Supporting Information

Copper-catalyzed borylative multi-component synthesis of quaternary α -amino esters

Kay Yeung,[†] Fabien J. T. Talbot,[†] Gareth P. Howell,[‡] Alexander P. Pulis,[†] and David J. Procter^{*,†} [†]School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK [‡]Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield,

SK10 2NA, UK

E-mail: david.j.procter@manchester.ac.uk

Table of Contents

General Information	S2
Allene and Ketiminoester Starting Materials	S2
Diastereoselective Copper-Catalyzed Coupling of Allenes, Ketiminoesters and B2pin2	S 8
Further Optimization Studies	S 9
Characterization Data (3a-3y)	S11
Use of Cyclic Ketimines (3z)	S32
Use of 1,1-Disubstituted Allene (3aa, 3aa')	S33
Derivatizations of 3a	S 36
¹ H and ¹³ C NMR Spectra	S40
X-ray Crystal Structures	S78
References	S92

General Information

All experiments were performed under an atmosphere of nitrogen, using anhydrous solvents, unless stated otherwise. THF was distilled from sodium / benzophenone. ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded using 400 and 500 MHz spectrometers, with chemical shift values being reported in ppm relative to residual chloroform ($\delta_{H} = 7.27$ or $\delta_{C} = 77.0$) as internal standards. All coupling constants (J) are reported in Hertz (Hz). Mass spectra were obtained using positive and negative electrospray (ES±), atmospheric-pressure chemical ionization (APCI) or gas chromatography (GC) methodology. Infra-red spectra were recorded as evaporated films or neat using a FT/IR spectrometer. Column chromatography was carried out using 40 – 63 µm, 60 Å silica gel. Routine TLC analysis was carried out on aluminium sheets coated with silica gel 60 F254, 0.2 mm thickness and plates were viewed using a 254 mm ultraviolet lamp and dipped in aqueous potassium permanganate or *p*-anisaldehyde. Melting points were measured on a melting point apparatus and are uncorrected.

Allene and Ketiminoester Starting Materials

Ketiminoesters were accessed from their corresponding ketoesters.

Scheme 1 : Synthesis of ketiminoesters

The following ketoesters were either purchased directly from commercial suppliers or prepared according to literature procedures.

Ethyl 2-oxo-2-phenylacetate (**S1**) (Aldrich), ethyl 2-oxo-2-(4-(trifluoromethyl)phenyl)acetate (**S2**)^{1,2}, ethyl 2-(4-bromophenyl)-2-oxoacetate (**S3**)³, ethyl 2-(4-methoxyphenyl)-2-oxoacetate (**S5**)⁴, ethyl 2-oxo-2-(p-tolyl)acetate (**S6**)⁴, ethyl 2-(naphthalen-2-yl)-2-oxoacetate (**S7**)⁴, ethyl 2-oxo-2-(thiophen-2-yl)acetate (**S8**)⁴, ethyl 3,3,3-trifluoro-2-oxopropanoate (**S9**) (Aldrich), benzyl 2-oxo-2-phenylacetate (**S10**)⁵, methyl 2-oxo-2-phenylacetate (**S11**) (Aldrich).

Ethyl 2-(4-(methylthio)phenyl)-2-oxoacetate (S4)

1,2-Dibromoethane (9 μL, 0.1 mmol, 1 mol%) and 4-bromophenyl methyl sulfide (2.03 g, 10.0 mmol, 1.0 equiv) were added to a suspension of magnesium turnings (255 mg, 10.5 mmol, 1.05 equiv) in THF (10 mL). The resulting mixture was heated at reflux for 1.5 hours then allowed to cool to room temperature. The remaining solid, if any, was allowed to settle down before the solution was titrated and used in further reaction.

To a solution of diethyl oxalate (1.09 mL, 8.00 mmol, 1.0 equiv) in anhydrous diethyl ether (12 mL) at -78 °C under N₂, was added dropwise the Grignard reagent solution (9.09 mL of a 0.88 M THF solution, 8.00 mmol, 1.0 equiv) over 1 hour. Once the addition was complete, the reaction mixture was stirred at -78 °C for 1 hour, then placed in an ice bath for 0.5 hour, followed by quenching with saturated aqueous NH₄Cl solution (15 mL) at 0 °C. The organic material was extracted with diethyl ether (3 x 20 mL). The organic layers were combined and washed with brine (20 mL). The resulting organic mixture was dried over MgSO₄, filtered and concentrated *in vacuo* before being purified by column chromatography (0 – 10% EtOAc in hexane) to afford the title product as a yellow oil (1.47 g, 6.54 mmol, 82%).

MS (ES⁺) m/z: 247 ([M+Na]⁺). HRMS calcd for C₁₁H₁₂O₃SK: 263.0139. Found: 263.0131; v_{max} (thin film/cm⁻¹): 2981, 2923, 1731, 1672, 1584, 1206, 1175, 1093, 1018, 1009; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.42 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 2.53 (s, 3 H, SCH₃), 4.44 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃), 7.29 (d, J = 8.7 Hz, 2 H, ArCH), 7.92 (d, J = 8.7 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.3 (CO₂CH₂CH₃), 14.7 (SCH₃), 62.4 (CO₂CH₂CH₃), 125.1 (ArCH), 128.8 (ArC), 130.5 (ArCH), 149.1 (ArC), 164.0 (CO₂CH₂CH₃), 185.4 (CCO₂CH₂CH₃).

The following imines were prepared according to literature procedures.

Ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2-phenylacetate (**1a**)⁶, ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2- $(1b)^7$, (4-(trifluoromethyl)phenyl)acetate ethyl (Z)-2-(4-bromophenyl)-2-((4- $(1c)^7$, methoxyphenyl)imino)acetate ethyl (Z)-2-(4-methoxyphenyl)-2-((4methoxyphenyl)imino)acetate $(1e)^6$, ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(p-tolyl)acetate $(1f)^6$, (*Z*)-2-((4-methoxyphenyl)imino)-2-phenylacetate $(1n)^{8}$, benzyl methyl (Z)-2-((4methoxyphenyl)imino)-2-phenylacetate $(10)^8$, 3-phenyl-2*H*-benzo[*b*][1,4]oxazin-2-one $(1p)^9$.

General Procedure A: Synthesis of Ketiminoesters

Ketoester (1.0 equiv), *p*-TSA monohydrate (0.05 equiv), and amine (1.05 equiv) were added to flame dried activated 4 Å molecular sieves in anhydrous benzene (0.67 M) under N₂. The mixture was stirred and heated at 100 °C in a sealed vial for 16 hours. The resulting mixture was allowed to cool to room temperature and was filtered, washed with CH_2Cl_2 , and concentrated in vacuo, before being purified by column chromatography.

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(4-(methylthio)phenyl)acetate (1d)

Prepared according to General Procedure A on a 2.00 mmol scale. Column chromatography (0 – 15% EtOAc in hexane) afforded the title compound as a yellow solid (634 mg, 1.92 mmol, 96%).

M.p.: 105-107 °C (CHCl₃); MS (ES⁺) *m/z*: 352 ([M+Na]⁺). HRMS calcd for C₁₈H₁₉NO₃S: 329.1080. Found: 329.1076; v_{max} (thin film/cm⁻¹): 3066, 2997, 2969, 2930, 2837, 1731, 1225, 1186, 1179, 1165, 1090, 1019, 1010; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.07 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 2.52 (s, 3 H, SCH₃), 3.80 (s, 3 H, OCH₃), 4.17 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 6.86 (d, *J* = 8.9 Hz, 2 H, ArCH), 6.95 (d, *J* = 8.9 Hz, 2 H, ArCH), 7.28 (d, *J* = 8.7 Hz, 2 H, ArCH), 7.77 (d, *J* = 8.5 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 15.2 (SCH₃), 55.6 (OCH₃), 61.5 (CO₂CH₂CH₃), 114.2 (ArCH), 121.4 (ArCH), 125.7 (ArCH), 128.3 (ArCH), 130.7 (ArC), 143.5 (ArC), 143.8 (ArC), 157.4 (ArC), 159.1 (C=N), 165.6 (C=O).

1d was further characterized by X-ray crystallographic analysis.

Prepared according to General Procedure A on a 2.00 mmol scale. Column chromatography (20% EtOAc in hexane) afforded the title compound as a yellow solid (601 mg, 1.80 mmol, 90%).

M.p.: 55-57 °C (CHCl₃); MS (ES⁺) *m/z*: 356 ([M+Na]⁺). HRMS calcd for $C_{21}H_{20}NO_3$: 334.1438. Found: 334.1432; v_{max} (thin film/cm⁻¹): 3062, 2988, 2958, 2833, 1731, 1607, 1237, 1217, 1182, 1022; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.11 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 3.82 (s, 3 H, OCH₃), 4.24 (q, *J* = 7.2 Hz, 2 H, CO₂CH₂CH₃), 6.90 (d, *J* = 8.8 Hz, 2 H, ArCH), 7.01 (d, *J* = 8.8 Hz, 2 H, ArCH), 7.50 – 7.60 (m, 2 H, ArCH), 7.85 – 7.94 (m, 3 H, ArCH), 8.13 (dd, *J* = 8.7, 1.8 Hz, 1 H, ArCH), 8.19 (s, 1 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.1 (CO₂CH₂CH₃), 55.6 (OCH₃), 61.7 (CO₂CH₂CH₃), 114.3 (ArCH), 121.4 (ArCH), 123.9 (ArCH), 126.8 (ArCH), 127.9 (ArCH), 128.0 (ArCH), 128.7 (ArCH), 129.2 (ArCH), 129.5 (ArCH), 131.7 (ArC), 133.0 (ArC), 135.0 (ArC), 143.5 (ArC), 157.5 (ArC), 159.8 (C=N), 165.8 (C=O).

1g was further characterized by X-ray crystallographic analysis.

Prepared according to General Procedure A on a 1.50 mmol scale. Column chromatography (8% EtOAc in hexane) afforded the title compound as a yellow solid (311 mg, 1.08 mmol, 72%).

M.p.: 49-50 °C (CHCl₃); MS (ES⁺) *m/z*: 312 ([M+Na]⁺). HRMS calcd for C₁₅H₁₆NO₃S: 290.0845. Found: 290.0835; v_{max} (thin film/cm⁻¹): 3074, 2981, 2904, 2835, 1727, 1606, 1499, 1424, 1289, 1242, 1188, 1031, 1014; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.08 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 3.79 (s, 3 H, OCH₃), 4.18 (q, *J* = 7.2 Hz, 2 H, CO₂CH₂CH₃), 6.86 (d, *J* = 8.9 Hz, 2 H, ArCH), 6.95 (d, *J* = 8.9 Hz, 2 H, ArCH), 7.09 (dd, *J* = 5.1, 3.8 Hz, 1 H, ArCH), 7.41 (dd, *J* = 3.8, 1.1 Hz, 1 H, ArCH), 7.51 (dd, *J* = 5.0, 1.1 Hz, 1 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 55.5 (OCH₃), 61.8 (CO₂CH₂CH₃), 114.2 (ArCH), 121.6 (ArCH), 127.9 (ArCH), 131.1 (2 x ArCH), 141.1 (ArC), 142.8 (ArC), 153.6 (C=N), 157.5 (ArC), 164.5 (C=O).

1h was further characterized by X-ray crystallographic analysis.

Ethyl (E)-3,3,3-trifluoro-2-((4-methoxyphenyl)imino)propanoate (1i)

Prepared according to General Procedure A on a 2.50 mmol scale. Column chromatography (10% EtOAc in hexane) afforded the title compound as a yellow oil (62.3 mg, 0.226 mmol, 9%).

MS (ES⁺) m/z: 298 ([M+Na]⁺). HRMS calcd for C₁₂H₁₃NO₃F₃: 276.0842. Found: 276.0840; v_{max} (thin film/cm⁻¹): 2987, 2840, 2362, 1739, 1600, 1504, 1248, 1162, 1033; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.18 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 3.82 (s, 3 H, OCH₃), 4.25 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃), 6.89 (d, J = 9.0 Hz, 2 H, ArCH), 7.01 (d, J = 9.0 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 55.6 (OCH₃), 62.9 (CO₂CH₂CH₃), 114.5 (ArCH), 118.6 (q, J = 278.5 Hz, CF₃), 122.4 (ArCH), 139.2 (ArC), 146.9 (q, J = 36.7 Hz, C=N), 159.6 (ArC), 160.5 (C=O); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm - 69.5.

