Supporting Information

Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti₃C₂T_x (MXene)

Youyou Yuan[†], Haisheng Li[†], Ligang Wang[†], Lei Zhang[†], Dier Shi[†], Yuexian Hong[†] and Junliang Sun[†],*

[†]College of Chemistry and Molecular Engineer, Peking University, Beijing National

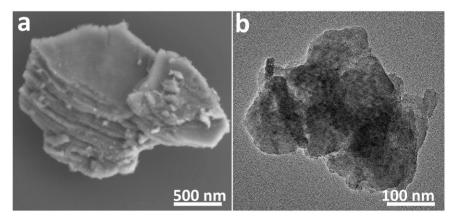
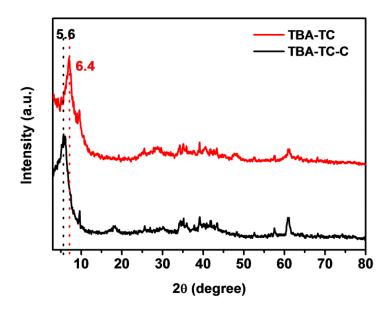
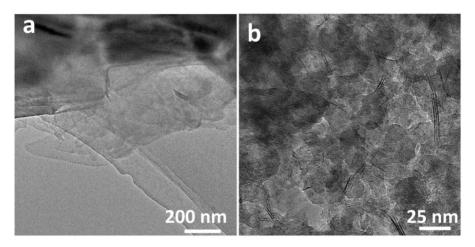
Laboratory for Molecular Sciences(BNLMS), 5 Yiheyuan Road, Beijing, 100871, PR China.

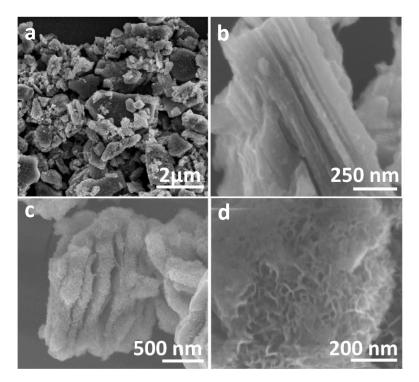
* Corresponding Author, Email: junliang.sun@pku.edu.cn (Junliang Sun)

Table of contents (9 pages)

Figure S1 Morphological characterization of Ti ₃ C ₂ T _x	
Figure S2 XRD patterns of TBA-Ti ₃ C ₂ T _x treated with different TBAOH solution	S2
Figure S3 TEM characterization of D -Ti ₃ C ₂ T _x	S2
Figure S4 Morphological characterization of TBA-Ti ₃ C ₂ T _x	S 3
Figure S5 Morphological characterization of the supports and the catalysts	S3
Figure S6 Optimization results of TBA-Ti ₃ C ₂ T _x -Pt in the reduction with NaBH ₄	S4
Figure S7 XRD patterns of the catalysts obtained by the UV-induced method	S4
Figure S8 XPS results of the catalysts	S5-S6
Figure S9 The Nyquist plots of the catalysts	S6
Figure S10 The cycles of i-t curves for another 60 h	S7
Figure S11 Time optimization results in the synthesis of TBA-Ti ₃ C ₂ T _x	S7
Figure S12 The calibration of 3.5 M Ag/AgCl electrode with respect to RHE	S8
Figure S13 The LSV curve of TBA-Ti ₃ C ₂ T _x -Pt-20 synthesized with short time	S8
Figure S14. HRTEM of TBA-Ti ₃ C ₂ T _x -Pt-20 before and after cycled for 80 h	S8
Figure S15. Polarization curves of the catalysts in alkaline and neutral solutions	S9

Supplementary Figures


Figure S1. Morphological characterization of $Ti_3C_2T_x$. (a) the SEM and (b) TEM characterization of $Ti_3C_2T_x$.

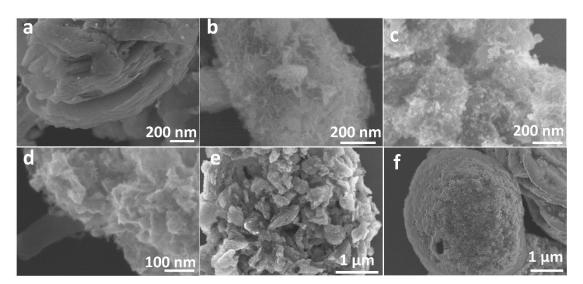

Figure S2. XRD patterns of TBA-Ti₃C₂T_x treated with 25 wt% (black) and 2.5 wt% (red) TBAOH solutions.

Figure S3. TEM characterization of D-Ti₃C₂T_x. (a) TEM image of. (b) HRTEM image of D-Ti₃C₂T_x indicating the layers (2-3 layers).

