Supporting Information

Enantioselective Radical Hydroacylation of Enals with α-Ketoacids Enabled by Photoredox/Amine Cocatalysis

Jia-Jia Zhao, Hong-Hao Zhang, Xu Shen and Shouyun Yu*

State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023 (China)

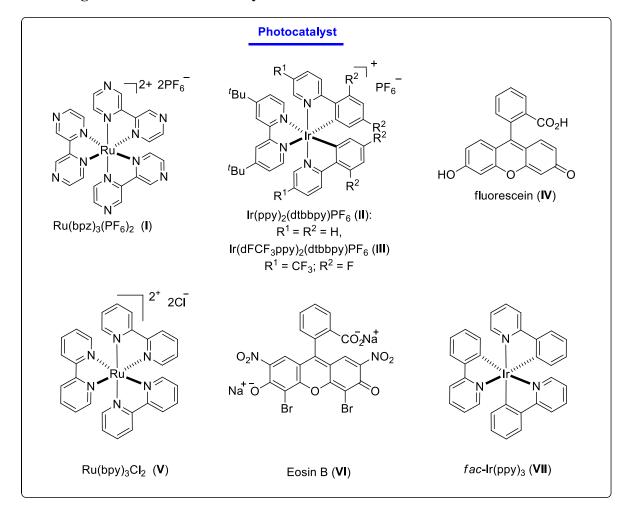
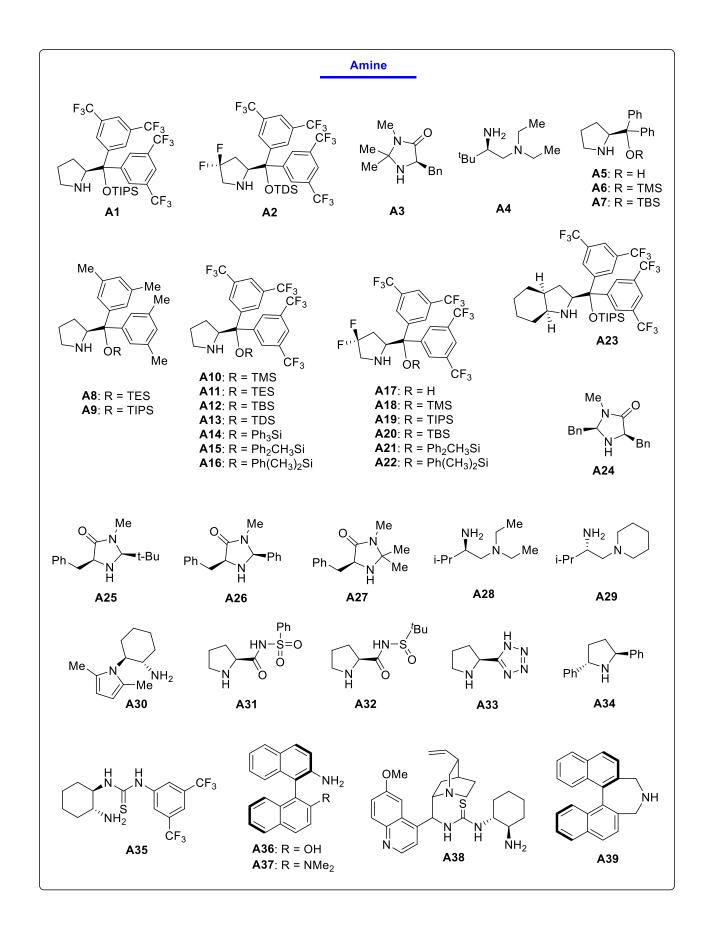

E-mail: yushouyun@nju.edu.cn; Websites: http://hysz.nju.edu.cn/yusy/

Table of Contents

1.	General method	S2
2.	Numberings and structures of catalysts	S2
3.	Screening of catalysts and condition optimization for 3a	S4
4.	General procedure for the synthesis of products 3	
5.	Mechanism studies	
6.	Characterization data of products 3	
7.	Unsuccessful substrates	S22
8.	Copies of NMR spectra for products 3	
9.	Chiral HPLC analyses of products 3	S44


1. General method

¹H and ¹³C NMR spectra were measured respectively at 400 and 100 MHz, respectively. The solvent used for NMR spectroscopy was CDCl₃, using tetramethylsilane as the internal reference. HRMS (ESI) was determined by a micrOTOF-QII HRMS/MS instrument (Bruker). Enantiomeric ratios (*er*) were determined by chiral high-performance liquid chromatography (chiral HPLC). The chiral columns used for the determination of enantiomeric excesses by chiral HPLC were Chiralpak IC and IG-3 columns. Optical rotation values were measured with instruments operating at $\lambda = 589$ nm, corresponding to the sodium D line at the temperatures indicated. Analytic grade solvents for the chromatography and commercially available reagents were used as received. The substrate α -ketoacids **1** was prepared according to the literature.¹

2. Numberings and structures of catalysts

¹ Kuldeep, W.; Yang, C.; West, P. R.; Deming, K. C.; Sanjay, R. C.; Rajarathnam, E. R. *Synth. Commun.* **2008**, *38*, 4434-4444.

3. Screening of catalysts and condition optimization for 3a

Pł	$Ph \rightarrow H$ 1a $Ph \rightarrow H$	PC (I), amine CH ₃ CN, temp, N ₂ ► Ph [*] white LEDs	O + Ph O 3a
entry	amine	yield/% ^[b]	<i>ee</i> /% ^[c]
1	A1	34	58
2	A3	20	0
3	A4	13	26
4	A5	trace	-
5	A6	6	12
6	A7	trace	-
7	A8	10	22
8	A9	12	2
9	A10	19	38
10	A11	22	46
11	A12	21	58
12	A13	19	58
13	A14	10	60
14	A15	11	58
15	A16	8	48

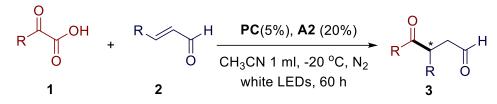
 Table S1: Optimization of reaction conditions^[a]

16	A24	14	10
17	A31	trace	-
18	A32	14	2
19	A33	22	0
20	A34	33	24
21	A35	9	6
22	A36	11	6
23	A37	4	26
24	A38	trace	-
25	A39	14	2
26 ^[d]	A1	20	66
27 ^[d]	A2	55	74
28 ^[d]	A17	20	55
29 ^[d]	A18	25	50
30 ^[d]	A19	40	72
31 ^[d]	A20	38	69
32 ^[d]	A21	50	74
33 ^[d]	A22	44	62
34 ^[d]	A23	6	56
35 ^[d]	A25	9	13

36 ^[d]	A26	12	11
37 ^[d]	A27	15	13
38 ^[d]	A28	22	25
39 ^[d]	A29	19	18
$40^{[d]}$	A30	trace	-

[a] Reaction conditions: a solution of **1a** (0.15 mmol), **2a** (0.10 mmol), amine (0.02 mmol, 20 mol%), and photocatalyst (0.002 mmol, 2 mol%) in the indicated solvent (1.0 mL) was irradiated by white LED strips for 24 h at ambient temperature. [b] Isolated yield. [c] The *ee* value was determined by HPLC. [d] The reaction temperature is 0 $^{\circ}$ C.

Table S2: Optimization of reaction conditions^[a]


	Ph OH +	O solven	alyst, A2 (20% it, 0 °C, N ₂ _EDs, 24 h	Ph Ph O	Н
		2a		3a	/o/ [c]
entry	PC (x %)	solvent	1a:2a	yield/% ^[b]	<i>ee</i> /% ^[c]
1	I (2%)	CH ₃ CN (1 mL)	1.5:1	55	74
2	II (2%)	CH ₃ CN (1 mL)	1.5:1	N. R.	-
3	III (2%)	CH ₃ CN (1 mL)	1.5:1	21	72
4	IV (2%)	CH ₃ CN (1 mL)	1.5:1	18	72
5	V (2%)	CH ₃ CN (1 mL)	1.5:1	N. R.	-
6	VI (2%)	CH ₃ CN (1 mL)	1.5:1	N. R.	-
7	VII (2%)	CH ₃ CN (1 mL)	1.5:1	N. R.	-
8	I (2%)	DCM (1 mL)	1.5:1	26	39
9	I (2%)	PhCF ₃ (1 mL)	1.5:1	15	33

10	I (2%)	1,4-dioxane (1 mL)	1.5:1	trace	-
11	I (2%)	EtOAc (1 mL)	1.5:1	trace	-
12	I (2%)	DMSO (1 mL)	1.5:1	trace	-
13	I (2%)	DMF (1 mL)	1.5:1	N.R.	-
14	I (2%)	MeOH (1 mL)	1.5:1	N.R.	-
15	I (2%)	CH ₃ CN (1 mL)	3:1	76	74
16	I (2%)	CH ₃ CN (1 mL)	1:.1	33	74
17	I (2%)	CH ₃ CN (1 mL)	1:1.5	35	74
18	I (2%)	CH ₃ CN (1 mL)	1:3	37	74
19	I (2%)	CH ₃ CN (0.5 mL)	3:1	72	70
20	I (2%)	CH ₃ CN (2 mL)	3:1	68	74
21	I (2%)	CH ₃ CN (3 mL)	3:1	60	74
22	I (2%)	CH ₃ CN (4 mL)	3:1	56	74
23	I (1%)	CH ₃ CN (1 mL)	3:1	61	74
24	I (5%)	CH ₃ CN (1 mL)	3:1	91	74
25	I (10%)	CH ₃ CN (1 mL)	3:1	95	74
26 ^[d]	I (5%)	CH ₃ CN (1 mL)	3:1	48	78
27 ^[e]	I (5%)	CH ₃ CN (1 mL)	3:1	76	78
28 ^[f]	I (5%)	CH ₃ CN (1 mL)	3:1	90	80
29 ^[g]	I (5%)	CH ₃ CN (1 mL)	3:1	N.R.	-

30	-	CH ₃ CN (1 mL)	3:1	13	80
31 ^[h]	I (5%)	CH ₃ CN (1 mL)	3:1	trace	-
32 ^[i]	I (5%)	CH ₃ CN (1 mL)	3:1	88	78

[a] Unless otherwise indicated, the reaction was carried out at the 0.10 mmol scale and irradiated by white LED strips for 24h at 0 °C. [b] Isolated yield. [c] The *ee* value was determined by HPLC. [d] The reaction temperature is -20 °C, reaction time is 24 h. [e] The reaction temperature is -20 °C, reaction time is 48 h. [f] The reaction temperature is -20 °C, reaction time is 60 h. [g] in dark. [h] no amine. [i] The reaction takes place in air.

4. General procedure for the synthesis of products 3

Acetonitrile (CH₃CN) (1 mL) was added to the mixture of benzoylformic acid **1** (0.3 mmol), trans-cinnamaldehyde **2** (0.1 mmol), catalyst **A2** (0.02 mmol) and **PC** (0.005 mmol) under nitrogen. After being stirred at -20 °C in a refrigerator for 60 h with white LED strips, the reaction mixture was quenched with NaHCO₃ (aq.), extracted with ether, and purified through preparative thin layer chromatography to afford pure products **3**.

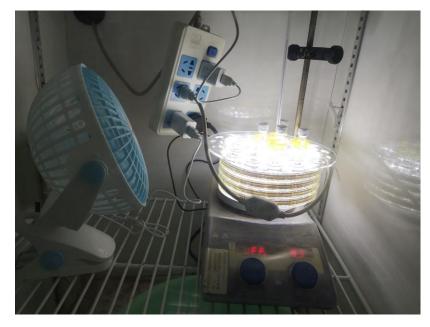
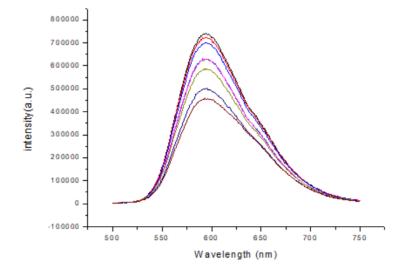



Figure S1. The reaction apparatus.

5. Mechanism Studies

a) Quenching experiments and Stern-Volmer analysis.

A Hitachi F-7000 fluoresence spectrometer was used to record the emission intensities. All $Ru(bpz)_3(PF_6)_2$ solutions were excited at 443 nm and the emission intensity at 590 nm was observed. CH₃CN was degassed with a stream of Ar for 30min. In a typical experiment, the emission spectrum of a 5 × 10⁻⁵ M solution of $Ru(bpz)_3(PF_6)_2$ in CH₃CN was collected. Then, appropriate amount of quencher was added to the measured solution in a quartz cuvette and the emission spectrum of the sample was collected. I₀ and I represent the intensities of the emission in the absence and presence of the quencher at 590 nm.

Figure S2. Emission spectra of 5×10^{-5} M Ru(bpz)₃(PF₆)₂ at $\lambda ex = 443$ nm showing the quenching effect of increasing of **1a**.

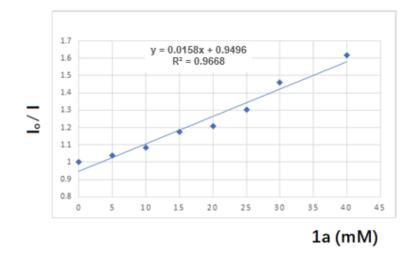


Figure S3. The linear relationship over the increasing concentration of 1a.

b) Quantum Yield Measurement

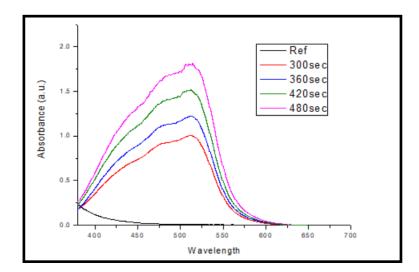
A ferrioxalate actinometry solution was prepared by following the Hammond variation of the Hatchard and Parker procedure outlined in Handbook of Photochemistry. Ferrioxalate actinometer solution measures the decomposition of ferric ions to ferrous ions, which are complexed by 1,10-phenanthroline and monitored by UV/Vis absorbance at 510 nm. The moles of iron-phenanthroline complex formed are related to moles of photons absorbed.

The solutions were prepared and stored in the dark (red light):

1) Potassium ferrioxalate solution: 294.8 mg of potassium ferrioxalate (commercially available from Alfa Aesar) and 139 μ L of sulfuric acid (96%) were added to a 50 mL volumetric flask, and filled to the mark with water (HPLC grade).

2) Phenantroline solution: 0.2% by weight of 1,10-phenanthroline in water (100 mg in 50 mL volumetric flask).

3) Buffer solution: to a 50 mL volumetric flask 4.94 g of NaOAc and 0.5 mL of sulfuric acid (96%) were added and filled to the mark with water (HPLC grade).