Ethyl (Z)-2-((4-bromophenyl)imino)-2-phenylacetate (1j)

Prepared according to General Procedure A on a 2.00 mmol scale. Column chromatography (3% EtOAc in hexane) afforded the title compound as a yellow oil (449 mg, 1.35 mmol, 68%).

MS (ES⁺) m/z: 354 ([M+Na]⁺). HRMS calcd for C₁₆H₁₅NO₂Br: 332.0281. Found: 332.0272; v_{max} (thin film/cm⁻¹): 3062, 2980, 2935, 1728, 1623, 1476, 1224, 1187, 1069, 1008; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.06 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 4.17 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃), 6.84 – 6.90 (m, 2 H, ArCH), 7.42 – 7.56 (m, 5 H, ArCH), 7.87 – 7.93 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 61.6 (CO₂CH₂CH₃), 118.0 (ArC), 121.5 (ArCH), 128.1 (ArCH), 128.8 (ArCH), 131.8 (ArCH), 132.1 (ArCH), 133.6 (ArC), 149.2 (ArC), 160.8 (C=N), 164.6 (C=O).

Ethyl (Z)-2-((4-fluorophenyl)imino)-2-phenylacetate (1k)

Prepared according to General Procedure A on a 2.00 mmol scale. Column chromatography (5% EtOAc in hexane) afforded the title compound as a yellow oil (297 mg, 1.09 mmol, 55%).

MS (ES⁺) m/z: 294 ([M+Na]⁺). HRMS calcd for C₁₆H₁₅NO₂F: 272.1081 Found: 272.1071; v_{max} (thin film/cm⁻¹): 3066, 2982, 2937, 1728, 1628, 1500, 1448, 1305, 1228, 1177, 1093, 1017; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.06 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 4.16 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃), 6.91 – 6.98 (m, 2 H, ArCH), 6.98 – 7.07 (m, 2 H, ArCH), 7.43 – 7.57 (m, 3 H, ArCH), 7.84 – 7.92 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 61.7 (CO₂CH₂CH₃), 115.7 (d, J = 22.5 Hz, ArCH), 121.4 (d, J = 8.3 Hz, ArCH), 128.1 (ArCH), 128.9 (ArCH), 132.0 (ArCH), 133.8 (ArC), 146.3 (d, J = 2.8 Hz, ArC), 160.4 (d, J = 243.4 Hz, ArC), 160.9 (d, J = 1.2 Hz, C=N), 165.0 (C=O); ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -118.7 (dddd, J = 13.5, 8.4, 5.0, 1.7 Hz).

Ethyl (Z)-2-((4-morpholinophenyl)imino)-2-phenylacetate (11)

Prepared according to General Procedure A on a 2.00 mmol scale. Column chromatography (30% EtOAc in hexane) afforded the title compound as a yellow solid (158 mg, 0.467 mmol, 23%).

M.p.: 125-127 °C (CHCl₃); MS (ES⁺) *m/z*: 361 ([M+Na]⁺). HRMS calcd for C₂₀H₂₃N₂O₃: 339.1703. Found: 339.1697; v_{max} (thin film/cm⁻¹): 2962, 2854, 2821, 1726, 1613, 1506, 1448, 1227, 1120, 1017; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.09 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 3.11 – 3.16 (m, 4 H, NCH₂), 3.83 – 3.89 (m, 4 H, OCH₂), 4.19 (q, *J* = 7.1 Hz, 2 H, CO₂CH₂CH₃), 6.88 (d, *J* = 8.9 Hz, 2 H, ArCH), 6.97 (d, *J* = 8.9 Hz, 2 H, ArCH), 7.41 – 7.54 (m, 3 H, ArCH), 7.82 – 7.92 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 49.7 (NCH₂), 61.5 (CO₂CH₂CH₃), 67.0 (OCH₂), 116.1 (ArCH), 121.3 (ArCH), 127.9 (ArCH), 128.8 (ArCH), 131.5 (ArCH), 134.4 (ArC), 142.8 (ArC), 149.2 (ArC), 159.1 (C=N), 165.8 (C=O).

Ethyl (Z)-2-(benzylimino)-2-phenylacetate (1m)

Prepared according to General Procedure A on a 5.00 mmol scale. Column chromatography (0 - 10% Et_2O in hexane + 1% NEt₃) afforded the title compound as a yellow liquid (600 mg, 2.25 mmol, 44%).

MS (ES⁺) m/z: 290 (M+Na⁺). HRMS calcd for C₁₇H₁₈NO₂: 268.1332. Found: 268.1323; v_{max} (thin film/cm⁻¹): 3062, 3029, 2981, 1730, 1688, 1641, 1597, 1580, 1495, 1450, 1368, 1294, 1198, 1177, 1095, 1040, 1026, 1015; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.42 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 4.49 (q, J = 7.0 Hz, 2 H, CO₂CH₂CH₃), 4.78 (s, 2 H, CH₂Ph), 7.28 - 7.32 (m, 1 H, ArCH), 7.36 (m, 2 H, ArCH), 7.39 - 7.45 (m, 5 H, ArCH), 7.79 - 7.82 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.3 (CO₂CH₂CH₃), 58.4 (CH₂Ph), 61.5 (CO₂CH₂CH₃), 127.0 (ArCH), 127.3 (ArCH), 127.9 (ArCH), 128.4 (ArCH), 128.5 (ArCH), 131.0 (ArCH), 134.2 (ArC), 138.8 (ArC), 160.6 (C=N), 165.5 (C=O).

Allenes were either purchased directly from commercial suppliers or prepared according to literature procedures.

Propa-1,2-dien-1-ylcyclohexane (2a) (Aldrich), undeca-1,2-diene (2b)¹⁰, penta-3,4-dien-1-ylbenzene (2c)¹¹, buta-2,3-dien-1-ylcyclohexane (2d)¹², *tert*-butyl(hepta-5,6-dien-1-yloxy)dimethylsilane (2e)^{13,14}, 7-bromohepta-1,2-diene (2f)¹⁵, propa-1,2-dien-1-ylbenzene (2g)¹¹, 1-methyl-3-(propa-1,2-dien-1-ylbenzene (2h)¹¹, 1-fluoro-3-(propa-1,2-dien-1-yl)benzene (2i)¹⁶, *N*,*N*-diethyl-3-(propa-1,2-dien-1-yl)benzene (2i)¹⁶, *N*,*N*-diethyl-3-(propa-1,2-dien-1-yl)benzene (2i)¹⁶, 1-chloro-4-(propa-1,2-dien-1-yl)benzene (2k)¹¹, 3-methylbuta-1,2-diene (2l) (Aldrich).

Diastereoselective Copper-Catalysed Coupling of Allenes, Ketiminoesters and B₂pin₂

General Procedure B: Diastereoselective Copper-Catalysed Coupling of Allenes, Ketiminoesters and B₂pin₂

To a solution of IPrCuCl (5 mol%) in anhydrous THF (0.05 M) at room temperature under N_2 , was added ^tBuOK (1.0 equiv from a 1 M THF solution), and the reaction was stirred for 20 minutes at room temperature. B_2pin_2 (1.3 equiv) in anhydrous THF (0.325 M) was then added and the resulting mixture stirred for 30 minutes. A solution of propa-1,2-dien-1-ylcyclohexane (1.5 equiv) in anhydrous THF (0.625 M) and a solution of ketimine (1.0 equiv) in anhydrous THF (0.42 M) were then added dropwise simultaneously at room temperature. The reaction was stirred at room temperature for 16 hours then filtered through a silica plug, concentrated *in vacuo* and the crude product mixture was purified by silica chromatography to afford the product.

Further Optimization Studies

Entry	Ligand	Buried volume (%) ¹⁷	NMR yield (%)	dr
1	L1	26.3	72	72:28
2	L2	27.5	55	62:38
3	L3	36.5	77	45:55
4	L4	39.6	21	84:16
5	L5	39.8	3	82:18
6	L6	47.0	0	-
Entry	Ligand	Cone/Bite angle (°) ^{18,19}	NMR yield (%)	dr
7	L7	145	24	63:37
8	L8	170	42	63:37
9	L9	85	36	60:40
10	L10	92	21	70:30

Table S1: Additional Ligand Screening

PM	P /	// P nin	IPrCuCl (5 Bas	5 mol%) e	O PMP H NH Bpin
EIU	Ph Cy O	τ D ₂ pill ₂	THF, 16 h	n, 20 °C	Ph
(1	1a 2 .0 eq) (1.5	a eq) (1.1 eq)			3a
Entry	Base (x eq)	NMR yield (%)	dr		
1	^t BuOK (0.2)	51	92:8		
2	^t BuOK (0.5)	68	93:7		
3	^t BuOK (0.8)	77	92:8		
4	^t BuOK (1.0)	84	91:9		
5	MeONa (1.0)	24	94:6		
6	EtONa (1.0)	34	93:7		
7	^t PentONa (1.0)	40	92:8		
8	Al(O ^t Bu) ₃ (1.0)	0	-		
9	Ti(O ⁱ Pr) ₄ (1.0)	0	-		
10	K ₃ PO ₄ (1.0)	22	87:13		
11	K ₂ CO ₃ (1.0)	21	92:8		
12	CsF (1.0)	19	91:9		
13	Cs ₂ CO ₃ (1.0)	49	90:10		
14	Ag ₂ CO ₃ (1.0)	0	-		
15	BaCO ₃ (1.0)	0	-		
16	Li ₂ CO ₃ (1.0)	0	-		

Table S2 : Additional Base Screening

Table S3: Additional Diboron Screening

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3a)

Prepared according to General Procedure B on a 0.250 mmol scale (92:8 d.r. of crude material). Column chromatography (5 - 8% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow solid (114 mg, 0.214 mmol, 85%).

M.p.: 145-148 °C (CHCl₃); MS (ES⁻) *m/z*: 532 ([M-H]⁻). HRMS calcd for C₃₂H₄₄NBO₅Na: 556.3205. Found: 556.3196; v_{max} (thin film/cm⁻¹): 3402, 2976, 2923, 2850, 1718, 1618, 1510, 1464, 1446, 1372, 1362, 1300, 1238, 1177, 1141, 1039; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.88 (q, *J* = 11.4 Hz, 1 H, CH₂), 0.95 - 1.06 (m, 1 H, CH₂), 1.06 - 1.14 (m, 1 H, CH₂), 1.19 (t, *J* = 7.0 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.27 - 1.31 (m, 7 H, 2 x CH₃ + 1 H from CH₂), 1.33 (s, 6 H, 2 x CH₃), 1.62 (d, *J* = 12.4 Hz, 1 H, CH₂), 1.70 (d, *J* = 12.7 Hz, 2 H, CH₂), 1.82 (t, *J* = 13.3 Hz, 2 H, CH₂), 1.92 - 2.03 (m, 1 H, CHCHC=CH₂), 2.92 (d, *J* = 7.6 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 4.10 - 4.21 (m, 1 H, CO₂CH₂CH₃), 4.22 - 4.33 (m, 1 H, CO₂CH₂CH₃), 4.96 (apparent s, 1 H, C=CH₂), 5.51 (d, *J* = 2.7 Hz, 1 H, C=CH₂), 5.96 (br. s, 1 H, NH), 6.30 (d, *J* = 8.4 Hz, 2 H, ArCH), 6.61 (d, *J* = 8.4 Hz, 2 H, ArCH), 7.07 - 7.18 (m, 3 H, ArCH), 7.35 - 7.45 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.2 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.3 (CH₂), 32.9 (CH₂), 38.3 (CHCHC=CH₂), 55.6 (OCH₃), 61.1 (CO₂CH₂CH₃), 66.0 (CHC=CH₂), 70.4 (CCO₂CH₂CH₃), 83.7 (OC(CH₃)₂), 113.5 (ArCH), 116.5 (ArCH), 126.5 (ArCH), 127.4 (ArCH), 128.4 (ArCH), 136.6 (C=CH₂), 139.3 (ArC), 140.7 (ArC), 150.9 (ArC), 174.1 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.3.

3a was further characterized by X-ray crystallographic analysis.

rac-Ethyl

Prepared according to General Procedure B on a 0.250 mmol scale (80:20 d.r. of crude material). Column chromatography (5 - 8% Et₂O in hexane + 1% NEt₃, then 5% Et₂O and 10% toluene in hexane + 1% NEt₃) afforded the title compound as a yellow gum. The yield (69%) was determined by 1 H NMR analysis using MeNO₂ as an internal standard.