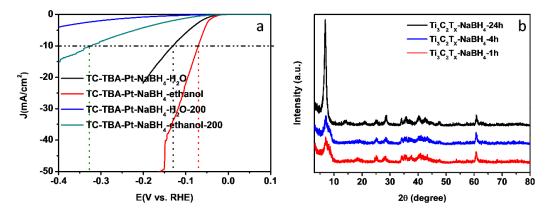


Figure S4. Morphological characterization of TBA-Ti₃C₂T_x obtained in different TBAOH concentration. (a) SEM images of TBA-Ti₃C₂T_x-c. (b) The enlarged image of (a). (c) SEM images of TBA-Ti₃C₂T_x. (d) The enlarged image of (c).

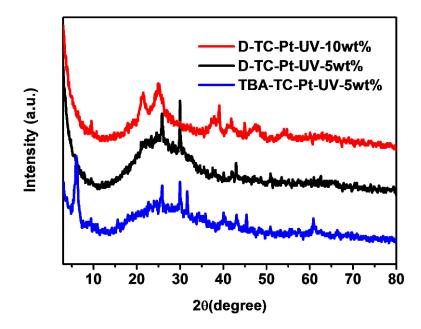
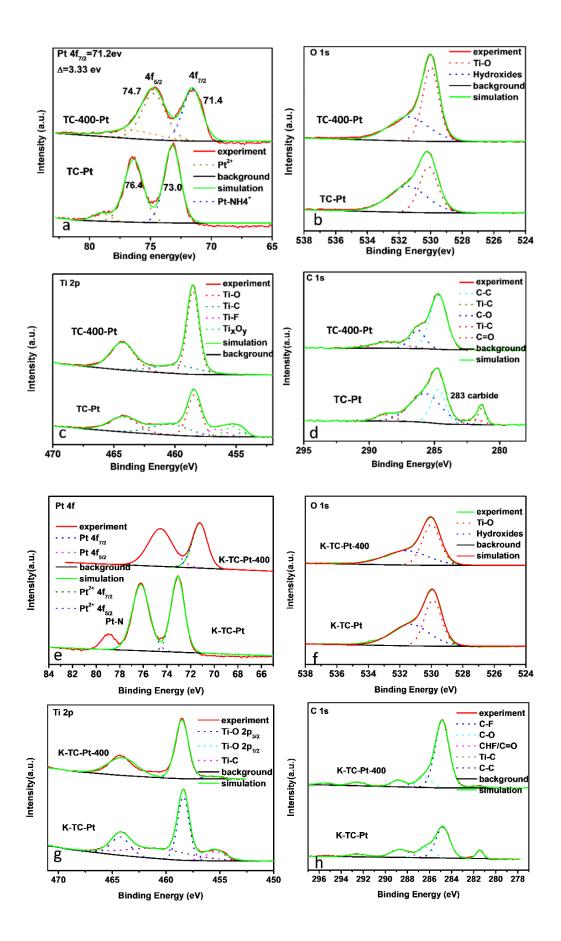


Figure S5. Morphological characterization of the supports and the catalysts. (a) SEM images of K-Ti₃C₂T_x (b) SEM image of TBA-Ti₃C₂T_x. (c) The morphology of TBA-Ti₃C₂T_x-Pt with


the reduction of NaBH₄. (d) The morphology of D-Ti₃C₂T_x-Pt with the reduction of NaBH₄. (e) The morphology of TBA-Ti₃C₂T_x-Pt with the method of UV-induced reduction. (f) The morphology of D- Ti₃C₂T_x-Pt with the method of UV-induced reduction.

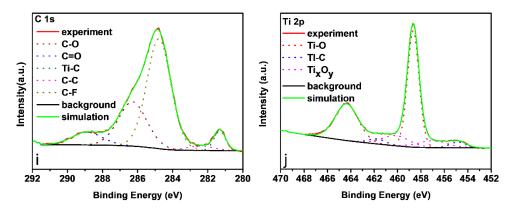


Figure S6. Optimization results of the (a) solvent and (b) reaction time in the reduction process by NaBH₄. The reduction time and solvent are optimized with a perfect time of 4 h in aqueous solution.

Figure S7. XRD patterns of TBA-Ti₃C₂T_x-Pt (blue) and D-Ti₃C₂T_x-Pt (red and black) obtained by the UV-induced method.

Figure S8. XPS results of the catalysts. XPS of the (a) Pt 4f, (b) O 1s, (c) Ti 2p, (d) C 1s spectra of the $Ti_3C_2T_x$ -400-Pt-20 and $Ti_3C_2T_x$ -Pt-20. XPS results of (e) Pt 4f, (f) O 1s, (g) Ti 2p, (h) C 1s of K-Ti_3C_2T_x-Pt-20-400 and K-Ti_3C_2T_x-Pt-20. (I, j) XPS of the C 1s and Ti 2p spectra of TBA-Ti_3C_2T_x-Pt-20.