4) Model reaction solution: phenylglyoxylic acid 1a (0.3 mmol), *trans*-cinnamaldehyde 2a (0.1 mmol), amine (20 mol %), and photocatalyst (5 mol %) in the acetonitrile (1.0 mL) was irradiated by white LED strips at -20 °C.

The actinometry measurements were done as follows:

1) 1 mL of the actinometer solution was added to a quartz cuvette (l = 10 mm). The cuvette was placed along with a sample solution (1 mL in a similar cuvette) whose quantum yield has to be measured (our model reaction). The sample and actinometry solutions (placed 10 cm away from the lamp) were irradiated with 13 W white LED strips for specified time intervals (5, 6, 7, 8) min.

2) After irradiation all the actinometer solution was removed and placed in a 25 mL volumetric flask. 0.5mL of 1,10-phenanthroline solution and 2 mL of buffer solution was added to this flask and filled to the mark with water (HPLC grade).

3) The UV-Vis spectra of actinometry samples were recorded for each time interval. The absorbance of the actinometry solution was monitored at 510 nm.

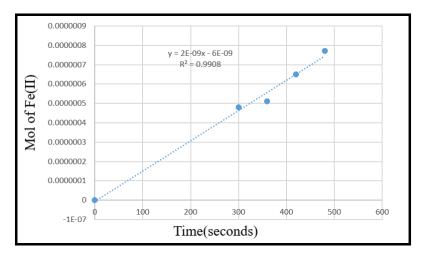
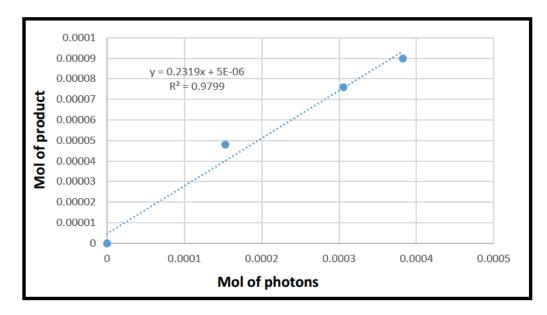


Figure S4. The absorbance of the actinometry solution was monitored at 510 nm.
4) The moles of Fe²⁺ formed for each sample is determined using Beers' Law:

moles
$$\operatorname{Fe}^{2+} = \frac{V_1 \times V_3 \times \Delta A(510 \text{ nm})}{10^3 \times V_2 \times l \times \varepsilon(510 \text{ nm})}$$


where V_1 is the irradiated volume (1 mL), V_2 is the aliquot of the irradiated solution taken for the determination of the ferrous ions (1 mL), V_3 is the final volume after complexation with phenanthroline (25 mL), 1 is the optical path-length of the irradiation cell (1 cm), $\Delta A(510 \text{ nm})$ the optical difference in absorbance between the irradiated solution and that taken in the dark, $\epsilon(510 \text{ nm})$ is that of the complex Fe(phen)₃²⁺ (11100 L mol⁻¹ cm¹).

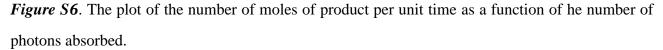
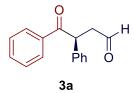
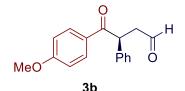
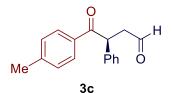

5) The moles of Fe²⁺ formed (N) are plotted as a function of time (t). The slope is a product of the photon flux (F) and the quantum yield for Fe²⁺ (ϕ Fe²⁺ = 1.13) at 400 nm as, F = N/ Φ Fe²⁺ t. The F was determined to be 1.77 10⁻⁹ einstein s⁻¹.

Figure S5. The plot of the moles of Fe^{2+} as a function of time (t).


6) The moles of products formed for the reaction of interest (done by irradiating the sample alongside the actinometer solution) are described above. The moles of products formed were determined by column chromatography (The product will break down by GC measurement (FID detector)). The number of moles of product per unit time is related to the number of photons absorbed. The slope yields the quantum yield (Φ) of the photoreaction, 0.23.

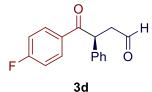
The procedure was repeated a second time to provide a similar value, a quantum yield (Φ) of 0.21. The quantum yield (Φ) was determined to **0.22** (the average of two parellel experiments).

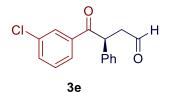

6. Characterization data of products 3


(*S*)-4-oxo-3,4-diphenylbutanal (3a): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 90% (21.4 mg); white solid; m.p. 82-83 °C; $[\alpha]_D^{20}$ = +155.5 (c 2.08, CHCl₃); $[\alpha]_D^{26}$ = +120.1 (c 1.15, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.96 (dd, *J* = 5.2, 3.3 Hz, 2H), 7.52 – 7.44 (m, 1H), 7.37 (dd, *J* = 10.5, 4.7 Hz, 2H), 7.32 – 7.25 (m, 4H), 7.24 – 7.18 (m, 1H), 5.13 (dd, *J* = 9.6, 4.2 Hz, 1H), 3.61 (dd, *J* = 18.5, 9.7 Hz, 1H), 2.83

(dd, J = 18.6, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.1, 198.2, 138.3, 136.0, 133.1, 129.3, 128.9, 128.6, 128.1, 127.5, 48.3, 47.6; ESI FTMS exact mass calcd for (C₁₆H₁₄O₂+H)⁺ requires m/z 239.1072, found m/z 239.1073; Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 17.276 min (major), t_R = 12.359 min (minor).

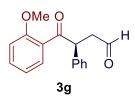
The absolute configuration of product **3a** was determined to be *S* by comparing its optical rotation $[\alpha]_D{}^{26} = +120.1$ with that of the same known compound $[\alpha]_D{}^{26} = +52.9.^2$ The absolute configurations of other products were assigned by analogy.

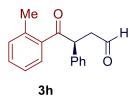

(*S*)-4-(4-methoxyphenyl)-4-oxo-3-phenylbutanal (3b): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 93% (24.9mg); pale yellow oil; $[\alpha]_D^{20} = +145.8$ (c 1.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.99 – 7.92 (m, 2H), 7.32 – 7.25 (m, 4H), 7.24 – 7.19 (m, 1H), 6.89 – 6.83 (m, 2H), 5.09 (dd, *J* = 9.5, 4.3 Hz, 1H), 3.81 (s, 3H), 3.58 (dd, *J* = 18.4, 9.5 Hz, 1H), 2.81 (dd, *J* = 18.5, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 196.6, 163.5, 138.8, 131.3, 129.2, 128.9, 128.0, 127.4, 113.7, 55.4, 48.3, 47.4; ESI FTMS exact mass calcd for (C₁₇H₁₆O₃+H)⁺ requires m/z 269.1177, found m/z 269.1173; Enantiomeric excess: 68%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 31.651 min (major), t_R = 26.172 min (minor).


(*S*)-4-oxo-3-phenyl-4-(p-tolyl)butanal (3c): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 92% (23.4 mg); pale yellow oil; $[\alpha]_D^{20}$ = +141.7 (c 1.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.87 (d, *J* = 8.3 Hz, 2H), 7.32 – 7.24 (m, 4H), 7.23 – 7.19 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.11 (dd, *J* = 9.5, 4.3 Hz, 1H), 3.59 (dd, *J* = 18.5, 9.6 Hz, 1H), 2.82 (dd, *J* = 18.5, 4.3 Hz, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

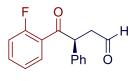
²Goti, G.; Bieszczad, B.; Vega-Peñaloza, A.; Melchiorre, P. Angew. Chem. Int. Ed. 10.1002/anie.201810798.

200.1, 197.7, 143.9, 138.5, 133.4, 129.2, 129.1, 128.1, 127.4, 48.2, 47.5, 21.6; ESI FTMS exact mass calcd for $(C_{17}H_{16}O_2+H)^+$ requires m/z 253.1229, found m/z 253.1223; Enantiomeric excess: 68%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 20.145 min (major), t_R = 15.144 min (minor).

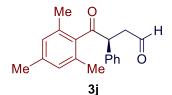

(*S*)-4-(4-fluorophenyl)-4-oxo-3-phenylbutanal (3d): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 91% (23.3 mg); pale yellow solid; m.p. 95-96 °C; $[\alpha]_D^{20} = +135.5$ (c 1.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.02 – 7.95 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.19 (m, 3H), 7.09 – 7.01 (m, 2H), 5.07 (dd, *J* = 9.7, 4.1 Hz, 1H), 3.62 (dd, *J* = 18.7, 9.8 Hz, 1H), 2.83 (dd, *J* = 18.7, 4.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.9, 196.6, 165.6 (*J* = 255.1 Hz), 138.1, 132.4, 131.6 (*J* = 9.3 Hz), 129.4, 128.0, 127.6, 115.7 (*J* = 21.9 Hz), 48.3, 47.6; ESI FTMS exact mass calcd for (C₁₆H₁₃FO₂+H)⁺ requires m/z 257.0978, found m/z 257.0977; Enantiomeric excess: 74%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 10.511 min (major), t_R = 9.625 min (minor).


(*S*)-4-(3-chlorophenyl)-4-oxo-3-phenylbutanal (3e): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 71% (19.3 mg); pale yellow oil; $[\alpha]_D^{20} = +137.2$ (c 0.97, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1H), 7.86 (t, *J* = 1.8 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.42 – 7.33 (m, 1H), 7.28 – 7.21 (m, 3H), 7.21 – 7.14 (m, 3H), 4.98 (dd, *J* = 9.8, 4.0 Hz, 1H), 3.55 (dd, *J* = 18.7, 9.8 Hz, 1H), 2.77 (dd, *J* = 18.8, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 195.9, 136.6, 133.9, 131.9, 128.8, 128.4, 127.9, 127.0, 126.7, 125.9, 47.3, 46.6; ESI FTMS exact mass calcd for (C₁₆H₁₃ClO₂+H)⁺ requires m/z 273.0682, found m/z 273.0680; Enantiomeric excess: 78%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 10.184 min (major), t_R = 9.157

min (minor).


(*S*)-4-(3-methoxyphenyl)-4-oxo-3-phenylbutanal (3f): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 91% (24.4 mg); pale yellow solid; m.p. 110-111 °C; $[\alpha]_D^{20} = +144.2$ (c 1.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.33 – 7.25 (m, 5H), 7.25 – 7.19 (m, 1H), 7.06 – 7.00 (m, 1H), 5.10 (dd, *J* = 9.6, 4.2 Hz, 1H), 3.79 (s, 3H), 3.60 (dd, *J* = 18.6, 9.7 Hz, 1H), 2.84 (dd, *J* = 18.6, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 197.9, 159.7, 138.2, 137.3, 129.5, 129.3, 128.1, 127.5, 121.6, 119.7, 113.2, 55.4, 48.3, 47.8; ESI FTMS exact mass calcd for (C₁₇H₁₆O₃+H)⁺ requires m/z 269.1178, found m/z 269.1172; Enantiomeric excess: 74%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 25.453 min (major), t_R = 19.149 min (minor).

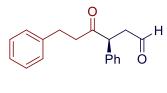
(*S*)-4-(2-methoxyphenyl)-4-oxo-3-phenylbutanal (3g): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 99% (26.5 mg); yellow oil; $[\alpha]_D^{20}$ = +64.2 (c 1.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.63 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.41 – 7.33 (m, 1H), 7.26 – 7.21 (m, 2H), 7.21 – 7.16 (m, 3H), 6.95 – 6.89 (m, 1H), 6.84 (d, *J* = 8.3 Hz, 1H), 5.23 (dd, *J* = 9.0, 5.2 Hz, 1H), 3.81 (s, 3H), 3.47 (dd, *J* = 17.9, 9.0 Hz, 1H), 2.77 (dd, *J* = 17.9, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.6, 200.4, 158.0, 138.4, 133.6, 131.0, 128.7, 128.5, 127.4, 127.1, 120.6, 111.5, 55.4, 51.9, 47.8; ESI FTMS exact mass calcd for (C₁₇H₁₆O₃+H)⁺ requires m/z 269.1178, found m/z 269.1174; Enantiomeric excess: 76%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 33.029 min (major), t_R = 23.081 min (minor).



(*S*)-4-oxo-3-phenyl-4-(o-tolyl)butanal (3h): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 89% (22.4 mg); colorless oil; $[\alpha]_D^{20} = +59.2$ (c 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.74 (d, *J* = 7.5 Hz, 1H), 7.32 – 7.24 (m, 3H), 7.24 – 7.16 (m, 4H), 7.13 (d, *J* = 7.6 Hz, 1H), 4.96 (dd, *J* = 10.1, 3.8 Hz, 1H), 3.68 (dd, *J* = 18.7, 10.2 Hz, 1H), 2.82 (dd, *J* = 18.7, 3.8 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 200.1, 138.3, 137.9, 137.3, 131.5, 131.1, 129.1, 128.3, 127.5, 125.5, 50.4, 47.7, 20.6; ESI FTMS exact mass calcd for (C₁₇H₁₆O₂+H)⁺ requires m/z 253.1229, found m/z 253.1224; Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 11.448 min (minor), t_R = 12.229 min (major).

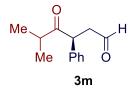
3i

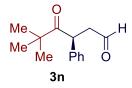
(*S*)-4-(2-fluorophenyl)-4-oxo-3-phenylbutanal (3i): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 70% (17.9 mg); pale yellow oil; $[\alpha]_D{}^{20} = +46.4$ (c 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.81 – 7.69 (m, 1H), 7.41 – 7.30 (m, 1H), 7.23 – 7.11 (m, 5H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.99 – 6.91 (m, 1H), 4.99 (dd, *J* = 9.6, 4.4 Hz, 1H), 3.50 (dd, *J* = 18.5, 9.6 Hz, 1H), 2.74 (dd, *J* = 18.5, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 196.7, 161.2 (*J* = 255.5 Hz), 137.2, 134.6 (*J* = 9.2 Hz), 131.2 (*J* = 2.4 Hz), 129.0, 128.5, 127.5, 125.1, 124.4, 116.7 (*J* = 23.9 Hz), 51.3 (*J* = 6.8 Hz), 48.1; ESI FTMS exact mass calcd for (C₁₆H₁₃FO₂+H)⁺ requires m/z 257.0978, found m/z 257.0975; Enantiomeric excess: 74%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 15.262 min (major), t_R = 12.207 min (minor).