MS (ES⁻) m/z: 600 ([M-H]⁻). HRMS calcd for C₃₃H₄₃NBO₅F₃K: 640.2818. Found: 640.2822; v_{max} (thin film/cm⁻¹): 3403, 2978, 2931, 2851, 1720, 1617, 1511, 1422, 1362, 1326, 1240, 1165, 1141, 1124, 1071, 1038, 1018; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.84 - 0.98 (m, 2 H, CH₂), 0.98 - 1.05 (m, 1 H, CH₂), 1.05 - 1.12 (m, 1 H, CH₂), 1.17 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.20 - 1.26 (m, 1 H, CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.63 (d, J = 12.5 Hz, 1 H, CH₂), 1.71 (dd, J = 12.7, 2.1 Hz, 2 H, CH₂), 1.81 (t, J = 12.9 Hz, 2 H, CH₂), 1.92 - 2.03 (m, 1 H, CHCHC=CH₂), 2.88 (d, J = 7.5 Hz, 1 H, CHC=CH₂), 3.70 (s, 3 H, OCH₃), 4.15 (dq, J = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.20 - 4.30 (m, 1 H, CO₂CH₂CH₃), 4.95 (d, J = 3.0 Hz, 1 H, C=CH₂), 5.54 (d, J = 3.3 Hz, 1 H, C=CH₂), 5.99 (br. s, 1 H, NH), 6.24 (d, J = 9.0 Hz, 2 H, ArCH), 6.62 (d, J = 8.8 Hz, 2 H, ArCH), 7.41 (d, J = 8.5 Hz, 2 H, ArCH), 7.58 (d, J = 7.8 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.8 (CO₂CH₂CH₃), 24.3 (CH₃), 25.0 (CH₃), 26.2 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.6 (CH₂), 32.7 (CH₂), 38.4 (CHCHC=CH₂), 55.6 (OCH₃), 61.4 (CO₂CH₂CH₃), 66.1 (CHC=CH₂), 70.4 (CCO₂CH₂CH₃), 83.9 (OC(CH₃)₂), 113.7 (ArCH), 116.2 (ArCH), 124.3 (q, J = 272.6 Hz, ArCCF₃), 124.3 (q, J = 4.0 Hz, ArCH), 128.9 (q, J = 33.2 Hz, ArCCF₃), 129.0 (ArCH), 137.2 (C=CH₂), 140.2 (ArC), 143.7 (ArC), 151.2 (ArC), 173.7 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 32.6; ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta \text{ ppm } -62.4.$

rac-Ethyl (2S,3S)-2-(4-bromophenyl)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3c)

Prepared according to General Procedure B on a 0.250 mmol scale (89:11 d.r. of crude material). Column chromatography (10 - 15% Et_2O in hexane + 1% NEt_3) afforded the title compound as a light brown solid (87.8 mg, 0.143 mmol, 57%).

M.p.: 135-137 °C (Et₂O); MS (ES⁺) *m/z*: 634 ([M+Na]⁺). HRMS calcd for C₃₂H₄₃NBBrO₅Na: 634.2310. Found: 634.2290; v_{max} (thin film/cm⁻¹): 3391, 2921, 2849, 1715, 1510, 1238, 1138; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.81 – 0.89 (m, 1 H, CH₂), 0.89 – 1.11 (m, 3 H, CH₂), 1.15 (t, *J* = 7.1 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.27 (s, 6 H, 2 x CH₃), 1.31 (s, 6 H, 2 x CH₃), 1.57 – 1.65 (m, 1 H, CH₂), 1.65 – 1.73 (m, 2 H, CH₂), 1.73 – 1.87 (m, 2 H, CH₂), 1.87 – 2.04 (m, 1 H, CHCHC=CH₂), 2.84 (d, *J* = 7.5 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 4.12 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.23 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.98 (d, *J* = 3.4 Hz, 1 H, C=CH₂), 5.57 (d, *J* = 3.4 Hz, 1 H, C=CH₂), 5.92 (br. s, 1 H, NH), 6.25 (d, *J* = 9.0 Hz, 2 H, ArCH), 6.61 (d, *J* = 9.0 Hz, 2 H, ArCH), 7.23 – 7.35 (m, 4 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 24.4 (CH₃), 25.2 (CH₃), 26.4 (CH₂), 27.0 (CH₂), 27.1 (CH₂), 32.6 (CH₂), 33.0 (CH₂), 38.5 (CHCHC=CH₂), 55.8 (OCH₃), 61.5 (CO₂CH₂CH₃), 66.2 (CHC=CH₂), 70.3 (CCO₂CH₂CH₃), 84.0 (OC(CH₃)₂), 113.8 (ArCH), 116.5 (ArCH), 120.9 (ArC), 130.6 (2 x ArCH), 137.4 (C=CH₂), 138.8 (ArC), 140.4 (ArC), 151.3 (ArC), 174.0 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.2.

3c was further characterized by X-ray crystallographic analysis.

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(4-(methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3d)

Prepared according to General Procedure B on a 0.250 mmol scale (93:7 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a white solid (106 mg, 0.183 mmol, 73%).

M.p.: 125-127 °C (Et₂O); MS (ES⁺) m/z: 618 ([M+K]⁺). HRMS calcd for C₃₃H₄₆NBO₅S: 579.3184. Found: 579.3196; v_{max} (thin film/cm⁻¹): 3423, 2977, 2921, 2853, 1713, 1509, 1295, 1252, 1234, 1141; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.87 (q, J = 12.4 Hz, 1 H, CH₂), 0.99 (q, J = 12.4 Hz, 1 H, CH₂), 1.09 (tt, J = 12.3,

3.3 Hz, 1 H, CH₂), 1.16 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.19 – 1.26 (m, 2 H, CH₂), 1.28 (s, 6 H, 2 x CH₃), 1.32 (s, 6 H, 2 x CH₃), 1.61 (d, J = 12.4 Hz, 1 H, CH₂), 1.69 (d, J = 12.4 Hz, 2 H, CH₂), 1.80 (d, J = 12.4 Hz, 2 H, CH₂), 1.90 – 2.03 (m, 1 H, CHCHC=CH₂), 2.41 (s, 3 H, SCH₃), 2.87 (d, J = 7.5 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 4.12 (dq, J = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.24 (dq, J = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.98 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.55 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.92 (br. s, 1 H, NH), 6.28 (d, J = 9.1 Hz, 2 H, ArCH), 6.61 (d, J = 9.1 Hz, 2 H, ArCH), 7.02 (d, J = 8.9 Hz, 2 H, ArCH), 7.32 (m, 2 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 15.7 (SCH₃), 24.4 (CH₃), 25.1 (CH₃), 26.4 (CH₂), 27.1 (CH₂), 27.1 (CH₂), 32.5 (CH₂), 33.0 (CH₂), 38.5 (CHCHC=CH₂), 55.8 (OCH₃), 61.3 (CO₂CH₂CH₃), 66.1 (*C*HC=CH₂), 70.3 (*C*CO₂CH₂CH₃), 83.9 (OC(CH₃)₂), 113.7 (ArCH), 116.5 (ArCH), 125.5 (ArCH), 129.2 (ArCH), 136.4 (ArC), 136.4 (ArC), 137.2 (C=CH₂), 140.7 (ArC), 151.1 (ArC), 174.2 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.3.

3d was further characterized by X-ray crystallographic analysis.

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3e)

Prepared according to General Procedure B on a 0.250 mmol scale (90:10 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a pale yellow gum (119 mg, 0.211 mmol, 85%).

MS (ES⁻) m/z: 562 ([M-H]⁻). HRMS calcd for C₃₃H₄₅NBO₆: 562.3345. Found: 562.3342; v_{max} (thin film/cm⁻¹): 3404, 2977, 2928, 2850, 1718, 1608, 1510, 1464, 1362, 1300, 1239, 1177, 1141, 1037; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.85 - 0.92 (m, 1 H, CH₂), 0.96 - 1.04 (m, 1 H, CH₂), 1.05 - 1.14 (m, 1 H, CH₂), 1.18 (t, J = 7.0 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.21 - 1.25 (m, 1 H, CH₂), 1.28 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.61 (d, J = 12.3 Hz, 1 H, CH₂), 1.70 (d, J = 13.1 Hz, 2 H, CH₂), 1.81 (d, J = 11.8 Hz, 2 H, CH₂), 1.88 - 2.02 (m, 1 H, CHCHC=CH₂), 2.89 (d, J = 7.5 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 3.74 (s, 3 H, OCH₃), 4.10 - 4.18 (m, 1 H, CO₂CH₂CH₃), 4.20 - 4.31 (m, 1 H, CO₂CH₂CH₃), 4.99 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.56 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.91 (br. s, 1 H, NH), 6.30 (d, J = 8.8 Hz, 2 H, ArCH), 6.61 (d, J = 9.0 Hz, 2 H, ArCH), 6.68 (d, J = 9.0 Hz, 2 H, ArCH), 7.31 (d, J = 8.0 Hz, 2 H, ArCH); ¹³C

NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.3 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.4 (CH₂), 32.9 (CH₂), 38.3 (CHCHC=CH₂), 55.0 (OCH₃), 55.6 (OCH₃), 61.1 (CO₂CH₂CH₃), 66.1 (CHC=CH₂), 70.0 (CCO₂CH₂CH₃), 83.7 (OC(CH₃)₂), 112.7 (ArCH), 113.5 (ArCH), 116.4 (ArCH), 129.7 (ArCH), 131.3 (ArC), 136.8 (C=CH₂), 140.7 (ArC), 150.9 (ArC), 158.0 (ArC), 174.3 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 32.8.

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-2-(*p*-tolyl)pent-4-enoate (3f)

Prepared according to General Procedure B on a 0.250 mmol scale (89:11 d.r. of crude material). Column chromatography (5% Et₂O in hexane + 1% NEt₃) afforded the title compound as a pale yellow gum. The yield (74%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard. MS (ES) m/z: 546 ([M-H]). HRMS calcd for C₃₃H₄₆NBO₅K: 586.3101. Found: 586.3105; v_{max} (thin film/cm⁻¹): 3404, 2976, 2923, 2851, 1718, 1511, 1446, 1362, 1301, 1238, 1176, 1142, 1039; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.87 (qd, J = 12.3, 3.2 Hz, 1 H, CH₂), 0.96 - 1.06 (m, 1 H, CH₂), 1.06 - 1.14 (m, 1 H, CH₂), 1.18 (t, J = 7.1 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.21 - 1.25 (m, 1 H, CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.61 (d, *J* = 12.5 Hz, 1 H, CH₂), 1.70 (d, *J* = 13.0 Hz, 2 H, CH₂), 1.81 (t, *J* = 12.7 Hz, 2 H, CH₂), 1.91 - 2.01 (m, 1 H, CHCHC=CH₂), 2.24 (s, 3 H, ArCCH₃), 2.90 (d, J = 7.6 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 4.14 (dq, J = 10.7, 7.2 Hz, 1 H, CO₂CH₂CH₃), 4.26 (dq, J = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.98 (d, J = 3.4 Hz, 1 H, C=CH₂), 5.52 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.91 (br. s, 1 H, NH), 6.30 (d, J = 9.0 Hz, 2 H, ArCH), 6.61 (d, J = 8.9 Hz, 2 H, ArCH), 6.95 (d, J = 8.2 Hz, 2 H, ArCH), 7.21 - 7.27 (m, 2 H, ArCH); 13 C NMR (126 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 20.9 (ArCCH₃), 24.3 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.3 (CH₂), 32.9 (CH₂), 38.3 (CHCHC=CH₂), 55.6 (OCH₃), 61.1 (CO₂CH₂CH₃), 65.9 (CHC=CH₂), 70.2 (CCO₂CH₂CH₃), 83.7 (OC(CH₃)₂), 113.4 (ArCH), 116.5 (ArCH), 128.2 (ArCH), 128.3 (ArCH), 135.9 (ArC), 136.2 (ArC), 136.6 (C=CH₂), 140.8 (ArC), 150.8 (ArC), 174.2 (C=O), $(BC=CH_2 \text{ not observed})$; ¹¹B NMR (128 MHz, CDCl₃) δ ppm 27.8.

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(naphthalen-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3g)

Prepared according to General Procedure B on a 0.250 mmol scale (88:12 d.r. of crude material). Column chromatography (20% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum (132 mg, 0.226 mmol, 90%).

