS, (b) PBS containing 10% FBS; and HB-PCL₂₃-*g*-PTEGMA₁₃-DOX SAs in (c) PBS, (d) PBS containing 10% FBS at 37 °C.

Figure S22. In vitro release of DOX from HB-PCL₂₆-*b*-PTEGMA₁₂-DOX and HB-PCL₂₃-*g*-PTEGMA₁₃-DOX SAs at 37 °C in 20 mM PB buffer (pH 7.4, 10 mM DTT).

Figure S23. In vitro cytotoxicity of Hela cells against (a) bare *R*-HB-PCL₂₆-*b*-PTEGMA₁₂ self-assembly amphiphiles, (b) bare *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ self-assembly amphiphiles without disulfide bonds for 48 h.

Figure S24. Flow cytometric analyses of HeLa cells after incubation (37 °C, 5% CO₂) with DOX-loaded Hyperbranched copolymer SAs.

Figure S25. In vitro cytotoxicity of HeLa cells against (a) DOX loaded self-assembly amphiphiles of Hyperblock HB-PCL₂₆-*b*-PTEGMA₁₂ and *R*-HB-PCL₂₆-*b*-PTEGMA₁₂; (b) DOX loaded self-assembly amphiphiles of Hypergraft HB-PCL₂₃-*g*-PTEGMA₁₃ and *R*-HB-PCL₂₂-*g*-PTEGMA₁₄ for 48 h.