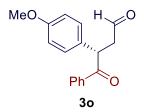
(S)-4-mesityl-4-oxo-3-phenylbutanal (3j): Preparative thin layer chromatography, petroleum

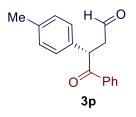
ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 97% (27.2 mg); yellow solid; m.p. 121-122 $^{\circ}$ C; [α]_D²⁰ = +189.8 (c 1.37, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.25 – 7.19 (m, 3H), 7.12 – 7.07 (m, 2H), 6.71 (s, 2H), 4.70 (dd, *J* = 7.3, 6.7 Hz, 1H), 3.56 (dd, *J* = 18.0, 7.6 Hz, 1H), 3.05 (dd, *J* = 18.0, 6.4 Hz, 1H), 2.22 (s, 3H), 1.94 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 206.6, 199.9, 138.7, 137.4, 135.7, 133.8, 129.0, 128.7, 128.5, 128.3, 127.7, 125.5, 124.8, 53.7, 44.5, 21.1, 19.4; ESI FTMS exact mass calcd for (C₁₉H₂₀O₂+H)⁺ requires m/z 281.1542, found m/z 281.1537; Enantiomeric excess: 74%, determined by HPLC (Daicel Chiralpak IC, hexane/isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 10.310 min (major), t_R = 12.322 min (minor).

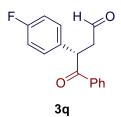

(*S*)-4-oxo-3-phenyl-4-(thiophen-2-yl)butanal (3k): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 44% (10.7 mg); yellow solid; m.p. 89-90 °C; $[\alpha]_D^{20} = +129.8$ (c 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.72 (d, *J* = 3.8 Hz, 1H), 7.57 (d, *J* = 4.9 Hz, 1H), 7.32 (d, *J* = 4.3 Hz, 4H), 7.27 – 7.22 (m, 1H), 7.08 – 7.01 (m, 1H), 4.95 (dd, *J* = 9.5, 4.4 Hz, 1H), 3.59 (dd, *J* = 18.6, 9.5 Hz, 1H), 2.84 (dd, *J* = 18.6, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 190.9, 142.9, 138.4, 133.9, 133.0, 129.3, 128.1, 127.7, 48.9, 47.9; ESI FTMS exact mass calcd for (C₁₄H₁₂O₂S+H)⁺ requires m/z 245.0636, found m/z 245.0633; Enantiomeric excess: 62%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 31.693 min (major), t_R = 21.162 min (minor).

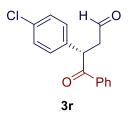


(*S*)-4-oxo-3,6-diphenylhexanal (31): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 64% (17.0 mg); colorless oil; $[\alpha]_D{}^{20} = +128.9$ (c 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.33 – 7.24 (m, 3H), 7.21 (t, *J* = 7.3 Hz, 2H), 7.14 (t, *J* = 7.3 Hz, 3H), 7.05 (d, *J* = 7.1 Hz, 2H), 4.21 (dd, *J* = 9.8, 4.1 Hz, 1H), 3.46 (dd, *J* = 18.6,

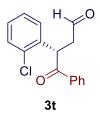

9.9 Hz, 1H), 2.91 – 2.62 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 207.6, 200.1, 140.8, 137.3, 129.3, 128.4, 128.2, 127.7, 126.0, 52.2, 46.7, 42.8, 29.7; ESI FTMS exact mass calcd for (C₁₈H₁₈O₂+H)⁺ requires m/z 267.1385, found m/z 267.1381; Enantiomeric excess: 70%, determined by HPLC (Daicel Chiralpak IG-3, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 192 nm): t_R = 9.668 min (major), t_R = 9.111 min (minor).


(*S*)-5-methyl-4-oxo-3-phenylhexanal (3m): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 75% (15.3 mg); colorless oil; $[\alpha]_D^{20}$ = +216.3 (c 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 1H), 7.22 – 7.15 (m, 2H), 4.40 (dd, *J* = 9.9, 4.1 Hz, 1H), 3.45 (dd, *J* = 18.5, 9.9 Hz, 1H), 2.71 (dt, *J* = 13.8, 6.9 Hz, 1H), 2.63 (dd, *J* = 18.5, 4.1 Hz, 1H), 1.16 (d, *J* = 7.1 Hz, 3H), 0.89 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.5, 200.0, 137.7, 129.2, 128.3, 127.6, 50.6, 47.1, 39.4, 19.2, 18.2; ESI FTMS exact mass calcd for (C₁₃H₁₆O₂+H)⁺ requires m/z 205.1228, found m/z 205.1229; Enantiomeric excess: 72%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 9.281 min (major), t_R = 11.081 min (minor).


(*S*)-5,5-dimethyl-4-oxo-3-phenylhexanal (3n): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 68% (14.8 mg); colorless oil; $[\alpha]_D^{20} = +190.4$ (c 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.35 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 7.22 – 7.16 (m, 2H), 4.64 (dd, *J* = 9.9, 4.1 Hz, 1H), 3.42 (dd, *J* = 18.6, 9.9 Hz, 1H), 2.65 (dd, *J* = 18.6, 4.1 Hz, 1H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 214.2, 200.0, 138.1, 129.1, 128.1, 127.4, 49.4, 46.9, 45.1, 27.3; ESI FTMS exact mass calcd for (C₁₄H₁₈O₂+H)⁺ requires m/z 219.1385, found m/z 219.1386; Enantiomeric excess: 80%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 95/5, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 7.045 min (major), t_R = 8.062 min (minor).

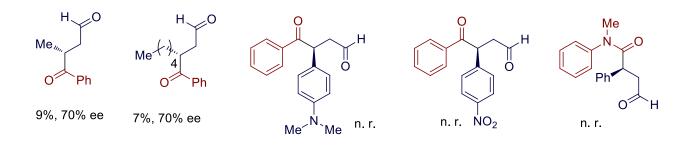

(*S*)-3-(4-methoxyphenyl)-4-oxo-4-phenylbutanal (3o): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 74% (19.8 mg); pale yellow oil; $[\alpha]_D^{20} = +112.2$ (c 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.74 (d, *J* = 8.5 Hz, 2H), 5.00 (dd, *J* = 9.4, 4.3 Hz, 1H), 3.66 (s, 3H), 3.48 (dd, *J* = 18.5, 9.5 Hz, 1H), 2.74 (dd, *J* = 18.5, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 198.4, 158.9, 136.0, 133.0, 130.1, 129.2, 128.9, 128.5, 114.7, 55.2, 48.3, 46.7; ESI FTMS exact mass calcd for (C₁₇H₁₆O₃+H)⁺ requires m/z 269.1178, found m/z 269.1176; Enantiomeric excess: 68%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 27.571 min (major), t_R = 19.673 min (minor).

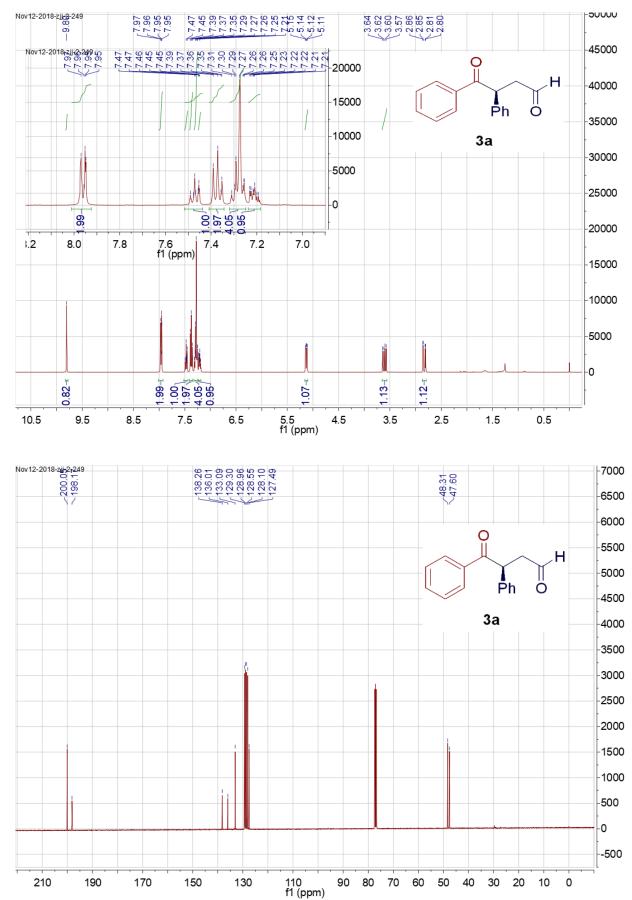
(*S*)-4-oxo-4-phenyl-3-(p-tolyl)butanal (3p): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 89% (22.4 mg); pale yellow solid; m.p. 108-109 °C; $[\alpha]_D^{20} = +124.3$ (c 1.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 8.01 – 7.92 (m, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 5.09 (dd, *J* = 9.6, 4.3 Hz, 1H), 3.58 (dd, *J* = 18.5, 9.6 Hz, 1H), 2.81 (dd, *J* = 18.5, 4.3 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 198.3, 137.2, 136.0, 135.2, 133.0, 129.9, 128.9, 128.5, 127.9, 48.3, 47.2, 21.0; ESI FTMS exact mass calcd for (C₁₇H₁₆O₂+H)⁺ requires m/z 253.1228, found m/z 253.1224; Enantiomeric excess: 72%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 18.431 min (major), t_R = 13.323 min (minor).

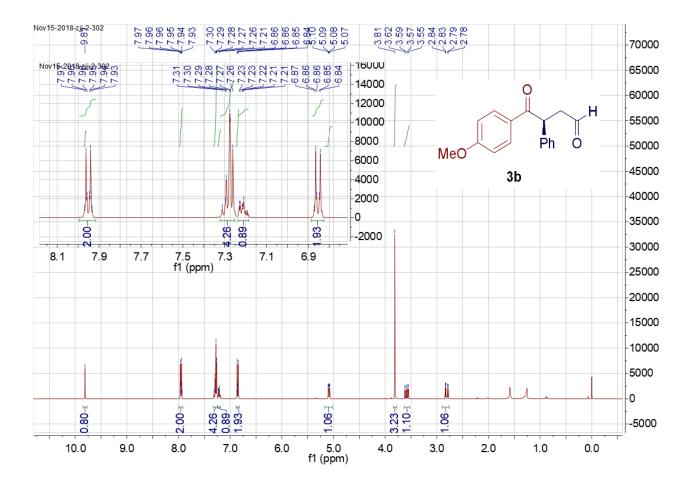

(*S*)-3-(4-fluorophenyl)-4-oxo-4-phenylbutanal (3q): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 82% (21.0 mg); colorless oil; $[\alpha]_D^{20} = +112.7$ (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.94 – 7.78 (m, 2H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.20 – 7.13 (m, 2H), 6.99 – 6.80 (m, 2H), 5.05 (dd, *J* = 9.4, 4.4 Hz, 1H), 3.51 (dd, *J* = 18.6, 9.5 Hz, 1H), 2.75 (dd, *J* = 18.6, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 198.1, 162.1 (*J* = 246.7 Hz), 160.8, 135.8, 133.9 (*J* = 3.3 Hz), 133.2, 129.7 (*J* = 8.1 Hz), 128.9, 128.6, 116.2 (*J* = 21.5 Hz), 48.3, 46.6; ESI FTMS exact mass calcd for (C₁₆H₁₃FO₂+H)⁺ requires m/z 257.0978, found m/z 257.0977; Enantiomeric excess: 70%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 16.221 min (major), t_R = 11.609 min (minor).

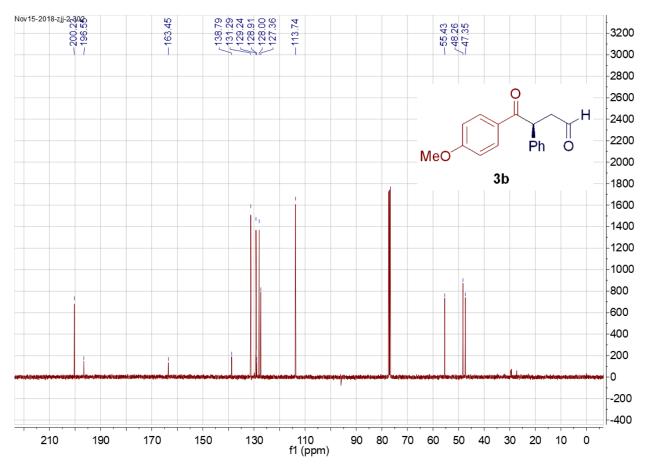

(*S*)-3-(4-chlorophenyl)-4-oxo-4-phenylbutanal (3r): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 77% (20.9 mg); colorless oil; $[\alpha]_D^{20} = +97.1$ (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.98 – 7.90 (m, 2H), 7.54 – 7.47 (m, 1H), 7.43 – 7.36 (m, 2H), 7.29 – 7.25 (m, 2H), 7.24 – 7.19 (m, 2H), 5.12 (dd, *J* = 9.4, 4.4 Hz, 1H), 3.59 (dd, *J* = 18.6, 9.5 Hz, 1H), 2.83 (dd, *J* = 18.7, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 197.8, 136.7, 135.8, 133.5, 133.3, 129.5, 129.4, 128.9, 128.6, 48.1, 46.7; ESI FTMS exact mass calcd for (C₁₆H₁₃ClO₂+H)⁺ requires m/z 273.0682, found m/z 273.0685; Enantiomeric excess: 76%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 14.691 min (major), t_R = 11.123 min (minor).

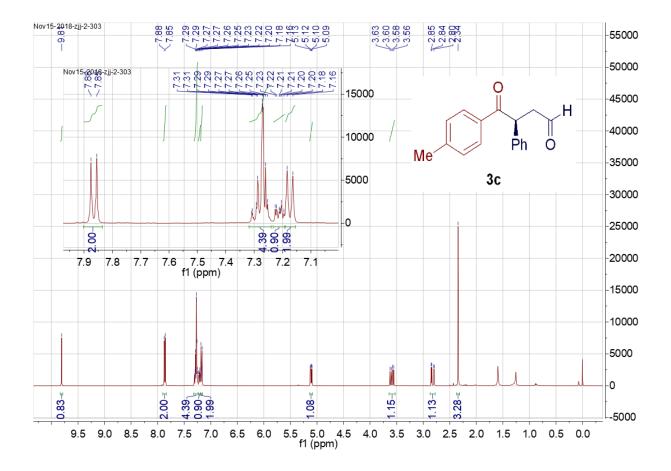
(*S*)-3-(3-bromophenyl)-4-oxo-4-phenylbutanal (3s): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 92% (29.1 mg); colorless oil; $[\alpha]_D^{20} = +247.1$ (c 1.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 8.01 – 7.90 (m, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.47 – 7.38 (m, 3H), 7.37 – 7.33 (m, 1H), 7.24 – 7.13 (m, 2H), 5.10 (dd, *J* = 9.6, 4.2 Hz, 1H), 3.60 (dd, *J* = 18.7, 9.6 Hz, 1H), 2.84 (dd, *J* = 18.7, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 197.6, 140.5, 135.7, 133.4, 131.0, 130.8, 130.7, 128.9, 128.7, 126.8, 123.2, 48.2, 46.9; ESI FTMS exact mass calcd for (C₁₆H₁₃BrO₂+H)⁺ requires m/z 317.0177, found m/z 317.0180; Enantiomeric excess: 74%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 14.231 min (major), t_R = 10.801 min (minor).