MS (ES⁺) *m/z*: 622 ([M+K]⁺). HRMS calcd for C₃₆H₄₇NBO₅: 584.3542. Found: 584.3530; v_{max} (thin film/cm⁻¹): 3403, 2976, 2923, 2849, 1716, 1509, 1237, 1139; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.82 – 0.95 (m, 1 H, CH₂), 0.99 – 1.16 (m, 3 H, CH₂), 1.20 (t, *J* = 7.2 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.28 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.57 – 1.66 (m, 1 H, CH₂), 1.66 – 1.76 (m, 2 H, CH₂), 1.77 – 1.92 (m, 2 H, CH₂), 1.96 – 2.08 (m, 1 H, CHCHC=CH₂), 3.02 (d, *J* = 7.8 Hz, 1 H, CHC=CH₂), 3.66 (s, 3 H, OCH₃), 4.20 (dq, *J* = 10.7, 7.2 Hz, 1 H, CO₂CH₂CH₃), 4.91 (d, *J* = 3.4 Hz, 1 H, C=CH₂), 5.40 (d, *J* = 3.4 Hz, 1 H, C=CH₂), 6.02 (br. s, 1 H, NH), 6.31 (d, *J* = 9.0 Hz, 2 H, ArCH), 6.56 (d, *J* = 9.0 Hz, 2 H, ArCH), 7.35 – 7.46 (m, 3 H, ArCH), 7.56 (d, *J* = 8.8 Hz, 1 H, ArCH), 7.67 – 7.74 (m, 2 H, ArCH), 8.00 (s, 1 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 14.1 (CO₂CH₂CH₃), 24.5 (CH₃), 61.4 (CO₂CH₂CH₃), 66.1 (CHC=CH₂), 70.8 (CCO₂CH₂CH₃), 83.9 (OC(CH₃)₂), 113.7 (ArCH), 116.6 (ArCH), 125.5 (ArCH), 125.7 (ArCH), 126.6 (ArCH), 127.2 (ArCH), 127.3 (ArCH), 127.5 (ArCH), 128.6 (ArCH), 131.0 (ArC) 132.4 (ArC), 133.2 (ArC), 137.2 (C=CH₂), 140.8 (ArC), 151.1 (ArC), 174.3 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.7.

rac-Ethyl (2*R*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)-2-(thiophen-2-yl)pent-4-enoate (3h)

OMe ŃН

Prepared according to General Procedure B on a 0.250 mmol scale (75:25 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow foam (103 mg, 0.190 mmol, 76%).

MS (ES[°]) *m/z*: 538 ([M-H][°]). HRMS calcd for C₃₀H₄₂NBO₅SNa: 562.2769. Found: 562.2770; v_{max} (thin film/cm⁻¹): 3383, 2975, 2922, 2851, 1744, 1721, 1509, 1463, 1423, 1390, 1380, 1362, 1299, 1234, 1169, 1141, 1096, 1039 ; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.85 - 0.94 (m, 1 H, CH₂), 0.95 - 1.03 (m, 1 H, CH₂), 1.04 - 1.12 (m, 1 H, CH₂), 1.16 - 1.23 (m, 1 H, CH₂), 1.26 (t, *J* = 7.0 Hz, 3 H, CO₂CH₂CH₃), 1.31 (s, 6 H, 2 x CH₃), 1.35 (s, 6 H, 2 x CH₃), 1.56 - 1.63 (m, 2 H, CH₂), 1.65 - 1.76 (m, 3 H, CH₂), 1.89 (d, *J* = 12.8 Hz, 1 H, CH₂), 1.92 - 1.99 (m, 1 H, CHCHC=CH₂), 2.82 (d, *J* = 6.3 Hz, 1 H, CHC=CH₂), 3.70 (s, 3 H, OCH₃), 4.20 - 4.27 (m, 1 H, CO₂CH₂CH₃), 4.27 - 4.34 (m, 1 H, CO₂CH₂CH₃), 5.23 (d, *J* = 2.7 Hz, 1 H, C=CH₂), 5.63 (d, *J* = 2.1 Hz, 1 H, C=CH₂), 6.24 (br. s, 1 H, NH), 6.36 (d, *J* = 7.8 Hz, 2 H, ArCH), 6.65 (d, *J* = 7.9 Hz, 2 H, ArCH), 6.71 - 6.76 (m, 2 H, ArCH), 7.09 (d, *J* = 4.4 Hz, 1 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 25.0 (CH₃), 26.2 (CH₂), 26.8 (CH₂), 26.8 (CH₂), 32.5 (CH₂), 32.9 (CH₂), 38.1 (CHCHC=CH₂), 55.6 (OCH₃), 61.6 (CO₂CH₂CH₃), 67.7 (CHC=CH₂), 69.4 (CCO₂CH₂CH₃), 83.9 (OC(CH₃)₂), 113.6 (ArCH), 116.2 (ArCH), 125.4 (ArCH), 125.7 (ArCH), 126.9 (ArCH), 136.3 (C=CH₂), 140.0 (ArC), 144.3 (ArC), 151.2 (ArC), 173.8 (C=O), (BC=CH₂ not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 31.2.

rac-Ethyl (2*R*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethyl)pent-4-enoate (3i)

Prepared according to General Procedure B on a 0.162 mmol scale (61:39 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum (58 mg, 0.110 mmol, 68%).

MS (ES⁻) m/z: 524 ([M-H]⁻). HRMS calcd for C₂₇H₃₉NBO₅F₃Na: 548.2766. Found: 548.2767; v_{max} (thin film/cm⁻¹): 3370, 2979, 2927, 2852, 1739, 1512, 1445, 1381, 1373, 1362, 1305, 1244, 1163, 1138, 1036; major and minor diastereoisomers ¹H NMR (500 MHz, CDCl₃) δ ppm 0.79 - 0.90 (m, 1 H, CH₂ **major**), 0.91 - 0.99 (m, 1 H, CH₂ **major**), 1.00 - 1.11 (m, 4 H, 1 H from CH₂ **major** + 3 H from CH₂ **minor**), 1.15 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃ **major**), 1.21 - 1.26 (m, 2 H, 1 H from CH₂ **major** + 1 H from

CH₂ minor), 1.27 (s, 6 H, 2 x CH₃ major), 1.28 (s, 6 H, 2 x CH₃ major), 1.33 (s, 7 H, 1 H from CH₂ major + 2 x CH₃ minor), 1.34 - 1.37 (m, 9 H, 2 x CH₃ minor + CO₂CH₂CH₃ minor), 1.45 - 1.51 (m, 1 H, CH₂ minor), 1.56 - 1.65 (m, 2 H, 1 H from CH₂ major + 1 H from CH₂ minor), 1.65 - 1.75 (m, 6 H, 3 H from CH₂ major + 3 H from CH₂ minor), 1.83 - 1.91 (m, 1 H, CHCHC=CH₂ minor), 2.01 - 2.13 (m, 3 H, CHCHC=CH₂ major + 1 H from CH₂ major + 1 H from CH₂ minor), 2.88 (d, J = 4.0 Hz, 1 H, CHC=CH₂ major), 2.90 (d, J = 3.7 Hz, 1 H, CHC=CH₂ minor), 3.75 (s, 6 H, OCH₃ major + OCH₃ minor), 4.05 (q, J = 7.2 Hz, 2 H, CO₂CH₂CH₃ major), 4.29 - 4.44 (m, 2 H, CO₂CH₂CH₃ minor), 5.42 (br. s, 1 H, NH major), 5.68 (d, J = 2.6 Hz, 1 H, C=CH₂ major), 5.81 (d, J = 2.0 Hz, 1 H, C=CH₂ minor), 6.05 (d, J = 3.1 Hz, 1 H, C=CH₂ major), 6.14 (br. s, 1 H, NH minor), 6.19 (d, J = 2.7 Hz, 1 H, C=CH₂ minor), 6.73 (d, J = 8.5 Hz, 4 H, ArCH major + ArCH minor), 6.79 (d, J = 8.1 Hz, 4 H, ArCH major + ArCH minor); major and minor diastereoisomers ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃ major), 14.0 (CO₂CH₂CH₃ minor), 24.2 (CH₃ minor), 24.4 (CH₃ major), 24.8 (CH₃ major), 24.9 (CH₃ minor), 26.0 (CH₂ minor), 26.2 (CH₂ major), 26.6 (CH₂ minor), 26.7 (CH₂ minor), 26.8 (CH₂ major), 26.9 (CH₂ major), 31.5 (CH₂ minor), 32.1 (CH₂ major), 33.2 (CH₂ major), 33.5 (CH₂ minor), 37.5 (CHCHC=CH₂ minor), 37.5 (CHCHC=CH₂ major), 55.5 (OCH₃ major), 55.6 (OCH₃ minor), 59.4 (CHC=CH₂ minor), 59.6 (CHC=CH₂ major), 61.4 (CO₂CH₂CH₃ major), 62.0 (CO₂CH₂CH₃ minor), 84.0 (OC(CH₃)₂ major), 84.4 (OC(CH₃)₂ minor), 113.7 (ArCH major), 113.8 (ArCH minor), 118.2 (ArCH minor), 119.5 (ArCH major), 137.2 (C=CH₂ major), 138.5 (ArC major), 138.7 (C=CH₂ minor), 139.0 (ArC minor), 152.9 (ArC minor), 153.4 (ArC major), 168.4 (C=O major), 169.0 (C=O minor), (both major and minor $BC=CH_2 + CCF_3 + CF_3$ not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 30.9; ¹⁹F NMR (471 MHz, CDCl₃) δ ppm -62.7 (**minor**), -61.9 (**major**).

Prepared according to General Procedure B on a 0.250 mmol scale (89:11 d.r. of crude material). Column chromatography (1.5 - 2% Et_2O in hexane + 1% NEt_3) afforded the title compound as a colourless gum. The yield (68%) was determined by ¹H NMR analysis using $MeNO_2$ as an internal standard. MS (ES⁻) *m/z*: 580 ([M-H]⁻). HRMS calcd for C₃₁H₄₁NBO₄BrK: 620.1944. Found: 620.1937; v_{max} (thin film/cm⁻¹): 3411, 2976, 2927, 2851, 1721, 1592, 1519, 1490, 1446, 1423, 1363, 1307, 1260, 1219, 1167, 1141, 1108, 1073, 1033; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.84 - 0.93 (m, 1 H, CH₂), 0.96 - 1.06 (m, 1 H, CH₂), 1.07 - 1.15 (m, 1 H, CH₂), 1.20 (t, *J* = 7.2 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.23 - 1.27 (m, 1 H, CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.63 (d, *J* = 12.4 Hz, 1 H, CH₂), 1.71 (d, *J* = 12.7 Hz, 2 H, CH₂), 1.80 (t, *J* = 10.6 Hz, 2 H, CH₂), 1.88 - 1.99 (m, 1 H, CHCHC=CH₂), 2.92 (d, *J* = 7.8 Hz, 1 H, CHC=CH₂), 4.12 - 4.22 (m, 1 H, CO₂CH₂CH₃), 4.22 - 4.30 (m, 1 H, CO₂CH₂CH₃), 4.95 (d, *J* = 1.5 Hz, 1 H, C=CH₂), 5.52 (d, *J* = 2.7 Hz, 1 H, C=CH₂), 6.23 (d, *J* = 7.8 Hz, 3 H, 2 x ArCH + NH), 7.07 (d, *J* = 8.4 Hz, 2 H, ArCH), 7.10 - 7.19 (m, 3 H, ArCH), 7.30 - 7.41 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.2 (CH₃), 25.0 (CH₃), 26.2 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.1 (CH₂), 32.9 (CH₂), 38.4 (CHCHC=CH₂), 61.4 (CO₂CH₂CH₃), 65.9 (CHC=CH₂), 70.2 (CCO₂CH₂CH₃), 83.8 (OC(CH₃)₂), 107.9 (ArC), 117.4 (ArCH), 126.8 (ArCH), 127.7 (ArCH), 128.1 (ArCH), 130.4 (ArCH), 137.2 (C=CH₂), 138.4 (ArC), 145.6 (ArC), 173.5 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 32.1.

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-fluorophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3k)

Prepared according to General Procedure B on a 0.250 mmol scale (88:12 d.r. of crude material) Column chromatography (1% Et_2O in hexane + 1% NEt_3) afforded the title compound as a colourless gum (98.2 mg, 0.188 mmol, 75%).