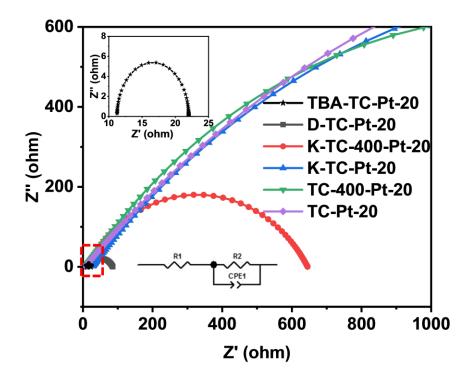
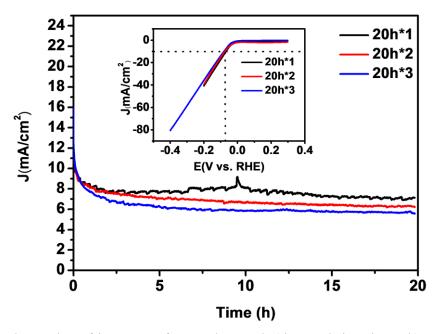



Figure S9. The Nyquist plots of the corresponding samples measured at a voltage of -60 mV (vs. the RHE) over the frequency range from 100 kHz to 0.1Hz with the amplitude of 5 mV in $0.5 \text{ M H}_2\text{SO}_4$.

Figure S10. The cycles of i-t curves for another 60 h (the total time is 80 h) and the inset is the polarization curves after the corresponding i-t test.

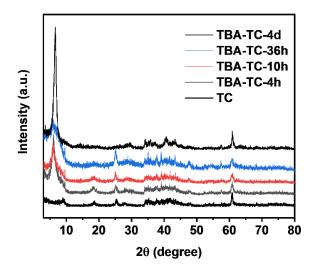


Figure S11. Time optimization results in the synthesis of TBA- $Ti_3C_2T_x$

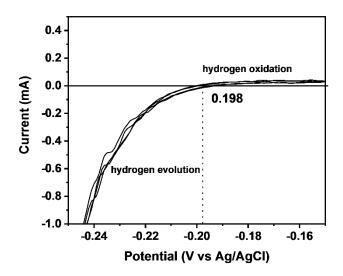


Figure S12. The calibration of 3.5 M Ag/AgCl electrode with respect to reversible hydrogen electrode

Figure S13. The LSV curve of TBA-Ti₃C₂T_x-Pt-20 synthesized with short time (12h)

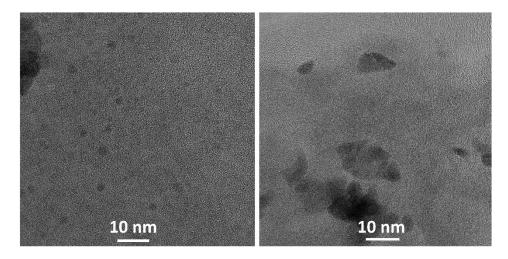
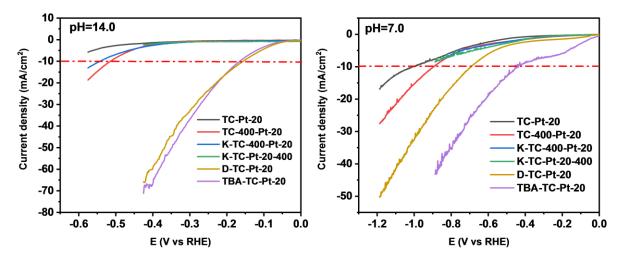



Figure S14. HRTEM of TBA-Ti₃C₂T_x-Pt-20 before (left) and after (right) cycled for 80 h

Figure S15. Polarization curves of Pt deposited on the supports in 1M KOH (left) and 0.1 M PBS solutions (right).

Samples	Pt content (wt%)	Pt NPs size*
TC-400-Pt-20	2.3	
K-TC-400-Pt-20	0.67	
K-TC-Pt-20-400	1.15	
D-TC-Pt-20	0.76	6.4 nm
TBA-TC-Pt-20	1.2	9.4 nm
TBA-TC-Pt-10	1.0	8.4 nm
TBA-TC-Pt-5	0.8	7.3 nm
TBA-TC-Pt-2	0.4	
TBA-TC-Pt-1	0.4	

Table S1. Contents of Pt in the catalysts determined by ICP-OES

* Pt NPs size was calculated by scherrer formula with the XRD data.