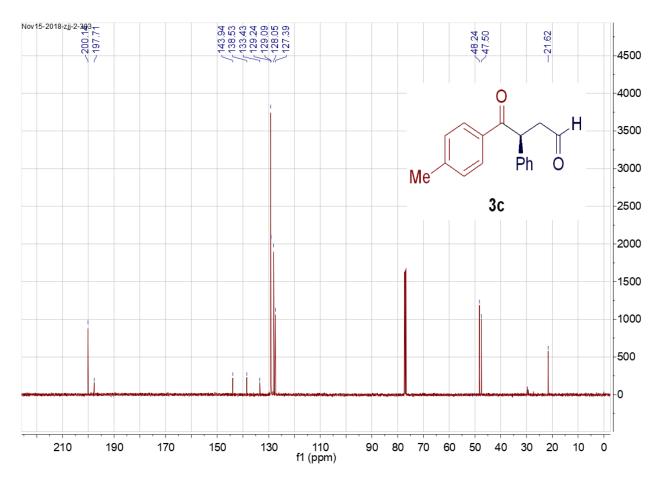


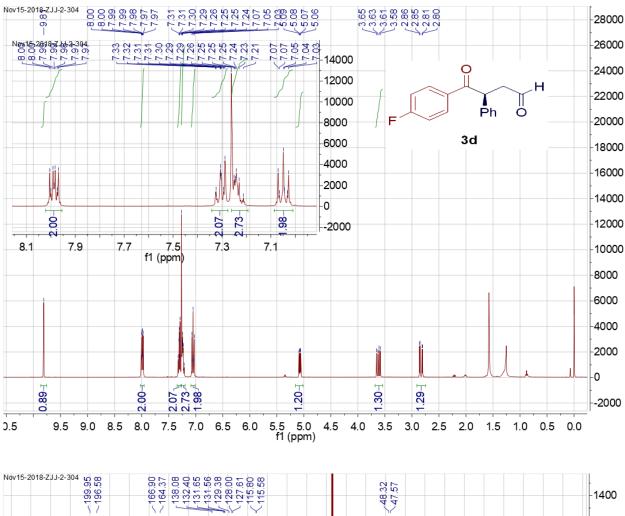

(*S*)-3-(2-chlorophenyl)-4-oxo-4-phenylbutanal (3t): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 79% (21.5 mg); pale yellow oil; $[\alpha]_D^{20} = +170.6$ (c 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.92 (dd, *J* = 5.2, 3.3 Hz, 2H), 7.53 – 7.47 (m, 1H), 7.46 – 7.35 (m, 3H), 7.21 – 7.10 (m, 2H), 7.10 – 7.06 (m, 1H), 5.59 (dd, *J* = 10.2, 3.5 Hz, 1H), 3.48 (dd, *J* = 18.3, 10.2 Hz, 1H), 2.76 (dd, *J* = 18.3, 3.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 197.8, 136.0, 135.6, 133.3, 133.0, 130.3, 128.9, 128.8, 128.6, 127.7, 46.5, 44.2; ESI FTMS exact mass calcd for (C₁₆H₁₃ClO₂+H)⁺ requires m/z 273.0682, found m/z 273.0677; Enantiomeric excess: 62%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/ 10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 14.590 min (major), t_R = 11.179 min (minor).

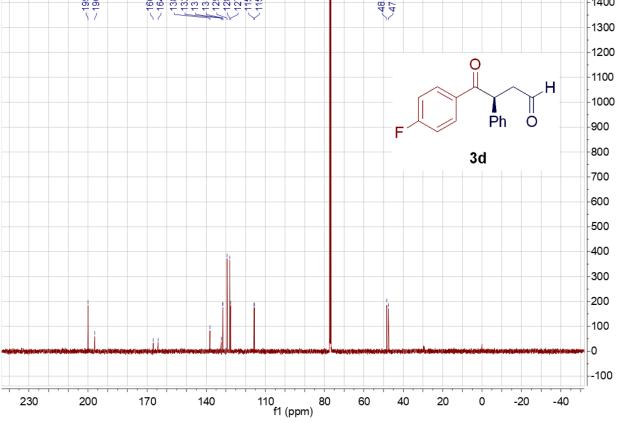

(*S*)-3-(2,6-difluorophenyl)-4-oxo-4-phenylbutanal (3u): Preparative thin layer chromatography, petroleum ether/ethyl acetate = 10/1; reaction time = 60 h; yield: 93% (25.5 mg); colorless oil; $[\alpha]_D^{20} = +128.1$ (c 1.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.79 (d, *J* = 7.3 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.29 (t, *J* = 7.7 Hz, 2H), 7.15 – 7.05 (m, 1H), 6.77 (t, *J* = 8.2 Hz, 2H), 5.31 (dd, *J* = 9.1, 4.3 Hz, 1H), 3.60 (dd, *J* = 18.0, 9.1 Hz, 1H), 2.63 (dd, *J* = 18.0, 4.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 198.3, 195.0, 159.6 (*J* = 249.2 Hz), 158.4, 134.4, 132.1, 128.6 (*J* = 10.4 Hz), 127.4 (*J* = 17.8 Hz), 114.3, 111.1, 110.9 (*J* = 25.2 Hz), 42.7, 36.9; ESI FTMS exact mass calcd for (C₁₆H₁₂F₂O₂+H)⁺ requires m/z 275.0883, found m/z 275.0878; Enantiomeric excess: 76%, determined by HPLC (Daicel Chiralpak IC, hexane/ isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 220 nm): t_R = 19.560 min (major), t_R = 13.253 min (minor).