MS (ES⁺) m/z: 560 ([M+K]⁺). HRMS calcd for C₃₁H₄₁NBO₄FK: 560.2744. Found: 560.2734; v_{max} (thin film/cm⁻¹): 3407, 2976, 2927, 2852, 1720, 1613, 1508, 1446, 1422, 1363, 1307, 1261, 1223, 1167, 1142, 1110, 1033; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.82 - 0.94 (m, 1 H, CH₂), 0.96 - 1.05 (m, 1 H, CH₂), 1.07 - 1.15 (m, 1 H, CH₂), 1.20 (t, *J* = 7.2 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.23 - 1.26 (m, 1 H, CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.62 (d, *J* = 12.3 Hz, 1 H, CH₂), 1.71 (d, *J* = 12.8 Hz, 2 H, CH₂), 1.81 (t, *J* = 11.9 Hz, 2 H, CH₂), 1.89 - 2.01 (m, 1 H, CHCHC=CH₂), 2.92 (d, *J* = 7.8 Hz, 1 H, CHC=CH₂), 4.16 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.27 (dq, *J* = 10.8, 7.0 Hz, 1 H, CO₂CH₂CH₃), 4.95 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 5.52 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 6.11 (s, 1 H, NH), 6.27 (dd, *J* = 9.0, 4.5 Hz, 2 H, ArCH), 6.71 (t, *J* = 8.8 Hz, 2 H, ArCH), 7.08 - 7.20 (m, 3 H, ArCH), 7.37 (d, *J* = 6.3 Hz, 2 H, ArCH); ¹³C

NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.2 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.2 (CH₂), 32.9 (CH₂), 38.4 (CHCHC=CH₂), 61.3 (CO₂CH₂CH₃), 65.9 (CHC=CH₂), 70.4 (CCO₂CH₂CH₃), 83.8 (OC(CH₃)₂), 114.1 (d, *J* = 22.5 Hz, ArCH), 116.2 (d, *J* = 6.9 Hz, ArCH), 126.7 (ArCH), 127.6 (ArCH), 128.3 (ArCH), 137.0 (C=CH₂), 138.8 (ArC), 142.8 (ArC), 155.0 (d, *J* = 233.8 Hz, ArCF), 173.8 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 32.3; ¹⁹F NMR (376 MHz, CDCl₃) δ ppm -130.0 (td, *J* = 8.7, 4.4 Hz).

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-morpholinophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3l)

Prepared according to General Procedure B on a 0.250 mmol scale (90:10 d.r. of crude material) Column chromatography (30% Et₂O in hexane + 1% NEt₃) afforded the title compound as a yellow gum. The yield (74%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard. MS (ES⁺) m/z: 627 ([M+H]⁺). HRMS calcd for C₃₅H₄₉N₂BO₅Na: 611.3627. Found: 611.3617; v_{max} (thin film/cm⁻¹): 3406, 2975, 2926, 2851, 1718, 1514, 1447, 1362, 1300, 1268, 1226, 1167, 1142, 1121, 1031; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.84 - 0.90 (m, 1 H, CH₂), 0.97 - 1.04 (m, 1 H, CH₂), 1.04 - 1.11 (m, 1 H, CH₂), 1.20 (t, J = 7.2 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.22 - 1.26 (m, 1 H, CH₂), 1.28 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.61 - 1.65 (m, 1 H, CH₂), 1.70 (d, J = 12.8 Hz, 2 H, CH₂), 1.82 (t, J = 13.7 Hz, 2 H, CH₂), 1.92 - 2.03 (m, 1 H, CHCHC=CH₂), 2.92 (d, J = 7.8 Hz, 1 H, CHC=CH₂), 2.95 - 3.00 (m, 4 H, 2 x NCH₂), 3.82 (t, J = 4.6 Hz, 4 H, 2 x OCH₂), 4.16 (dq, J = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.27 (dq, J = 11.0, 7.0 Hz, 1 H, CO₂CH₂CH₃), 4.95 (d, J = 3.3 Hz, 1 H, C=CH₂), 5.50 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.99 (s, 1 H, NH), 6.32 (d, J = 8.8 Hz, 2 H, ArCH), 6.66 (d, J = 9.0 Hz, 2 H, ArCH), 7.07 - 7.19 (m, 3 H, ArCH), 7.40 (d, J = 6.8 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.2 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.0 (CH₂), 32.3 (CH₂), 32.9 (CH₂), 38.3 (CHCHC=CH₂), 51.2 (NCH₂), 61.2 (CO₂CH₂CH₃), 65.9 (CHC=CH₂), 67.2 (OCH₂), 70.3 (CCO₂CH₂CH₃), 83.7 (OC(CH₃)₂), 116.4 (ArCH), 116.9 (ArCH), 126.5 (ArCH), 127.4 (ArCH), 128.4 (ArCH), 136.7 (C=CH₂), 139.2 (ArC), 141.0 (ArC), 142.1 (ArC), 174.1 (C=O), (B*C*=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 32.7.

rac-Benzyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pent-4-enoate (3n)

Prepared according to General Procedure B on a 0.250 mmol scale (94:6 d.r. of crude material). Column chromatography (4% Et_2O in hexane + 1% NEt_3 then recolumned in 1 - 2% EtOAc in hexane + 1% NEt_3) afforded the title compound as a yellow gum (99.6 mg, 0.167 mmol, 67%).

MS (ES⁺) *m/z*: 634 ([M+K]⁺). HRMS calcd for C₃₇H₄₆NBO₅K: 634.3101. Found: 634.3093; v_{max} (thin film/cm⁻¹): 3410, 2977, 2925, 2851, 1721, 1510, 1446, 1422, 1372, 1362, 1301, 1238, 1215, 1176, 1141, 1077, 1038; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.83 (m, 1 H, CH₂), 0.88 - 0.98 (m, 1 H, CH₂), 0.99 - 1.06 (m, 1 H, CH₂), 1.06 - 1.09 (m, 1 H, CH₂), 1.12 - 1.15 (m, 1 H, CH₂), 1.25 (d, *J* = 5.3 Hz, 1 H, CH₂), 1.27 (s, 6 H, 2 x CH₃), 1.32 (s, 6 H, 2 x CH₃), 1.57 - 1.61 (m, 1 H, CH₂), 1.62 - 1.68 (m, 1 H, CH₂), 1.73 (d, *J* = 12.5 Hz, 1 H, CH₂), 1.79 (d, *J* = 12.8 Hz, 1 H, CH₂), 1.85 - 1.99 (m, 1 H, CHCHC=CH₂), 2.89 (d, *J* = 7.5 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, OCH₃), 4.94 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 5.10 (d, *J* = 12.3 Hz, 1 H, CO₂CH₂Ph), 5.23 (d, *J* = 12.3 Hz, 1 H, CO₂CH₂Ph), 5.51 (d, *J* = 3.8 Hz, 1 H, C=CH₂), 5.96 (br. s, 1 H, NH), 6.27 (d, *J* = 8.8 Hz, 2 H, ArCH), 7.24 -7.27 (m, 3 H, ArCH), 7.43 (d, *J* = 7.0 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 24.2 (CH₃), 25.0 (CH₃), 26.2 (CH₂), 26.8 (CH₂), 26.9 (CH₂), 32.4 (CH₂), 32.8 (CH₂), 38.2 (CHCHC=CH₂), 55.6 (OCH₃), 66.2 (CHC=CH₂), 67.1 (CO₂CH₂Ph), 70.5 (CCO₂CH₂Ph), 83.7 (OC(CH₃)₂), 113.6 (ArCH), 116.4 (ArCH), 126.6 (ArCH), 127.4 (ArCH), 127.9 (ArCH), 128.3 (ArCH), 128.4 (ArCH), 128.6 (ArCH), 135.4 (ArC), 136.7 (C=CH₂), 139.2 (ArC), 140.6 (ArC), 151.0 (ArC), 174.0 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 27.4.

rac-Methyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (30)

Prepared according to General Procedure B on a 0.250 mmol scale (91:9 d.r. of crude material). Column chromatography (4 - 8% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum. The yield (76%) was determined by 1 H NMR analysis using MeNO₂ as an internal standard. A sample of the product was recrystallized with CHCl₃ to afford the title compound as a yellow crystal. M.p.: 161-164 °C (CHCl₃); MS (ES⁺) *m/z*: 558 ([M+K]⁺). HRMS calcd for C₃₁H₄₂NBO₅K: 558.2788. Found: 558.2785; v_{max} (thin film/cm⁻¹): 3406, 2976, 2925, 2850, 1722, 1510, 1446, 1431, 1380, 1372, 1362, 1301, 1238, 1167, 1141, 1076, 1038; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.86 (qd, *J* = 12.3, 3.4 Hz, 1 H, CH₂), 1.00 (qd, J = 12.3, 3.4 Hz, 1 H, CH₂), 1.09 (qt, J = 12.5, 3.3 Hz, 1 H, CH₂), 1.15 - 1.28 (m, 2 H, CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.33 (s, 6 H, 2 x CH₃), 1.62 (d, J = 12.7 Hz, 1 H, CH₂), 1.70 (d, J = 13.0 Hz, 2 H, CH₂), 1.77 (d, J = 12.8 Hz, 1 H, CH₂), 1.83 (d, J = 12.4 Hz, 1 H, CH₂), 1.97 (m, J = 11.4, 3.3 Hz, 1 H, CHCHC=CH₂), 2.93 (d, J = 7.9 Hz, 1 H, CHC=CH₂), 3.69 (s, 3 H, ArCOCH₃), 3.73 (s, 3 H, CO₂CH₃), 4.95 (d, J = 3.5 Hz, 1 H, C=CH₂), 5.51 (d, J = 3.7 Hz, 1 H, C=CH₂), 5.99 (br. s, 1 H, NH), 6.29 (d, J = 8.9 Hz, 2 H, ArCH), 6.62 (d, J = 9.0 Hz, 2 H, ArCH), 7.08 - 7.12 (m, 1 H, ArCH), 7.15 (m, J = 8.1 Hz, 2 H, ArCH), 7.38 (d, J = 6.7 Hz, 2 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 24.2 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (CH₂), 27.1 (CH₂), 31.9 (CH₂), 33.0 (CH₂), 38.3 (CHCHC=CH₂), 52.0 (CO₂CH₃), 55.6 (ArCOCH₃), 66.0 (CHC=CH₂), 70.3 (CCO₂CH₃), 83.8 (OC(CH₃)₂), 113.6 (ArCH), 116.4 (ArCH), 126.6 (ArCH), 127.5 (ArCH), 128.4 (ArCH), 136.7 (C=CH₂), 139.0 (ArC), 140.5 (ArC), 150.9 (ArC), 174.8 (C=O), (BC=CH₂ not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 30.7.

30 was further characterized by X-ray crystallographic analysis.

rac-Ethyl (2*S*,3*S*)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,2-oxaborolan-2-yl)vinyl)undecanoate (3p)

Prepared according to General Procedure B on a 0.250 mmol scale (77:23 d.r. of crude material). Column chromatography (5% Et_2O in hexane + 1% NEt_3) afforded the title compound as a pale yellow gum (91.6 mg, 0.163 mmol, 65%).

MS (ES') *m/z*: 562 ([M-H]'). HRMS calcd for $C_{34}H_{50}NBO_5K$: 602.3414. Found: 602.3418; v_{max} (thin film/cm⁻¹): 3421, 2976, 2926, 2854, 1722, 1512, 1464, 1445, 1370, 1303, 1238, 1180, 1142, 1110, 1039; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.88 (t, *J* = 6.9 Hz, 4 H, CH₂CH₃ + 1 H from CH₂), 1.13 (t, *J* = 7.0 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.21 - 1.27 (m, 10 H, 5 x CH₂), 1.29 (s, 6 H, 2 x CH₃), 1.35 (s, 6 H, 2 x CH₃), 1.43 - 1.52 (m, 1 H, CH₂CHC=CH₂), 1.97 - 2.11 (m, 1 H CH₂CHC=CH₂), 2.85 (dd, *J* = 12.0, 2.8 Hz, 1 H, CHC=CH₂), 3.68 (s, 3 H, OCH₃), 4.12 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.24 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.96 (d, *J* = 3.3 Hz, 1 H, C=CH₂), 5.59 (br. s, 1 H, NH), 5.65 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 6.26 (d, *J* = 9.0 Hz, 2 H, ArCH), 6.60 (d, *J* = 9.0 Hz, 2 H, ArCH), 7.13 - 7.19 (m, 1 H, ArCH), 7.19 - 7.25 (m, 2 H, ArCH), 7.61 (d, *J* = 7.3 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 14.0 (CO₂CH₂CH₃), 14.1(CH₂CH₂CH₃), 22.6 (CH₂), 24.3 (CH₃), 25.1 (CH₃), 28.4 (CH₂), 28.7 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 31.9 (CH₂), 55.6 (OCH₃), 60.0 (*A*CH=CH₂), 61.0 (CO₂CH₂CH₃), 71.4 (CCO₂CH₂CH₃), 83.6 (OC(CH₃)₂), 113.7 (ArCH), 115.8 (ArCH), 126.6 (ArCH), 127.4 (ArCH), 128.6 (ArCH), 136.3 (C=CH₂), 139.3 (ArC), 140.9 (ArC), 151.1 (ArC), 173.6 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 27.9.

Prepared according to General Procedure B on a 0.200 mmol scale (66:34 d.r. of crude material). Column chromatography (5% Et_2O in hexane + 1% NEt_3) afforded the title compound as a pale yellow gum (67.7 mg, 0.122 mmol, 61%).

MS (ES⁻) m/z: 554 ([M-H]⁻). HRMS calcd for C₃₄H₄₂NBO₅K: 594.2788. Found: 594.2788; v_{max} (thin film/cm⁻¹): 3389, 2976, 2351, 1724, 1602, 1512, 1445, 1366, 1305, 1238, 1181, 1138, 1031; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.90 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃ minor), 1.07 (t, J = 7.0 Hz, 3 H, CO₂CH₂CH₃ major), 1.33 (s, 6 H, OC(CH₃)₂ major), 1.36 (s, 12 H, OC(CH₃)₂ major + OC(CH₃)₂ minor), 1.40 (s, 6 H, OC(CH₃)₂ minor), 1.43 - 1.50 (m, 1 H, 1 H from CH₂CHC=CH₂ minor), 1.81 - 1.90 (m, 1 H, 1 H from CH₂CHC=CH₂ major), 2.04 - 2.16 (m, 2 H, 1 H from CH₂Ph minor + 1 H from CH₂CHC=CH₂ minor), 2.30 - 2.38 (m, 2 H, 1 H from CH₂Ph major + 1 H from CH₂CHC=CH₂ major), 2.44 - 2.52 (m, 1 H, 1 H from CH₂Ph minor), 2.52 - 2.61 (m, 1 H, 1 H from CH₂Ph major), 2.79 (d, *J* = 10.0 Hz, 1 H, 1 H from CHC=CH₂ minor), 2.88 - 2.97 (m, 1 H, 1 H from CHC=CH₂ major), 3.67 (s, 3 H, OCH₃ major), 3.68 (s, 3 H, OCH₃ minor), 3.77 - 3.87 (m, 1 H, 1 H from CO₂CH₂CH₃ minor), 3.90 - 4.00 (m, 1 H, 1 H from CO₂CH₂CH₃ minor), 4.02 - 4.12 (m, 1 H, 1 H from CO₂CH₂CH₃ major), 4.12 - 4.22 (m, 1 H, 1 H from CO₂CH₂CH₃ **major**), 5.06 (d, J = 3.3 Hz, 1 H, 1 H from C=CH₂ **major**), 5.46 (s, 1 H, NH **major**), 5.52 (s, 1 H, 1 H from C=CH₂ minor), 5.75 (d, J = 3.5 Hz, 1 H, 1 H from C=CH₂ major), 5.93 (br. s, 1 H, NH minor), 6.01 (d, J = 3.3 Hz, 1 H, 1 H from C=CH₂ minor), 6.25 (m, J = 8.0 Hz, 4 H, 2 x ArCH major + 2 x ArCH minor), 6.59 (dd, J = 8.9, 5.9 Hz, 4 H, 2 x ArCH major + 2 x ArCH minor), 6.86 (d, J = 6.8 Hz, 2 H, ArCH major + ArCH minor), 7.13 (m, J = 6.8 Hz, 3 H, 2 x ArCH major + 2 x ArCH minor), 7.16 - 7.21 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 7.21 - 7.26 (m, 4 H, 2 x ArCH major + 3 x ArCH minor), 7.27 - 7.30 (m, 1 H, ArCH major), 7.59 (d, J = 7.5 Hz, 2 H, ArCH major), 7.76 (d, J = 6.3 Hz, 2 H, ArCH minor); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.8 (CO₂CH₂CH₃ minor), 13.9 (CO₂CH₂CH₃ major), 24.4 (OC(CH₃)₂ major), 24.5 (OC(CH₃)₂ minor), 25.1 (OC(CH₃)₂ minor), 25.2 (OC(CH₃)₂ major), 29.0 (CH₂ minor), 30.7 (CH₂ major), 33.8 (CH₂ minor), 34.6 (CH₂ major), 55.5 (OCH₃ major + OCH₃ minor), 59.3 (CHC=CH₂ major + CHC=CH₂ minor), 60.3 (CO₂CH₂CH₃ minor), 61.0 (CO₂CH₂CH₃ major), 71.3 (CCO₂CH₂CH₃ major), 71.5 (CCO₂CH₂CH₃ minor), 83.7 (OC(CH₃)₂ major), 84.0 (OC(CH₃)₂ minor), 113.7 (PMP ArCH major), 113.8 (PMP ArCH minor), 115.5 (PMP ArCH minor), 115.9 (PMP ArCH major), 125.6 (ArCH minor), 125.7 (ArCH major), 126.7 (ArCH major + ArCH minor), 127.2 (ArCH minor), 127.5 (ArCH major), 128.1 (ArCH minor), 128.2 (ArCH major), 128.3 (ArCH minor), 128.4 (ArCH major), 128.5 (ArCH major), 129.5 (ArCH minor), 135.2 (C=CH₂ minor), 136.7 (C=CH₂ major), 139.1 (ArC minor), 140.7 (ArC major + ArC minor), 141.4 (ArC major), 141.6 (ArC minor), 142.2 (ArC major), 151.2 (ArC minor), 151.4 (ArC major), 173.4 (C=O major), 173.6 (C=O minor), (BC=CH₂ major and BC=CH₂ minor not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.9.

rac-Ethyl (2*S*,3*S*)-3-(cyclohexylmethyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3r)

Prepared according to General Procedure B on a 0.250 mmol scale (70:30 d.r. of crude material). Column chromatography (4% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum (124.9 mg, 0.228 mmol, 91%).

MS (ES⁺) m/z: 586 ([M+K]⁺). HRMS calcd for C₃₃H₄₆NBO₅K: 586.3101. Found: 586.3099; v_{max} (thin film/cm⁻¹): 3416, 2977, 2922, 2850, 1723, 1602, 1511, 1446, 1370, 1302, 1237, 1215, 1198, 1178, 1142, 1036; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.70 (d, J = 10.8 Hz, 1 H, 1 H from CH₂ major), 0.77 -0.87 (m, 2 H, CH₂ minor), 0.91 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃ minor), 0.96 - 1.03 (m, 3 H, CHCH₂CHC=CH₂ major + CHCH₂CHC=CH₂ minor + 1 H from CH₂ major), 1.08 - 1.13 (m, 3 H, CH₂ major + 1 H from CH₂ minor), 1.16 (t, J = 7.2 Hz, 5 H, CO₂CH₂CH₃ major + CH₂ minor), 1.24 (dd, J = 9.9, 2.9 Hz, 2 H, 1 H from CH₂CHC=CH₂ major + 1 H from CH₂ minor), 1.29 (s, 6 H, OC(CH₃)₂ minor), 1.34 (s, 6 H, OC(CH₃)₂ major), 1.35 (s, 6 H, OC(CH₃)₂ major), 1.39 (s, 6 H, OC(CH₃)₂ minor), 1.45 - 1.55 (m, 4 H, CH₂ minor), 1.55 - 1.68 (m, 5 H, CH₂ major), 1.69 - 1.79 (m, 3 H, CH₂CHC=CH₂ minor + 1 H from CH₂ major), 2.06 (td, J = 12.9, 2.4 Hz, 1 H, 1 H from CH₂CHC=CH₂ major), 2.91 (d, J = 11.8 Hz, 1 H, CHC=CH₂ major), 2.99 (dd, J = 12.3, 2.8 Hz, 1 H, CHC=CH₂ minor), 3.68 (s, 3 H, OCH₃ major), 3.68 (s, 3 H, OCH₃ minor), 3.78 - 3.88 (m, 1 H, 1 H from CO₂CH₂CH₃ minor), 3.89 - 4.00 (m, 1 H, 1 H from CO₂CH₂CH₃ minor), 4.09 - 4.19 (m, 1 H, 1 H from CO₂CH₂CH₃ major), 4.19 - 4.31 (m, 1 H, 1 H from CO₂CH₂CH₃ **major**), 4.93 (d, J = 3.3 Hz, 1 H, 1 H from C=CH₂ **major**), 5.53 (s, 1 H, 1 H from C=CH₂ **minor**), 5.64 (d, J = 3.0 Hz, 2 H, 1 H from C=CH₂ major + NH major), 5.93 (d, *J* = 3.3 Hz, 1 H, 1 H from C=CH₂ minor), 5.98 (br. s, 1 H, NH minor), 6.22 - 6.30 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 6.57 - 6.63 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 7.13 - 7.24 (m, 4 H, 3 x ArCH major + ArCH minor), 7.27 - 7.33 (m, 2 H, ArCH **minor**), 7.60 (d, *J* = 6.3 Hz, 2 H, ArCH **major**), 7.82 (d, *J* = 7.3 Hz, 2 H, ArCH **minor**); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.8 (CO₂CH₂CH₃ minor), 14.0 (CO₂CH₂CH₃ major), 24.3 (OC(CH₃)₂ major), 24.3 (OC(CH₃)₂ minor), 25.1 (OC(CH₃)₂ minor), 25.1 (OC(CH₃)₂ major), 25.8 (CH₂ minor), 25.9, (CH₂ major), 26.3 (CH₂ minor), 26.4 (CH₂ major), 26.5 (CH₂ minor), 26.6 (CH₂ major), 30.7 (CH₂ minor), 31.1 (CH₂ major), 34.6 (CHCH₂CHC=CH₂ minor), 34.7 (CH₂ minor), 34.8 (CH₂ major + CH₂CHC=CH₂ minor), 35.4 (CHCH₂CHC=CH₂ major), 36.2 (CH₂CHC=CH₂ major), 55.6 (OCH₃ major + OCH₃ minor), 57.0 (CHC=CH₂

major + *C*HC=CH₂ minor), 60.2 (CO₂CH₂CH₃ minor), 61.0 (CO₂CH₂CH₃ major), 71.4 (*C*CO₂CH₂CH₃ major), 71.7 (*C*CO₂CH₂CH₃ minor), 83.7 (O*C*(CH₃)₂ major), 83.9 (O*C*(CH₃)₂ minor), 113.7 (PMP ArCH major), 113.8 (PMP ArCH minor), 115.4 (PMP ArCH minor), 115.8 (PMP ArCH major), 126.6 (ArCH major), 126.7 (ArCH minor), 127.1 (ArCH minor), 127.4 (ArCH major), 128.6 (ArCH major), 129.5 (ArCH minor), 134.5 (C=*C*H₂ minor), 136.4 (C=*C*H₂ major), 139.2 (ArC major + ArC minor), 140.8 (ArC major), 141.7 (ArC minor), 151.0 (ArC major), 151.3 (ArC minor), 173.5 (C=O major), 173.8 (C=O minor), (B*C*=CH₂ major and B*C*=CH₂ minor not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.0.

rac-Ethyl (2*S*,3*S*)-7-((*tert*-butyldimethylsilyl)oxy)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3s)

Prepared according to General Procedure B on a 0.250 mmol scale (80:20 d.r. of crude material). Column chromatography (5% Et_2O in hexane + 1% NEt_3) afforded the title compound as a pale yellow gum (87.2 mg, 0.137 mmol, 55%).