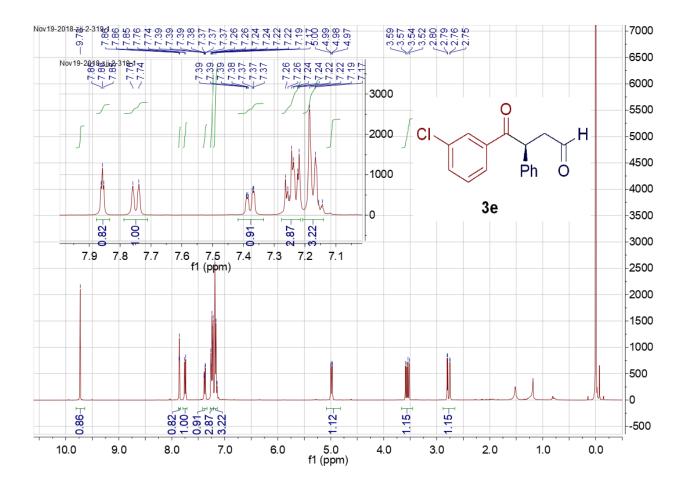

7. Unsuccessful Substrates

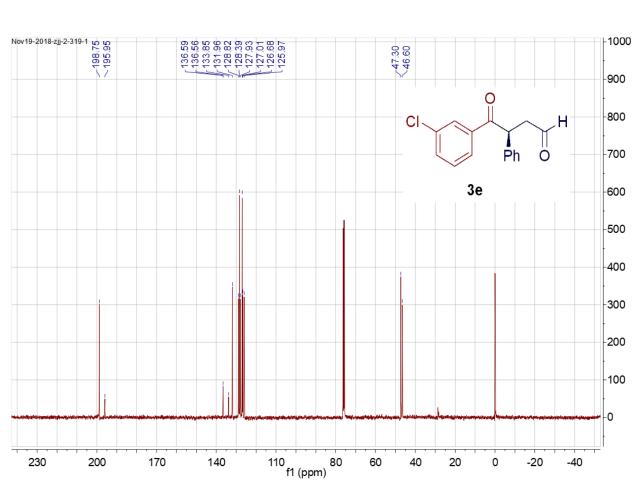


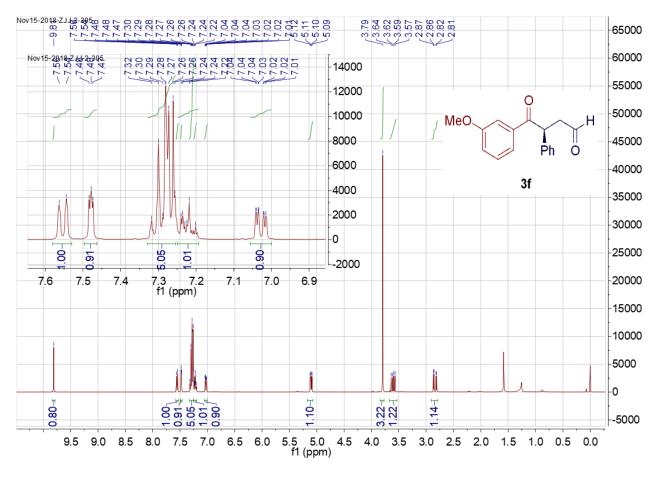


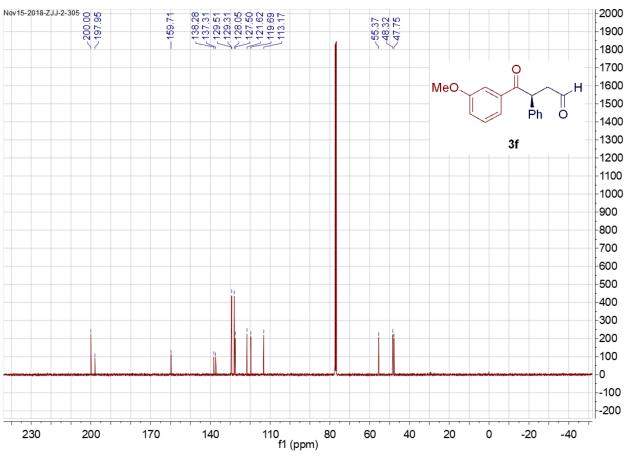

8. Copies of NMR spectra for products 3

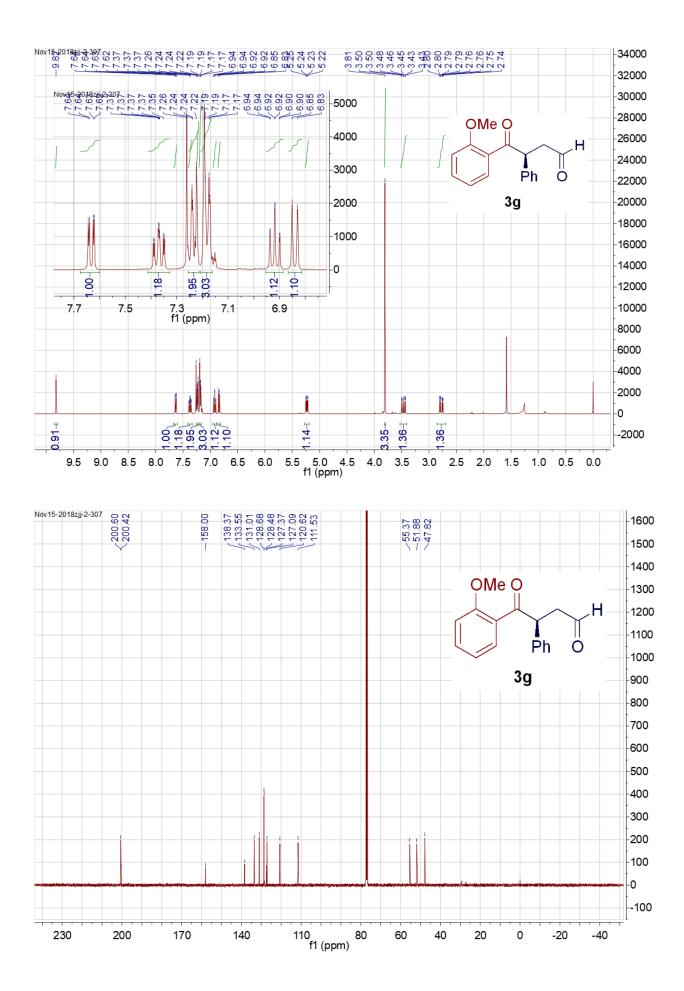


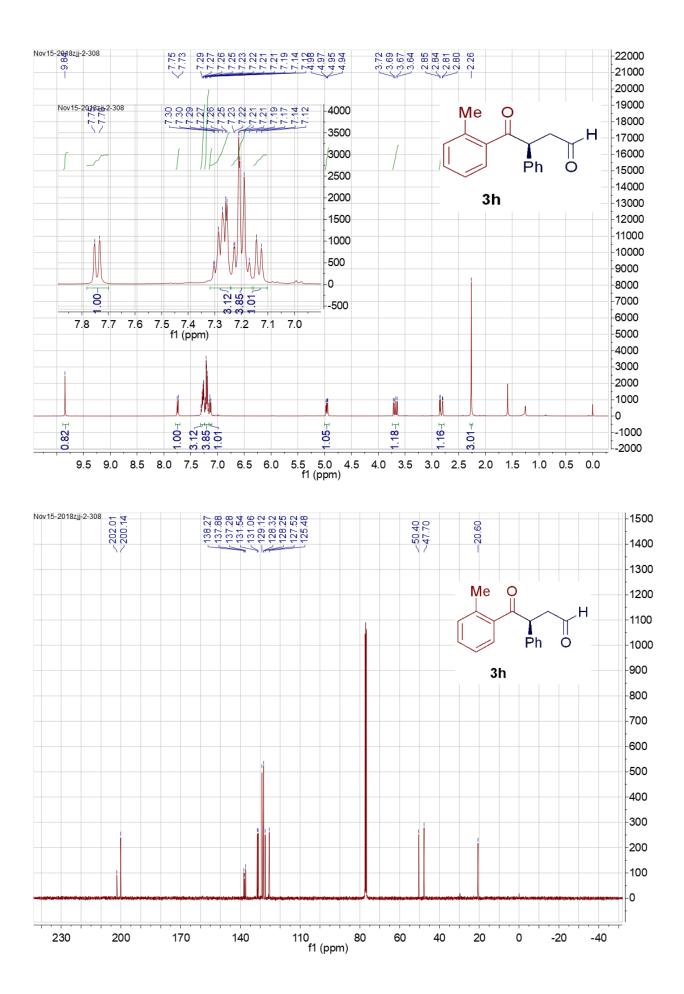


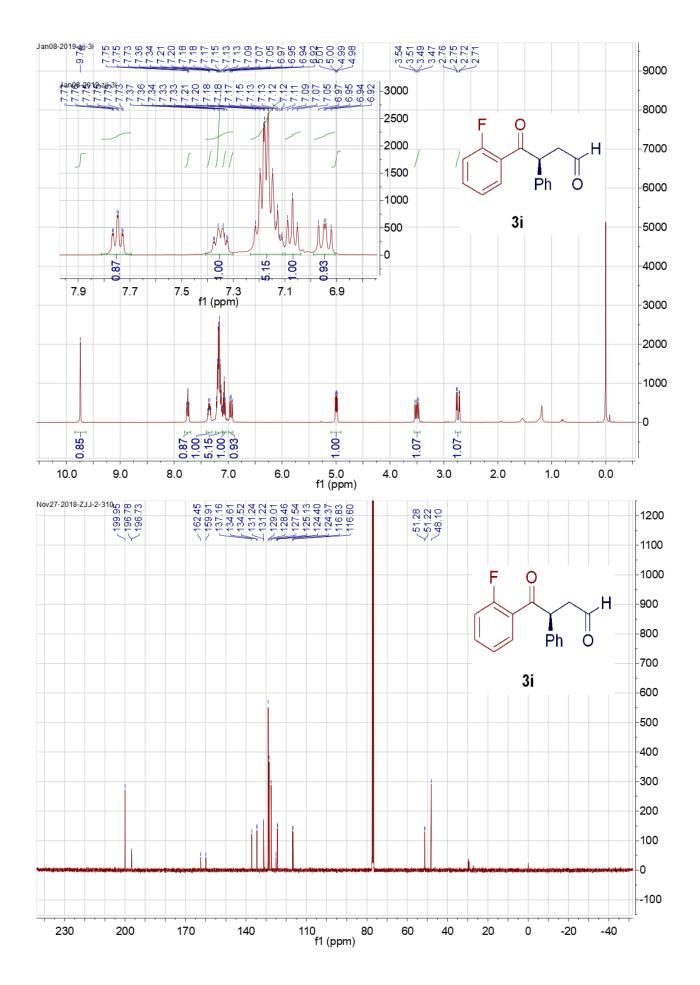


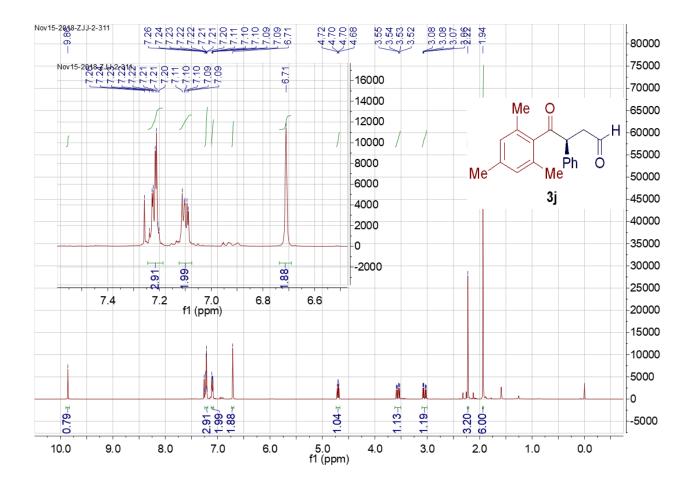


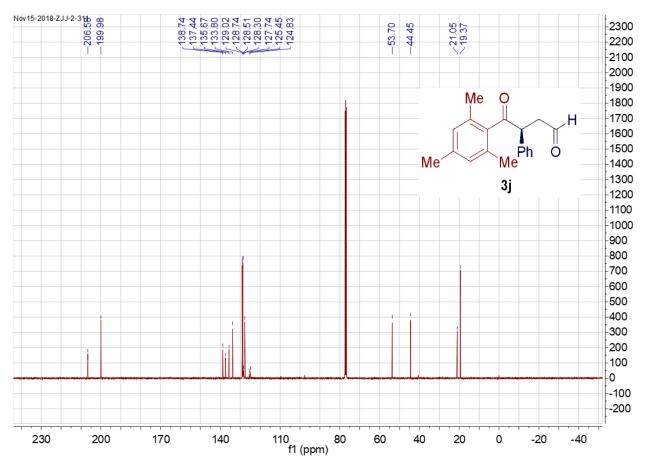


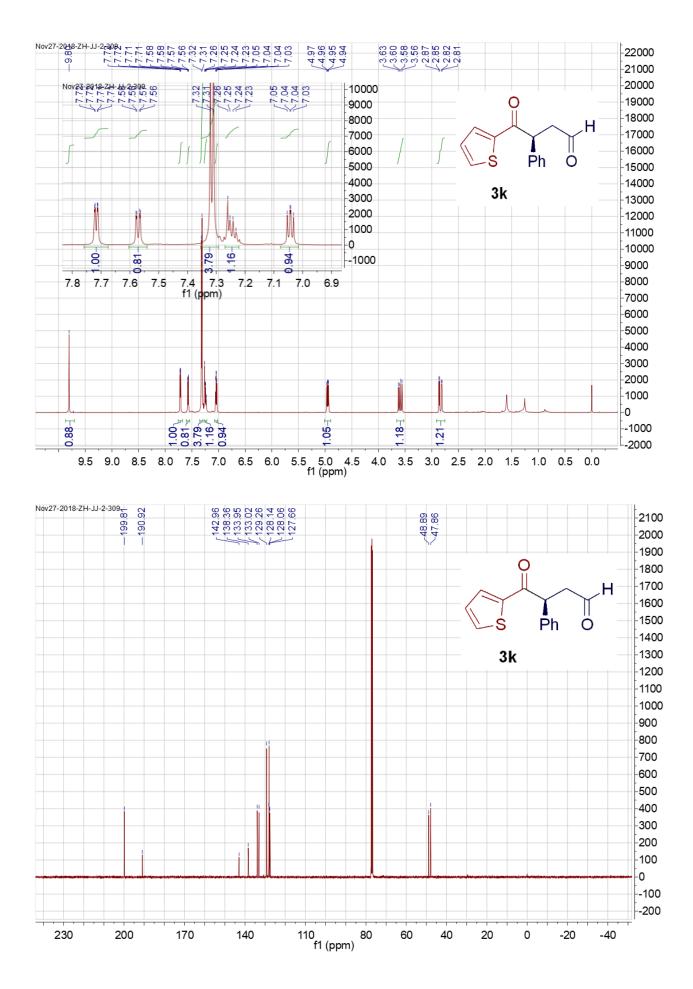


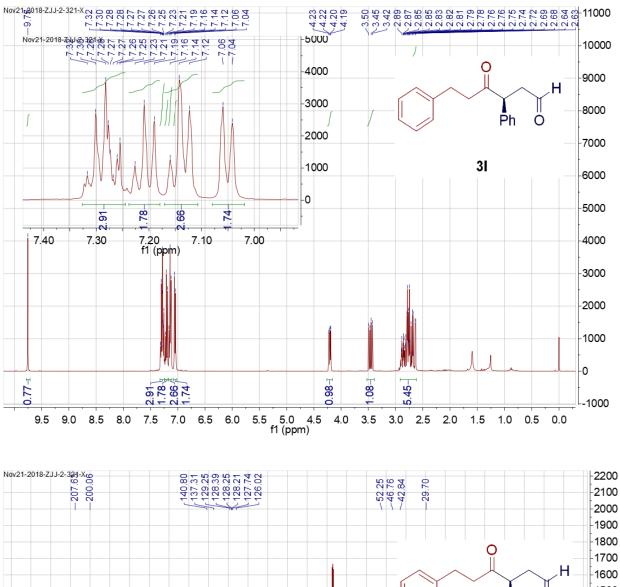


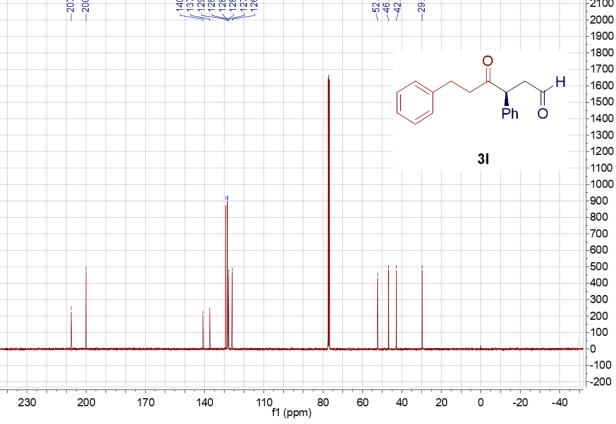


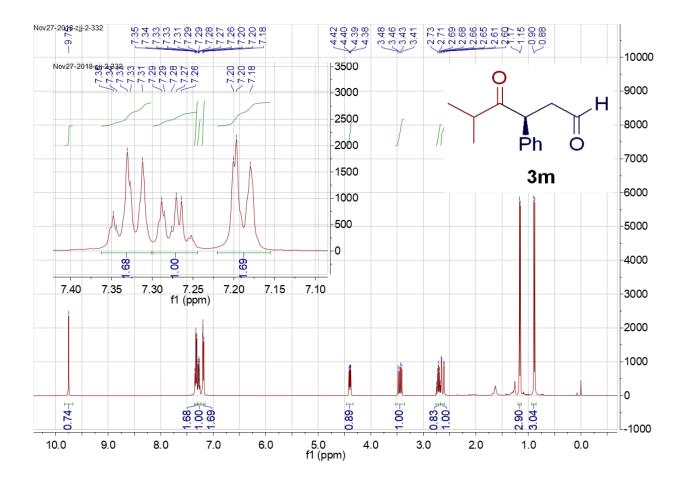


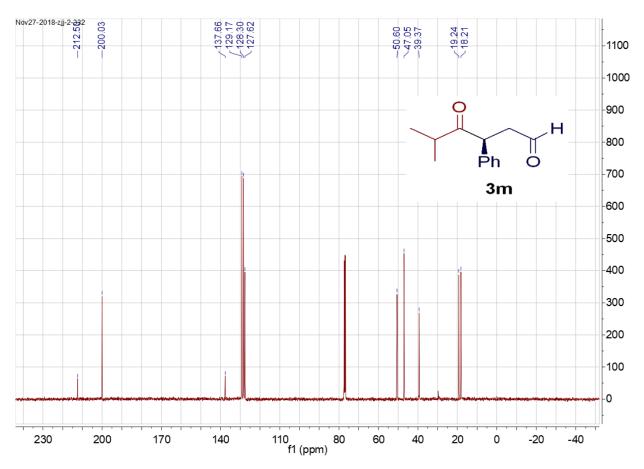