MS (ES⁺) m/z: 660 ([M+Na]⁺). HRMS calcd for C₃₆H₅₇NBO₆Si: 638.4043. Found: 638.4042; v_{max} (thin film/cm⁻¹): 3417, 2929, 2857, 2354, 1724, 1603, 1511, 1463, 1445, 1366, 1303, 1238, 1181, 1141, 1097, 1039; ¹H NMR (500 MHz, CDCl₃) δ ppm -0.03 (s, 6 H, Si(CH₃)₂ minor), 0.03 (s, 6 H, Si(CH₃)₂ major), 0.84 (s, 9 H, SiC(CH₃)₃ minor), 0.88 (s, 9 H, SiC(CH₃)₃ major), 0.92 (t, *J* = 7.1 Hz, 4 H, CO₂CH₂CH₃ minor + 1 H from CH₂CH₂CH₂OTBS minor), 1.12 (t, *J* = 7.1 Hz, 5 H, CO₂CH₂CH₃ major + 1 H from CH₂CH₂CH₂OTBS minor), 1.12 (t, *J* = 7.1 Hz, 5 H, CO₂CH₂CH₃ major), 1.34 (s, 12 H from CH₂CH₂CHC=CH₂ minor + 1 H from CH₂CH₂CH₂OTBS minor), 1.19 - 1.27 (m, 4 H, CH₂CH₂CH₂OTBS major + 1 H from CH₂CH₂CH₂OTBS minor), 1.28 (s, 6 H, OC(CH₃)₂ major), 1.34 (s, 12 H, OC(CH₃)₂ major + OC(CH₃)₂ minor), 1.38 (s, 6 H, OC(CH₃)₂ minor), 1.41 - 1.54 (m, 3 H, 1 H from CH₂CHC=CH₂ major + CH₂CH₂OTBS major), 2.77 (d, *J* = 11.3 Hz, 1 H, CHC=CH₂ minor), 2.85 (dd, *J* = 12.0, 2.4 Hz, 1 H, CHC=CH₂ major), 3.36 - 3.43 (m, 2 H, CH₂OSi minor), 3.55 (t, *J* = 6.6 Hz, 2 H, CH₂OSi major), 3.68 (s, 6 H, OCH₃ major + OCH₃ minor), 3.80 - 3.88 (m, 1 H, 1 H from CO₂CH₂CH₃ major), 4.19 - 4.01 (m, 1 H, 1 H from CO₂CH₂CH₃ major), 4.97 (d, *J* = 3.2 Hz, 1 H, 1 H from CCH₂ major), 5.50 (s, 1 H, 1 H from C=CH₂ major), 5.55 (s, 1 H, NH major), 5.66 (d, *J* = 3.4 Hz, 1 H, 1 H from C=CH₂ major), 5.94

(d, J = 3.2 Hz, 1 H, 1 H from C=CH₂ minor), 5.98 (br. s, 1 H, NH minor), 6.22 - 6.29 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 6.57 - 6.63 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 7.17 (d, J = 7.0 Hz, 1 H, ArCH major), 7.19 - 7.26 (m, 3 H, 2 x ArCH major + ArCH minor), 7.27 - 7.31 (m, 2 H, ArCH minor), 7.61 (d, J = 6.9 Hz, 2 H, ArCH major), 7.83 (d, J = 7.3 Hz, 2 H, ArCH minor); ¹³C NMR (126 MHz, CDCl₃) δ ppm -5.3 (Si(CH₃)₂ minor), -5.3 (Si(CH₃)₂ major), 13.8 (CO₂CH₂CH₃ minor), 14.0 (CO₂CH₂CH₃ major), 18.3 (SiC(CH₃)₃ minor), 18.4 (SiC(CH₃)₃ major), 24.0 (CH₂CH₂CH₂OTBS minor), 24.3 (OC(CH₃)₂ major), 24.4 (OC(CH₃)₂ minor), 24.7 (CH₂CH₂CH₂OTBS major), 25.1 (OC(CH₃)₂ minor), 25.1 (OC(CH₃)₂ major), 25.9 (SiC(CH₃)₃ minor), 26.0 (SiC(CH₃)₃ major), 28.5 (CH₂CHC=CH₂ major + CH₂CHC=CH₂ minor), 32.3 (CH₂CH₂OTBS minor), 32.7 (CH₂CH₂OTBS major), 55.6 (OCH₃ major + OCH₃ minor), 59.8 (CHC=CH₂ major + CHC=CH₂ minor), 60.3 (CO₂CH₂CH₃ minor), 61.0 (CO₂CH₂CH₃ major), 63.0 (CH₂OTBS minor), 63.2 (CH₂OTBS major), 71.3 (CCO₂CH₂CH₃ major), 71.6 (CCO₂CH₂CH₃ minor), 83.6 (OC(CH₃)₂ major), 83.9 (OC(CH₃)₂ minor), 113.7 (PMP ArCH major), 113.8 (PMP ArCH minor), 115.5 (PMP ArCH minor), 115.8 (PMP ArCH major), 126.7 (ArCH major), 126.8 (ArCH minor), 127.2 (ArCH minor), 127.4 (ArCH major), 128.6 (ArCH major), 129.5 (ArCH minor), 134.7 (C=CH₂ minor), 136.4 (C=CH₂ major), 139.2 (ArC major + ArC minor), 140.8 (ArC major), 141.6 (ArC minor), 151.1 (ArC major), 151.3 (ArC minor), 173.6 (C=O minor), 173.7 (C=O major); (BC=CH₂ major and BC=CH₂ minor not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 27.4.

rac-Ethyl (2*S*,3*S*)-7-bromo-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3t)

Prepared according to General Procedure B on a 0.250 mmol scale (63:37 d.r. of crude material). Column chromatography (5% Et₂O in hexane + 1% NEt₃) afforded the title compound as a yellow gum. The yield (66%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard. MS (ES⁺) *m/z*: 624 ([M+K]⁺). HRMS calcd for C₃₀H₄₁NBO₅BrK: 624.1893. Found: 624.1885; v_{max} (thin film/cm⁻¹): 3380, 2978, 2934, 2832, 2352, 2328, 1726, 1603, 1511, 1463, 1444, 1380, 1365, 1339, 1304, 1237, 1200, 1181, 1141, 1076, 1033; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.92 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 0.95 - 1.02 (m, 1 H, CH₂CH₂CH₂Br), 1.12 - 1.19 (m, 1 H, CH₂CHC=CH₂), 1.21 - 1.27 (m, 1 H, CH₂CH₂CH₂Br), 1.34 (s, 6 H, 2 x CH₃), 1.39 (s, 6 H, 2 x CH₃), 1.52 - 1.57 (m, 1 H, CH₂CH₂Br), 1.67 (dq, *J* =

14.1, 7.1 Hz, 1 H, CH_2CH_2Br), 1.75 - 1.87 (m, 1 H, $CH_2CHC=CH_2$), 2.75 (d, J = 11.3 Hz, 1 H, $CHC=CH_2$), 3.18 (td, J = 6.8, 2.1 Hz, 2 H, CH_2Br), 3.68 (s, 3 H, OCH_3), 3.82 - 3.89 (m, 1 H, $CO_2CH_2CH_3$), 3.91 - 4.02 (m, 1 H, $CO_2CH_2CH_3$), 5.56 (s, 1 H, $C=CH_2$), 5.97 (d, J = 3.3 Hz, 2 H, $C=CH_2 + NH$), 6.27 (d, J = 8.8 Hz, 2 H, ArCH), 6.61 (d, J = 8.8 Hz, 2 H, ArCH), 7.21 - 7.27 (m, 1 H, ArCH), 7.28 - 7.34 (m, 2 H, ArCH), 7.84 (d, J = 7.5 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.8 ($CO_2CH_2CH_3$), 24.5 (CH_3), 25.1 (CH_3), 25.8 ($CH_2CHC=CH_2$), 26.3 ($CH_2CH_2CH_2Br$), 32.1 (CH_2CH_2Br), 33.5 (CH_2Br), 55.6 (OCH_3), 60.3 ($CO_2CH_2CH_3$), 71.5 ($CCO_2CH_2CH_3$), 84.0 ($OC(CH_3)_2$), 113.8 (ArCH), 115.6 (ArCH), 126.9 (ArCH), 127.3 (ArCH), 129.4 (ArCH), 135.0 ($C=CH_2$), 138.8 (ArC), 141.4 (ArC), 151.4 (ArC), 173.6 (C=O), ($CHC=CH_2$ and $BC=CH_2$ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 33.2.

rac-Ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3u)

Prepared according to General Procedure B on a 0.250 mmol scale (92:8 d.r. of crude material). Column chromatography (5 - 10% Et₂O in hexane + 1% NEt₃) afforded the title compound as a yellow solid. The yield (75%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard. M.p.: 135-137 °C (CHCl₃); MS (ES') *m/z*: 526 (M-H'). HRMS calcd for $C_{32}H_{38}BNO_5Na$: 550.2735. Found: 550.2726; v_{max} (thin film/cm⁻¹): 3410, 2976, 1722, 1601, 1511, 1463, 1446, 1380, 1360, 1307, 1238, 1168, 1139, 1034; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.82 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.14 (s, 6 H, 2 x CH₃), 1.23 (s, 6 H, 2 x CH₃), 3.69 (s, 3 H, OCH₃), 3.82 (dq, *J* = 10.7, 7.1 Hz, 1 H, CO₂CH₂CH₃), 3.95 (dq, *J* = 10.8, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.32 (s, 1 H, CHC=CH₂), 5.18 (d, *J* = 2.8 Hz, 1 H, C=CH₂), 5.71 (d, *J* = 3.0 Hz, 1 H, C=CH₂), 6.15 (br. s, 1 H, NH), 6.31 (d, *J* = 9.0 Hz, 2 H, ArCH), 6.61 (d, *J* = 9.0 Hz, 2 H, ArCH), 7.15 - 7.22 (m, 2 H, ArCH), 7.22 - 7.26 (m, 4 H, ArCH), 7.52 (d, *J* = 7.3 Hz, 2 H, ArCH), 7.67 (d, *J* = 7.0 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.5 (CO₂CH₂CH₃), 24.3 (CH₃), 24.8 (CH₃), 55.7 (OCH₃), 60.9 (CO₂CH₂CH₃), 64.7 (CHC=CH₂), 70.7 (CCO₂CH₂CH₃), 84.0 (OC(CH₃)₂), 113.7 (ArCH), 116.0 (ArCH), 126.5 (ArCH), 127.0 (ArCH), 127.5 (ArCH), 127.9 (ArCH), 128.8 (ArCH), 129.3 (ArCH), 135.3 (C=CH₂), 138.9 (ArC), 140.5 (ArC), 140.5 (ArC), 151.1 (ArC), 172.9 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.7.

3u was further characterized by X-ray crystallographic analysis.

rac-Ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(m-tolyl)pent-4-enoate (3v)

Prepared according to General Procedure B on a 0.250 mmol scale (78:22 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a white solid (571 mg, 0.105 mmol, 43%).

M.p.: 127-130 °C (Et₂O); MS (ES⁺) m/z: 564 ([M+Na]⁺). HRMS calcd for C₃₃H₄₁NBO₅Na: 542.3072. Found: 542.3062; v_{max} (thin film/cm⁻¹): 3410, 3055, 2977, 2930, 2830, 1721, 1605, 1510, 1305, 1236, 1138, 1037; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.84 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃ major), 1.05 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃ minor), 1.18 (s, 6 H, 2 x CH₃ major), 1.25 (s, 6 H, 2 x CH₃ major), 1.34 (s, 6 H, 2 x CH₃ minor), 1.37 (s, 6 H, 2 x CH₃ minor), 2.16 (s, 3 H, ArCCH₃ minor), 2.32 (s, 3 H, ArCCH₃ major), 3.67 (s, 3 H, OCH₃ minor), 3.69 (s, 3 H, OCH₃ major), 3.78 – 3.87 (m, 1 H, CO₂CH₂CH₃ major), 3.91 – 3.98 (m, 1 H, CO₂CH₂CH₃ major), 3.98 – 4.04 (m, 1 H, CO₂CH₂CH₃ minor), 4.08 – 4.15 (m, 1 H, CO₂CH₂CH₃ minor), 4.16 (s, 1 H, CHC=CH₂ minor), 4.29 (s, 1 H, CHC=CH₂ major), 5.20 (apparent s, 1 H, C=CH₂ major), 5.71 (d, J = 2.9 Hz, 1 H, C=CH₂ major), 5.87 (d, J = 2.7 Hz, 1 H, C=CH₂ minor), 6.02 (d, J = 2.7 Hz, 1 H, C=CH₂ minor), 6.14 (br. s, 1 H, NH major), 6.28 – 6.34 (m, 5 H, 2 H from ArCH major + 2 H from ArCH minor + NH minor), 6.57 – 6.64 (m, 4 H, 2 H from ArCH major + 2 H from ArCH minor), 6.83 – 6.91 (m, 3 H, ArCH minor), 6.91 – 6.96 (m, 1 H, ArCH minor), 7.01 (d, J = 7.5 Hz, 1 H, ArCH major), 7.12 – 7.19 (m, 2 H, ArCH major), 7.20 – 7.32 (m, 6 H, 3 H from ArCH major + 3 H from ArCH minor), 7.39 (d, J = 7.5 Hz, 1 H, ArCH major), 7.63 (apparent s, 2 H, ArCH minor), 7.69 (d, J = 7.8 Hz, 2 H, ArCH major); ¹³C NMR (126 MHz, CDCl₃) δ ppm 13.6 (CO₂CH₂CH₃ major), 14.1 (CO₂CH₂CH₃ minor), 21.4 (ArCCH₃ minor), 21.6 (ArCCH₃ major), 24.5 (CH₃ major), 24.8 (CH₃ minor), 24.9 (CH₃ minor), 25.0 (CH₃ major), 55.7 (OCH₃ minor), 55.8 (OCH₃ major), 60.8 (CO₂CH₂CH₃ minor), 60.9 (CO₂CH₂CH₃ major), 65.0 (CHC=CH₂ major), 66.4 (CHC=CH₂ minor), 70.9 (CCO₂CH₂CH₃ major), 71.5 (CCO₂CH₂CH₃ minor), 84.1 (OC(CH₃)₂ major), 84.3 (OC(CH₃)₂ minor), 113.8 (ArCH major + ArCH minor), 116.1 (ArCH major), 116.2 (ArCH minor), 126.4 (ArCH major), 126.9 (ArCH minor), 127.1 (ArCH major), 127.2 (ArCH minor), 127.2 (ArCH minor), 127.2 (ArCH minor), 127.3 (ArCH minor), 127.4 (ArCH major), 127.6 (ArCH major), 128.0 (ArCH major), 129.0 (ArCH major), 129.3 (ArCH minor), 130.4 (ArCH major), 131.2 (ArCH minor), 134.8 (C= CH_2 minor), 135.4 (C= CH_2 major), 136.7 (ArC minor), 137.4 (ArC major), 138.8 (2 x ArC minor), 139.1 (ArC major), 140.5 (ArC major), 140.7 (ArC major), 141.3 (ArC minor), 151.2 (ArC major), 151.5 (ArC minor), 173.1 (C=O major), 173.5 (C=O minor), (BC=CH₂ major and BC=CH₂ minor not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 30.5.