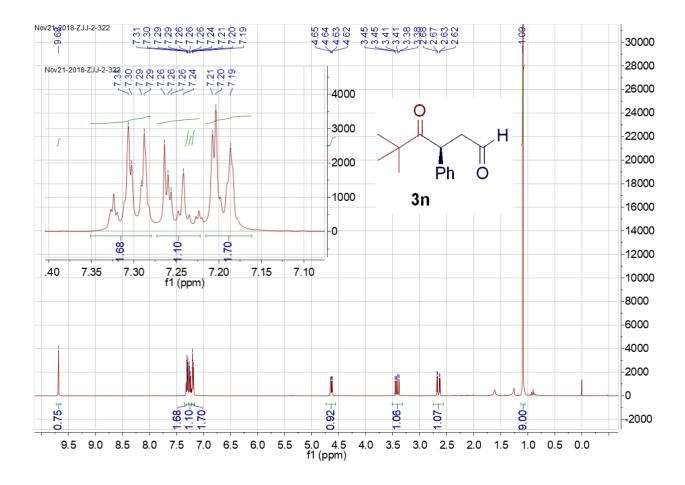


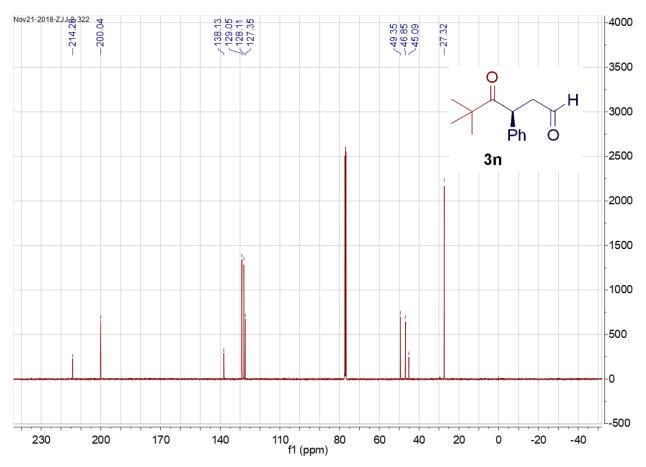


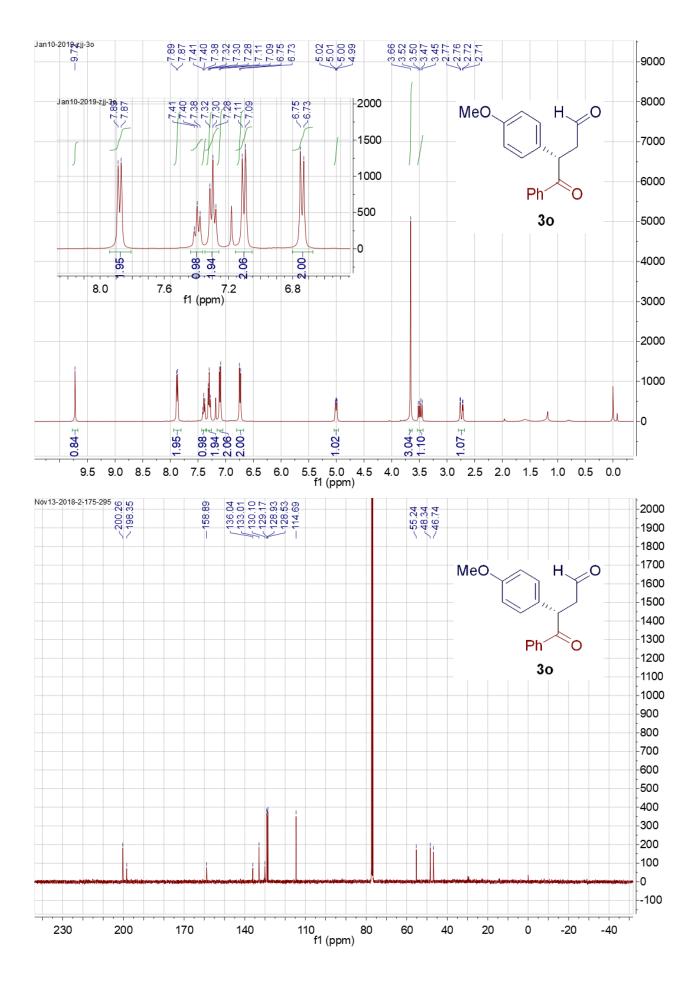


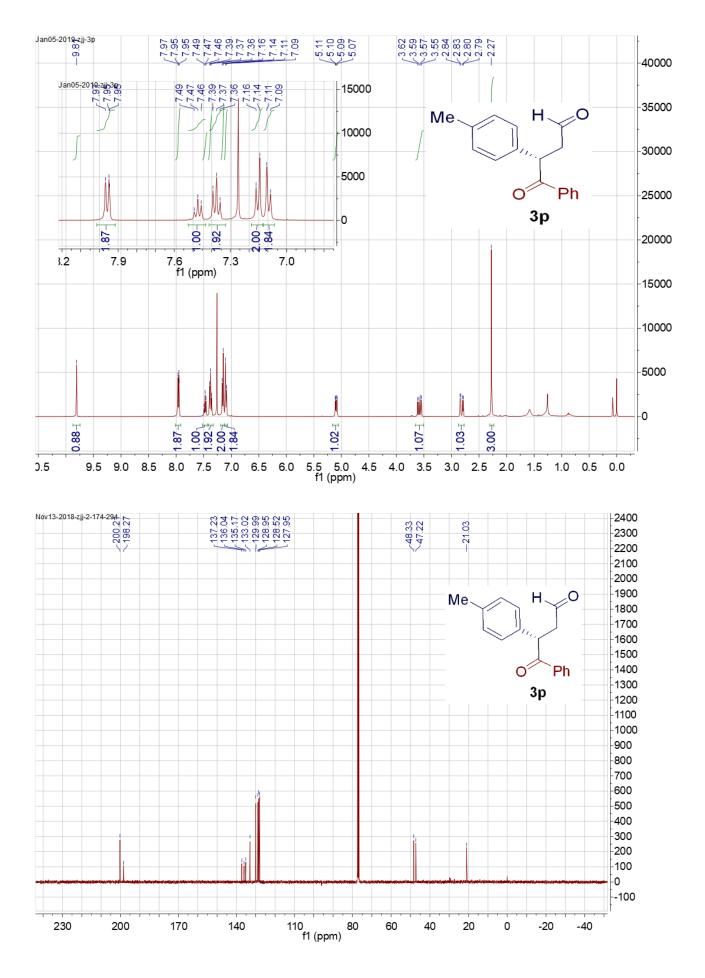


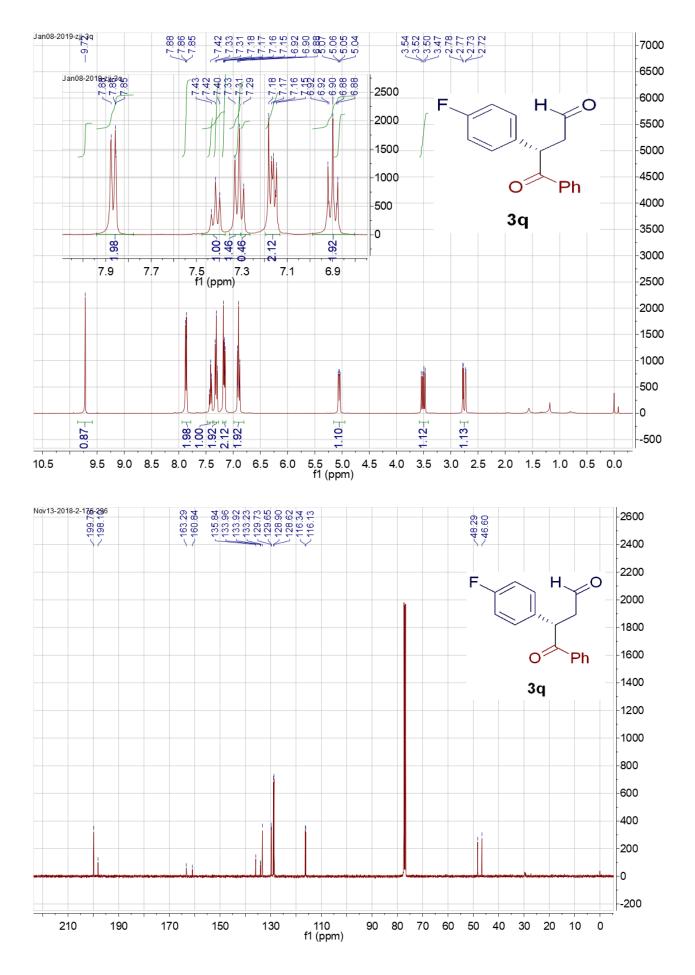


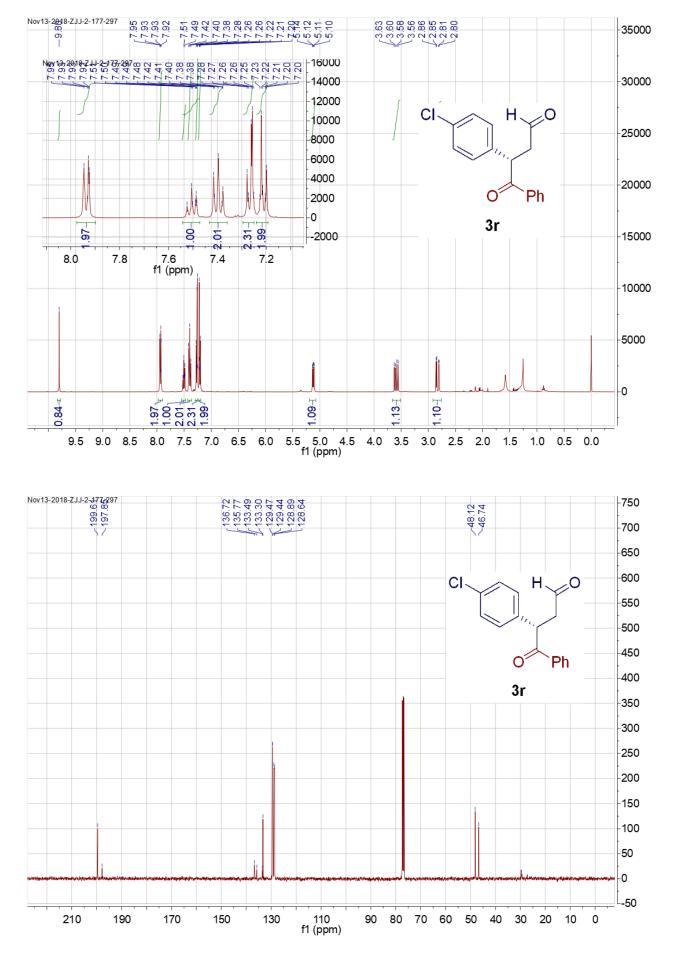


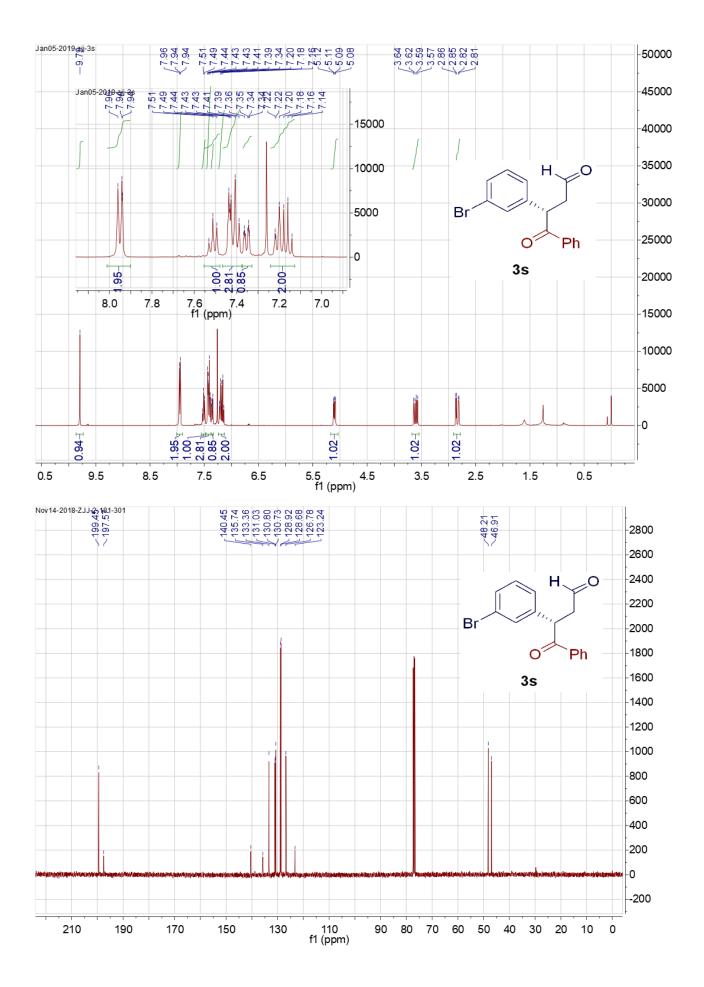


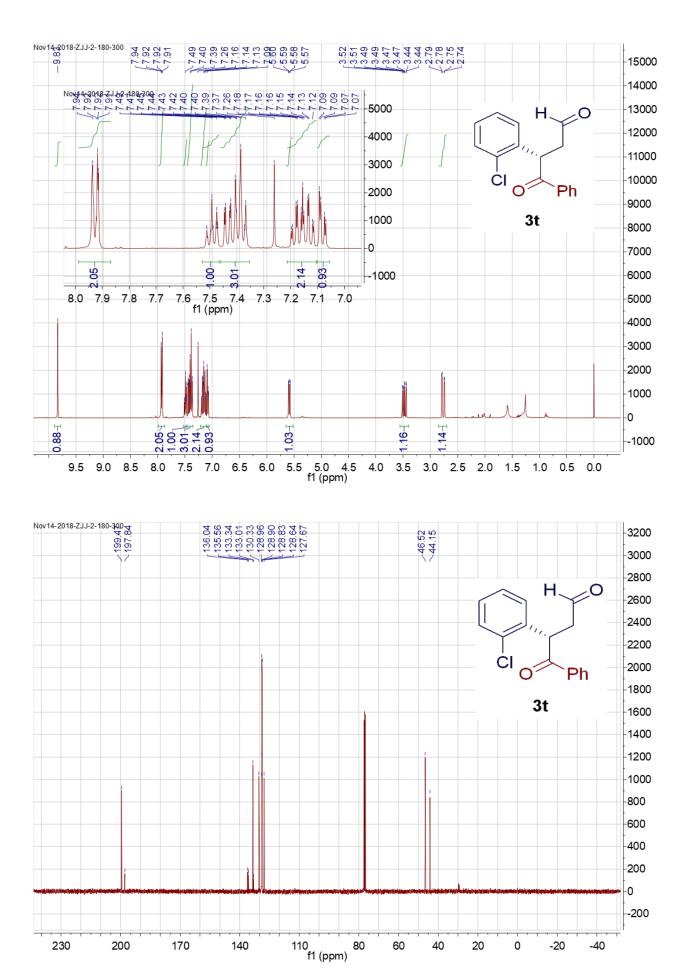


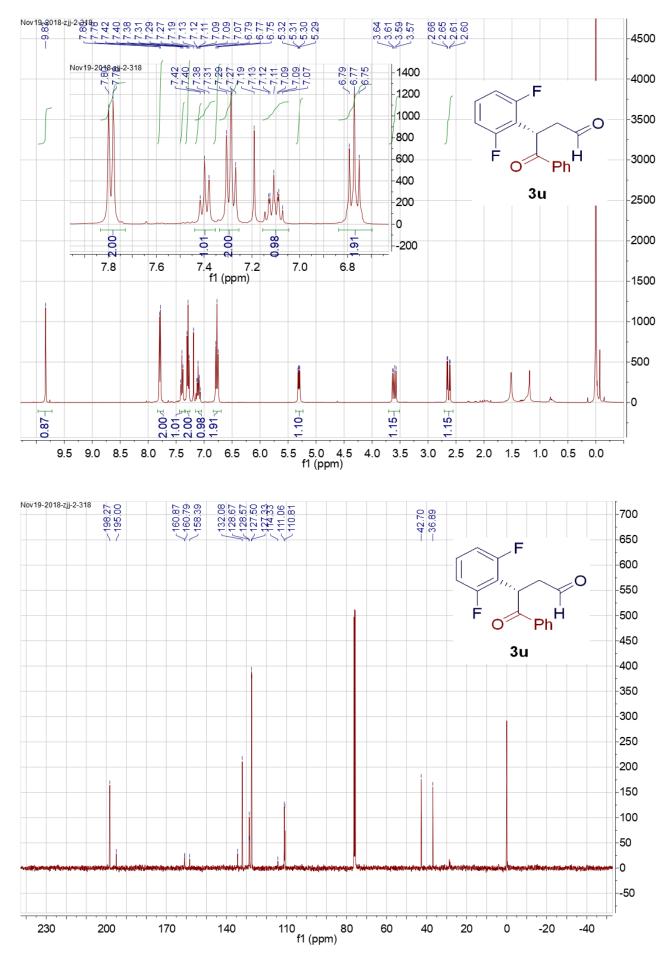


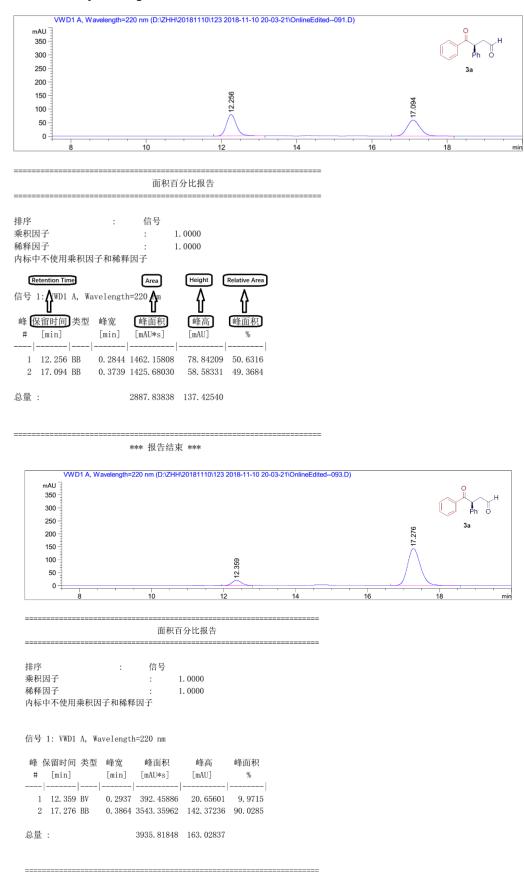


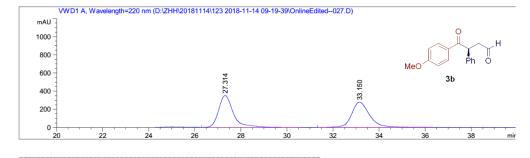










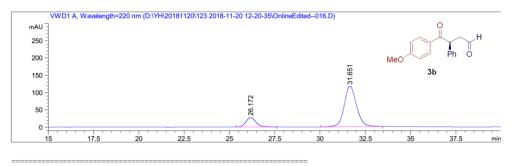


S42

9. Chiral HPLC analyses of products 3

面积百分比报告

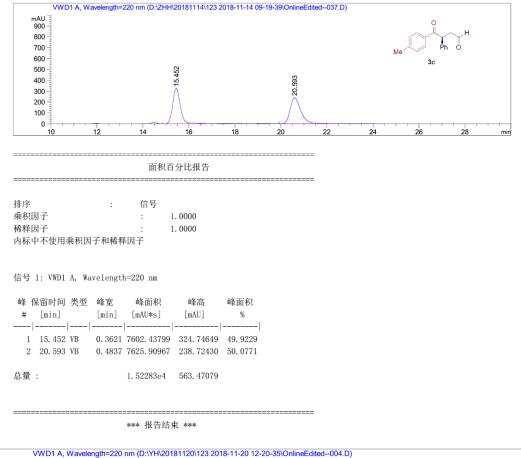
排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积[因子和稀释因	子	

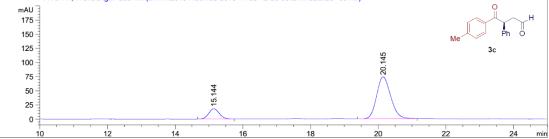

信号 1: VWD1 A, Wavelength=220 nm

峰 化 #	呆留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
		-				
1	27.314	VB	0.6784	1.58108e4	351.77167	51.2376
2	33.150	BB	0.8103	1.50469e4	277.17560	48.7624

总量: 3.08577e4 628.94727

*** 报告结束 ***

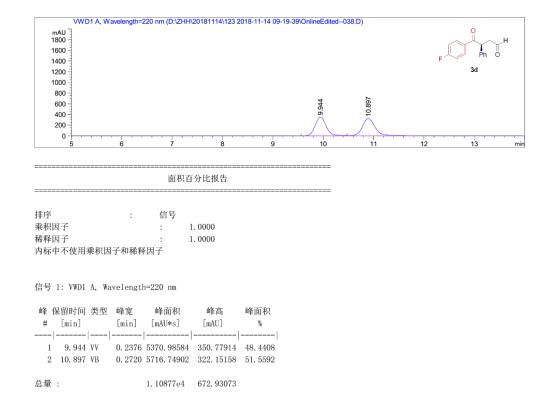

面积百分比报告

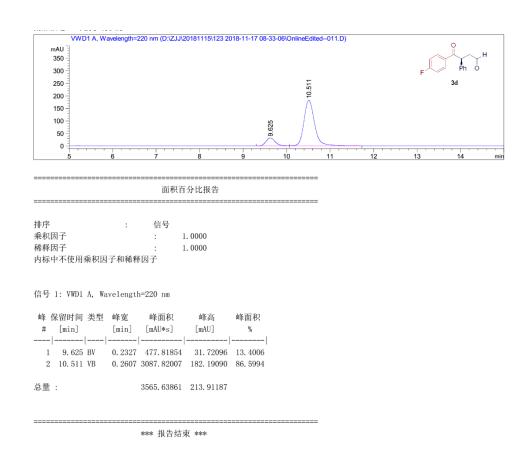

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因子和	稀释因	子	

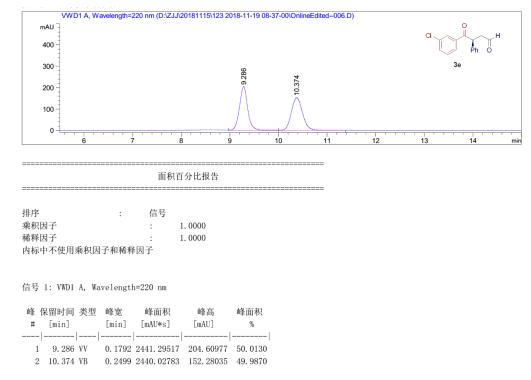
信号 1: VWD1 A, Wavelength=220 nm

峰(#	R留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	26.172	BB	0.5793	1060.62500	27.85097	16.0627
2	31.651	BB	0.7081	5542.40625	117.33327	83.9373

总量: 6603.03125 145.18425

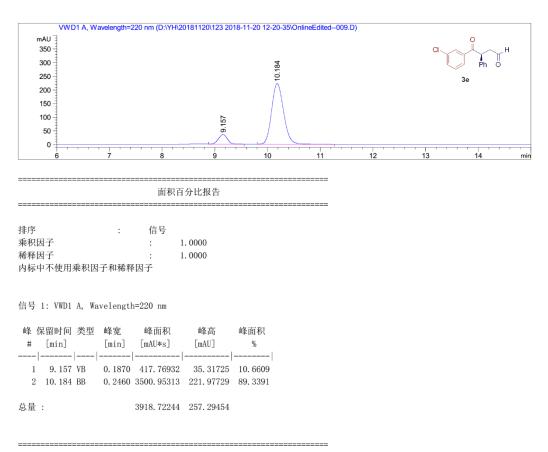


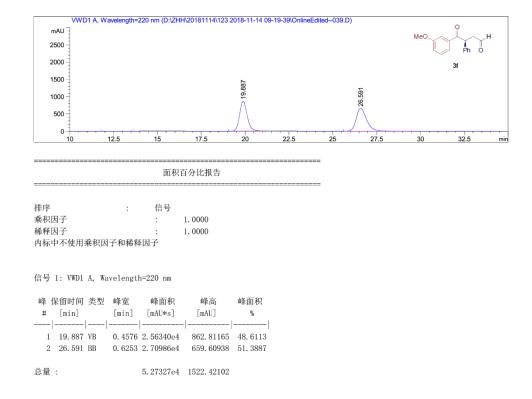

面积百分比报告

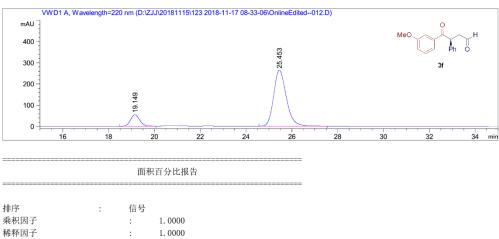

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因	子和稀释	因子	

信号 1: VWD1 A, Wavelength=220 nm

峰 保留E # [mi	寸间 类型 n]	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
			-		
1 15.	144 BB	0.3339	393.45355	18.15154	15.6096
2 20.	145 VB	0.4454	2127.13281	73.98449	84.3904
总量 :			2520. 58636	92. 13603	

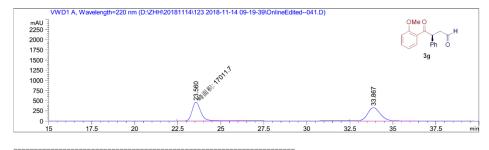






总量 : 4881.32300 356.89012

> *** 报告结束 ***

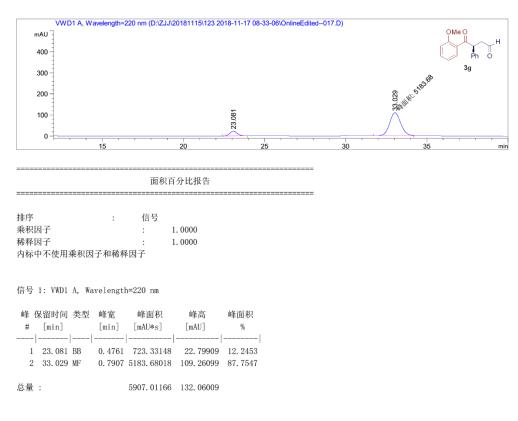


稀释因子 : 1.(内标中不使用乘积因子和稀释因子

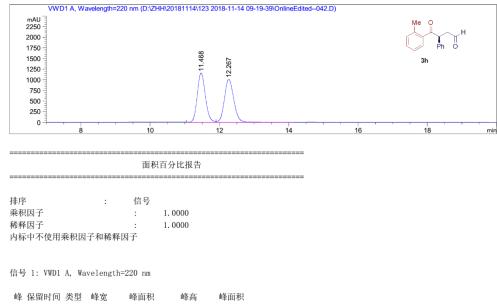
信号 1: VWD1 A, Wavelength=220 nm

峰(#	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	19.149	BB	0.4366	1523. 85132	54.27430	13.1202
2	25.453	BB	0.5813	1.00907e4	263. 78049	86.8798

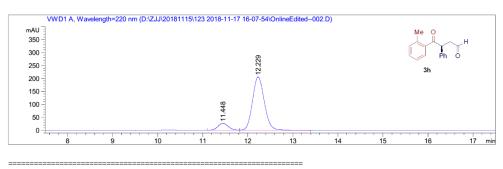
总量: 1.16146e4 318.05479



-	 	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	p	I	Ŧ	ñ	É	í	5	ł	ŀ	Ł	ł	侵	f	÷											


排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因	子和稀释	因子	

信号 1: VWD1 A, Wavelength=220 nm

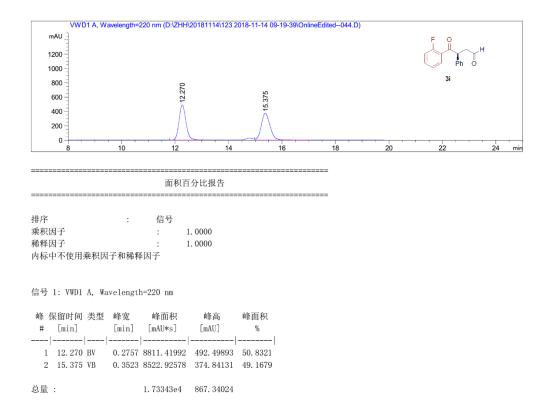

峰(# 	呆留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1 2	23. 560 33. 867			1.70117e4 1.71906e4	459. 82669 328. 75296	49. 7384 50. 2616
总量	:			3. 42023e4	788. 57965	

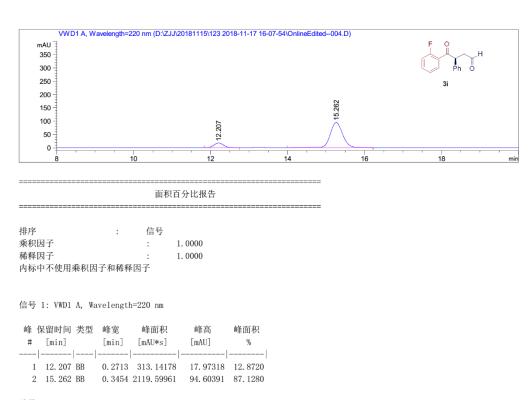
*** 报告结束 ***

#	[min]	[min]	[mAU*s]	[mAU]	%
1	11.468 VV	0.2528	1.88340e4	1157.95447	49.7457
2	12.267 VB	0.2936	1.90265e4	$1010.\ 65546$	50.2543
总量	:		3.78605e4	$2168.\ 60992$	

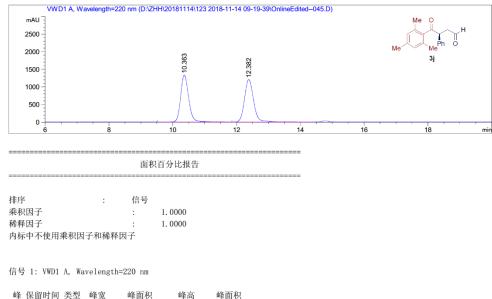
面积百分比报告

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因	子和稀释	因子	

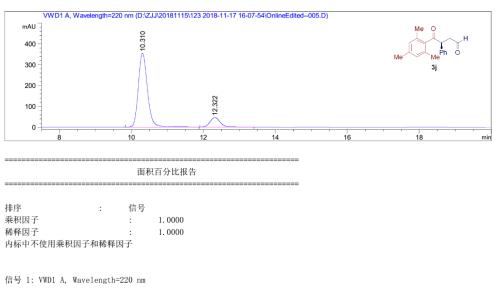

信号 1: VWD1 A, Wavelength=220 nm



峰 保留时间 类型 # [min]	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1 11.448 BV	0.2495	423.63541	26.50046	10.1792
2 12.229 VB	0.2842	3738. 12012	205. 47368	89.8208

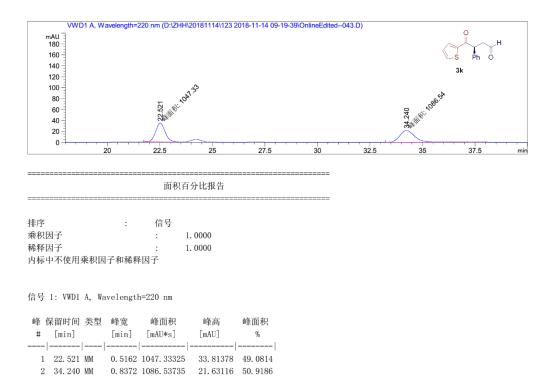

总量: 4161.75552 231.97414

*** 报告结束 ***



总量: 2432.74139 112.57709

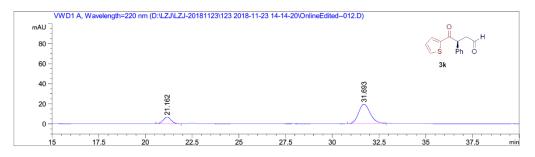
嘩 休田��� 天空	뺙 见	咩田你	平 王 同	咩田你
# [min]	[min]	[mAU*s]	[mAU]	%
1 10.363 VV	0.2685	2.30678e4	1328.99316	49.2711
2 12.382 VB	0.3027	2.37503e4	1206. 53027	50.7289
总量 :		4.68181e4	2535.52344	



峰 保留时间 类型 # [min]	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1 10. 310 BB 2 12. 322 BB		6265. 92188 907. 83307	354. 73795 46. 10472	

总量 : 7173.75494 400.84266

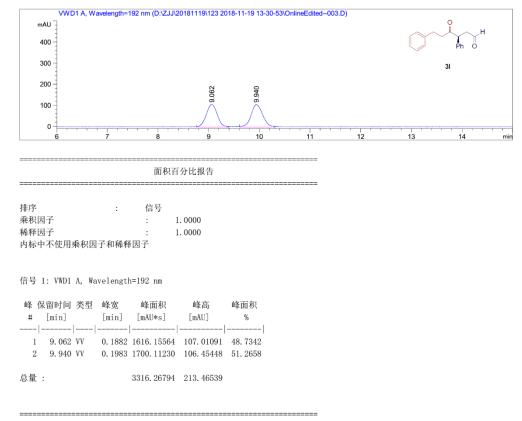
*** 报告结束 ***

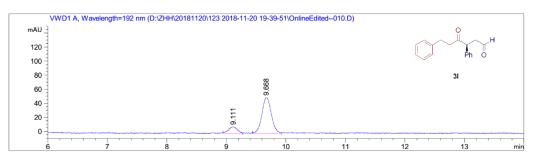


总量	:	2133.87061	55.44494

五角天八山坦 州

面积百分比报告


排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因	子和稀释	因子	

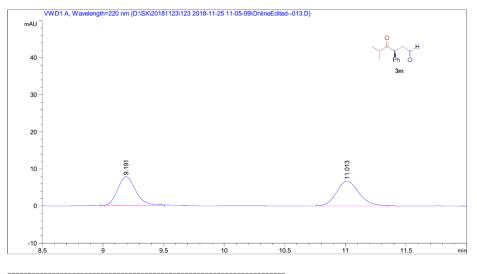

信号 1: VWD1 A, Wavelength=220 nm

峰 保留时间 类型 # [min]	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1 21.162 BB	0.3928	190.36230	6.59403	18.6020
2 31.693 BB	0.6243	832.98029	19.23265	81.3980

总量: 1023.34259 25.82668

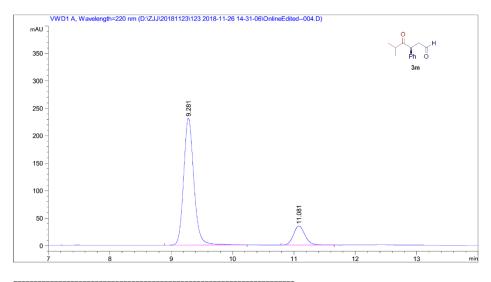
```
**** 报告结束 ***
```


排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因子和	和稀释因	子	


信号 1: VWD1 A, Wavelength=192 nm

峰 倍 #	R留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	9.111	VV	0.1281	103.87579	9.69115	15.3940
2	9.668	VV	0.1370	$570.\ 90344$	51.21814	84.6060
总量	:			674. 77924	60.90929	

*** 报告结束 ***



面积百分比报告

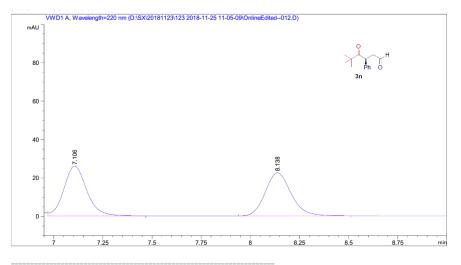
排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标使用乘积因子和稀释	¥因子		

信号 1: VWD1 A, Wavelength=220 nm

	保留时间		峰宽	峰面积 「AUtt]	峰高	峰面积
	[min] 			[mAU*s]	[mAU]	%
1	9.191	BB	0.1603	80.97955	7.78597	48.3766
2	11.013	BB	0.1966	86.41460	6.69563	51.6234

面积百分比报告

 排序
 :
 信号


 乘积因子
 :
 1.0000

 稀释因子
 :
 1.0000

 内标使用乘积因子和稀释因子
 :
 1.0000

信号 1: VWD1 A, Wavelength=220 nm

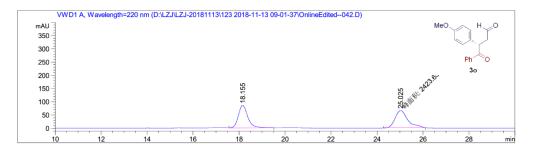
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.281	BB	0.1773	2683.26318	231. 31868	85.5935
2	2 11.081	BB	0.2016	451.62793	34.76586	14.4065

面积百分比报告

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标使用乘积因子和	稀释因子		

信号 1: VWD1 A, Wavelength=220 nm

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.106	VB	0.1237	211.32396	26.04159	50.6822
2	8.138	BB	0.1409	205. 63533	22.44261	49.3178


面积百分比报告

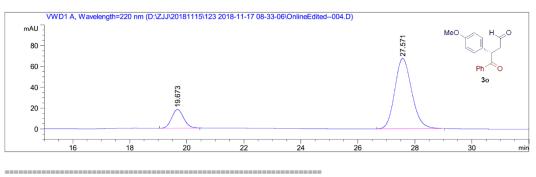
排序 乘积因子 信号 1.0000 稀释因子 1.0000 内标使用乘积因子和稀释因子

信号 1: VWD1 A, Wavelength=220 nm

峰(#	呆留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	7.045	VB	0.1402	2325.55078	252.99445	90.1513
2	8.062	BB	0.1531	254.05759	25.53905	9.8487
总量	:			$2579.\ 60837$	278. 53349	

2579.60837 278.53349

面积百分比报告


排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积团	日子和稀释日	日子	

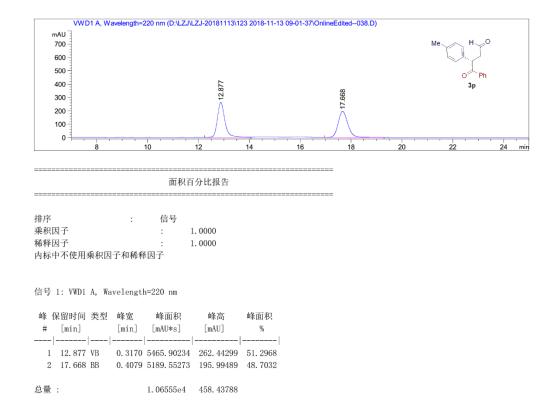
信号 1: VWD1 A, Wavelength=220 nm

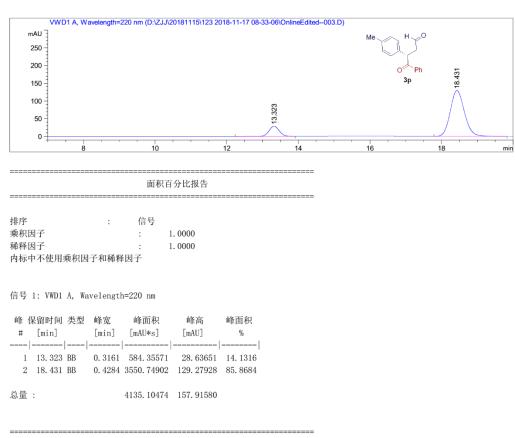
峰 保留时间 类型 # [min]	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1 18.155 VB	0.4287	2394. 78003	84.99420	49.7004
2 25.025 MM	0.6263	$2423.\ 64990$	64.49909	50.2996
总量 :		4818. 42993	149.49329	

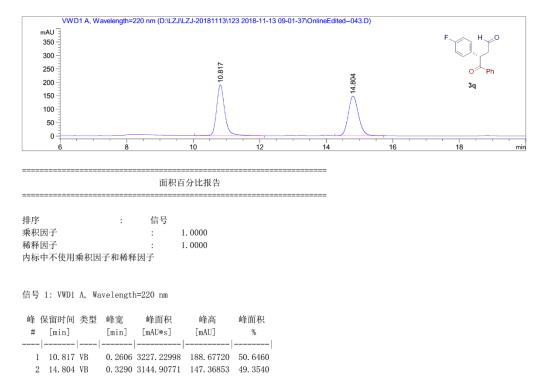
*** 报告结束 ***

------面积百分比报告

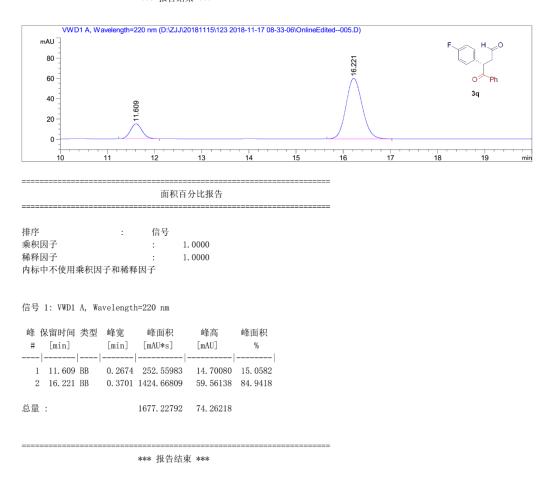
排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因子和	1稀释因	子	

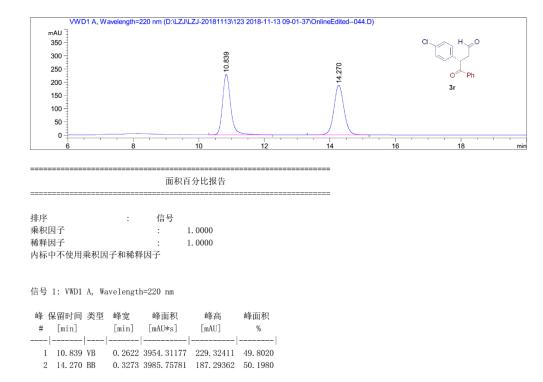

信号 1: VWD1 A, Wavelength=220 nm

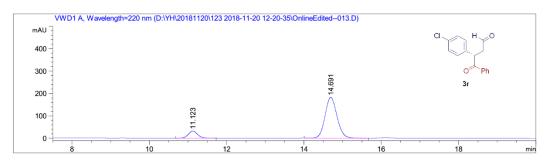



峰(#	呆留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	19.673	BB	0.4463	524. 18146	17.97072	15.7977
2	27.571	BB	0.6404	$2793.\ 90991$	67.56318	84.2023
总量	:			3318. 09137	85. 53390	

*** 报告结束 ***

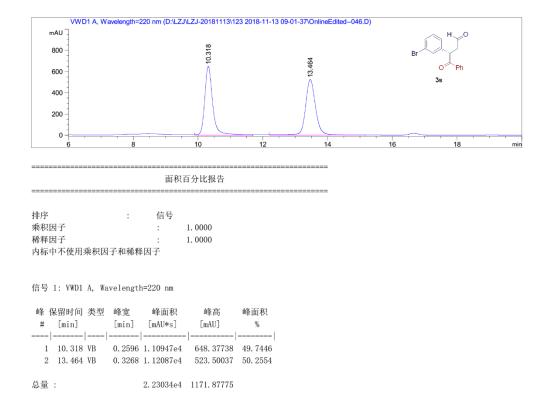




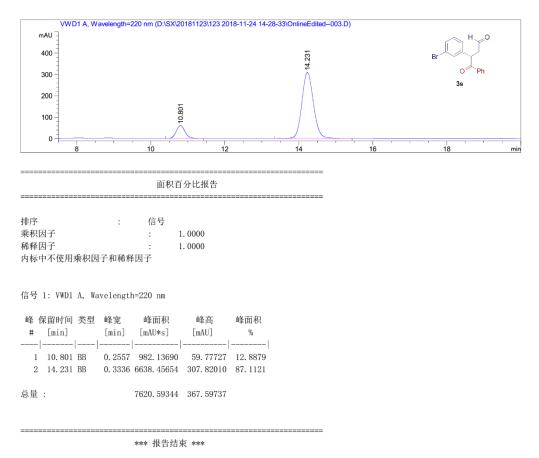

总量 :	6372 13770	336.04573

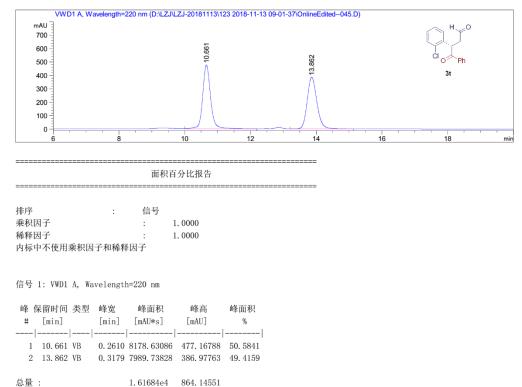
总量 :	7040 00050	416.61774

_____ _____ 面积百分比报告

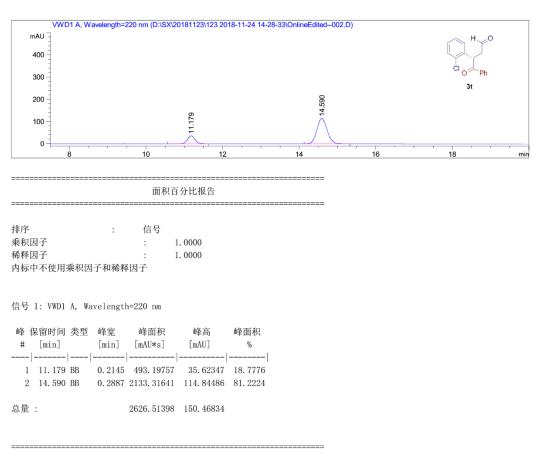

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因	子和稀释	因子	

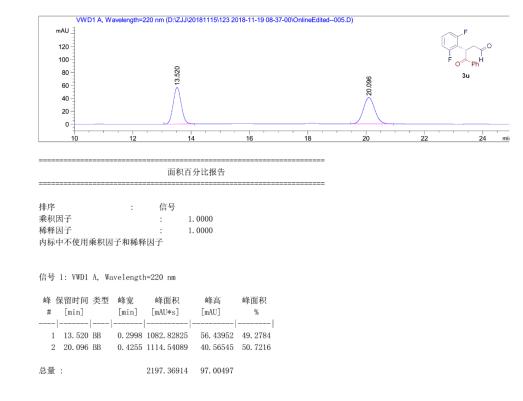
信号 1: VWD1 A, Wavelength=220 nm

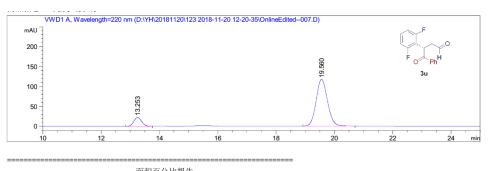

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	11.123	BB	0.2563	521.82898	31. 50201	11.7811
2	14.691	BB	0.3358	3907. 53369	181. 78241	88.2189
总量	:			4429. 36267	213. 28442	


_____ _____

*** 报告结束 ***







总量: 1.61684e4 864	54.14551

面积白分比报告

排序	:	信号	
乘积因子		:	1.0000
稀释因子		:	1.0000
内标中不使用乘积因子和	稀释因	子	

信号 1: VWD1 A, Wavelength=220 nm

峰 #	保留时间 「min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	13.253	BB	0.2952	419. 58060	22.23423	11.7459
2	19.560	BB	0.4209	3152.57861	117.18459	88.2541

总量: 3572.15921 139.41882