3v was further characterized by X-ray crystallographic analysis.

rac-Ethyl (2*S*,3*R*)-3-(3-fluorophenyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3w)

Prepared according to General Procedure B on a 0.250 mmol scale (86:14 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a white solid (50.7 mg, 0.093 mmol, 37%).

M.p.: 126-128 °C (Et₂O); MS (ES⁺) *m/z*: 584 ([M+K]⁺). HRMS calcd for C₃₂H₃₈NBO₅F: 546.2822. Found: 546.2811; v_{max} (thin film/cm⁻¹): 3405, 3060, 2978, 2937, 2832, 1720, 1510, 1309, 1236, 1138, 1036; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.87 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.15 (s, 6 H, 2 x CH₃), 1.24 (s, 6 H, 2 x CH₃), 3.68 (s, 3 H, OCH₃), 3.87 (dq, *J* = 10.6, 7.1 Hz, 1 H, CO₂CH₂CH₃), 3.98 (dq, *J* = 10.7, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.29 (s, 1 H, CHC=CH₂), 5.14 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 5.72 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 6.13 (br. s, 1 H, NH), 6.30 (d, *J* = 8.5 Hz, 2 H, ArCH), 6.60 (d, *J* = 8.6 Hz, 2 H, ArCH), 6.88 (t, *J* = 8.0 Hz, 1 H, ArCH), 7.16 – 7.28 (m, 5 H, ArCH), 7.36 (d, *J* = 10.7 Hz, 1 H, ArCH), 7.63 (d, *J* = 7.5 Hz, 2 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 13.7 (CO₂CH₂CH₃), 24.4 (CH₃), 25.0 (CH₃), 55.8 (OCH₃), 61.2 (CO₂CH₂CH₃), 64.6 (CHC=CH₂), 70.8 (CCO₂CH₂CH₃), 84.3 (OC(CH₃)₂), 113.5 (d, *J* = 21.0 Hz, ArCH), 113.9 (ArCH), 116.2 (ArCH), 116.5 (d, *J* = 22.4 Hz, ArCH), 125.4 (d, *J* = 2.8 Hz, ArCH), 127.3 (ArCH), 127.8 (ArCH), 128.9 (ArCH), 129.4 (d, *J* = 8.3 Hz, ArCH), 136.2 (C=CH₂), 138.7 (ArC), 140.4 (ArC), 143.4 (d, *J* = 7.2 Hz, ArC), 151.4 (ArC), 162.6 (d, *J* = 244.5 Hz, ArC), 172.9 (C=O), (BC=CH₂ not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 30.0; ¹⁹F NMR (471 MHz) δ ppm -113.65 (ddd, *J* = 10.7, 8.5, 6.1 Hz).

3w was further characterized by X-ray crystallographic analysis.

Prepared according to General Procedure B on a 0.250 mmol scale (85:15 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum. The yield (61%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard.

MS (ES⁺) *m/z*: 649 ([M+Na]⁺). HRMS calcd for C₃₇H₄₇N₂BO₆Na: 649.3419. Found: 649.3408; v_{max} (thin film/cm⁻¹): 3410, 3061, 2977, 2933, 2831, 2241, 1721, 1622, 1510, 1307, 1236, 1137, 1033; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.84 (t, *J* = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.08 (br. s, 3 H, NCH₂CH₃), 1.16 (s, 6 H, 2 x CH₃), 1.23 (s, 9 H, 2 x CH₃ + 3 H from NCH₂CH₃), 3.23 (br. s, 2 H, NCH₂CH₃), 3.52 (br. s, 2 H, NCH₂CH₃), 3.67 (s, 3 H, OCH₃), 3.81 (dq, *J* = 10.5, 7.2 Hz, 1 H, CO₂CH₂CH₃), 3.95 (dq, *J* = 10.5, 7.2 Hz, 1 H, CO₂CH₂CH₃), 4.32 (s, 1 H, CHC=CH₂), 5.21 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 5.73 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 6.12 (s, 1 H, NH), 6.25 – 6.32 (d, *J* = 9.0 Hz, 2 H, ArCH), 6.59 (d, *J* = 9.0 Hz, 2 H, ArCH), 7.16 – 7.32 (m, 5 H, ArCH), 7.50 (s, 1 H, ArCH), 7.58 (d, *J* = 7.8 Hz, 1 H, ArCH), 7.64 (d, *J* = 7.0 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.2 (NCH₂CH₃), 13.7 (CO₂CH₂CH₃), 64.9 (CH=CH₂), 70.9 (CCO₂CH₂CH₃), 84.3 (OC(CH₃)₂), 113.9 (ArCH), 116.2 (ArCH), 124.9 (ArCH), 127.2 (ArCH), 127.7 (ArCH), 127.7 (ArCH), 128.9 (ArCH), 130.3 (ArCH), 136.2 (C=CH₂), 137.1 (ArC), 139.0 (ArC), 140.5 (ArC), 140.8 (ArC), 151.4 (ArC), 171.3 (NC=O), 172.9 (OC=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.0.

rac-Ethyl (2*S*,3*R*)-3-(4-chlorophenyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate 3y

Prepared according to General Procedure B on a 0.250 mmol scale (80:20 d.r. of crude material). Column chromatography (10% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum (43 mg, 0.076 mmol, 30%).

MS (ES⁻) *m/z*: 584 ([M+Na]⁺). HRMS calcd for C₃₂H₃₈NBO₅Cl: 562.2526. Found: 562.2518; v_{max} (thin film/cm⁻¹): 3410, 2977, 2931, 2830, 1721, 1510, 1309, 1237, 1138, 1037; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.91 (t, *J* = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.18 (s, 6 H, 2 x CH₃), 1.27 (s, 6 H, 2 x CH₃), 3.71 (s, 3 H, OCH₃), 3.90 (dq, *J* = 10.7, 7.1 Hz, 1 H, CO₂CH₂CH₃), 4.02 (dq, *J* = 10.7, 7.1, 6.5 Hz, 1 H, CO₂CH₂CH₃), 4.32 (s, 1 H, CHC=CH₂), 5.19 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 5.76 (d, *J* = 2.9 Hz, 1 H, C=CH₂), 6.13 (s, 1 H, NH), 6.32 (d, *J* = 9.1 Hz, 2 H, ArCH), 6.64 (d, *J* = 9.1 Hz, 2 H, ArCH), 7.21 – 7.32 (m, 5 H), 7.50 (d, *J* = 8.5 Hz, 2 H, ArCH), 7.64 (d, *J* = 7.1 Hz, 2 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 13.7 (CO₂CH₂CH₃), 24.4 (CH₃), 25.0 (CH₃), 55.8 (OCH₃), 61.2 (CO₂CH₂CH₃), 64.2 (CHC=CH₂), 70.8 (CCO₂CH₂CH₃), 84.3 (OC(CH₃)₂), 113.9 (ArCH), 116.3 (ArCH), 127.3 (ArCH), 127.8 (ArCH), 128.1 (ArCH), 128.9 (ArCH), 131.0 (ArCH), 132.5 (ArC), 136.0 (C=CH₂), 138.8 (ArC), 139.3 (ArC), 140.3 (ArC), 151.4 (ArC), 172.9 (C=O), (B*C*=CH₂ not observed); ¹¹B NMR (160 MHz, CDCl₃) δ ppm 30.1.

Use of Cyclic Ketimines

rac-(S)-3-((S)-1-Cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)-3-phenyl-3,4dihydro-2H-benzo[b][1,4]oxazin-2-one (3z)

Prepared according to General Procedure B on a 0.250 mmol scale (>95:5 d.r. of crude material). Column chromatography (3 - 8% Et_2O in hexane + 1% NEt_3) afforded the title compound as a colourless oil (13 mg, 0.027 mmol, 11%).

MS (ES⁻) *m/z*: 472 ([M-H]⁻). HRMS calcd for C₂₉H₃₆NBO₄: 473.2732. Found: 473.2725; v_{max} (thin film/cm⁻¹): 3335, 2976, 2924, 2851, 1760, 1620, 1600, 1503, 1446, 1424, 1391, 1381, 1372, 1334, 1306, 1275, 1220, 1211, 1186, 1168, 1140, 1112, 1077, 1029; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.88 (t, *J* = 11.5 Hz, 1 H, CH₂), 1.10 - 1.23 (m, 4 H, CH₂), 1.30 (s, 6 H, 2 x CH₃), 1.39 (s, 6 H, 2 x CH₃), 1.62 (d, *J* = 7.0 Hz, 1 H, CH₂), 1.66 - 1.74 (m, 3 H, CH₂), 1.77 - 1.89 (m, 1 H, CHCHC=CH₂), 1.99 (d, *J* = 11.5 Hz, 1 H, CH₂), 3.40 (d, *J* = 8.0 Hz, 1 H, CHC=CH₂), 5.24 (d, *J* = 3.3 Hz, 1 H, C=CH₂), 5.59 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 6.67 (t, *J* = 8.0 Hz, 1 H, ArCH), 6.78 - 6.86 (m, 2 H, ArCH), 7.00 (t, *J* = 7.3 Hz, 1 H, ArCH), 7.06 - 7.12 (m, 2 H, ArCH + NH), 7.16 (t, *J* = 7.5 Hz, 2 H, ArCH), 7.19 - 7.25 (m, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 24.3 (CH₃), 25.0 (CH₃), 26.3 (CH₂), 26.9 (2 x CH₂), 32.3 (CH₂), 32.7 (CH₂), 38.7 (CHCHC=CH₂), 61.0 (CHC=CH₂), 66.5 (CCO₂), 84.1 (OC(CH₃)₂), 113.9 (ArCH), 116.4 (ArCH), 118.3 (ArCH), 124.9 (ArCH), 126.6 (ArCH), 127.3 (ArCH), 128.3 (ArCH), 133.4 (ArC), 137.3 (C=CH₂), 139.3 (ArC), 140.0 (ArC), 167.5 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.3.

Unsuccessful couplings using cyclic ketimines

Figure S1: Additional cyclic ketimine substrates whose use in the three-component coupling was investigated

Use of 1,1-Disubstituted Allene

Entry	Ligand	Buried volume (%) ¹⁷	NMR yield (%)	rs (3aa:3aa')
1	L1	27.5	14	62:38
2	L2	36.5	16	68:32
3	L3	39.6	2	50:50
4	L4	39.8	6	57:43

Table S4: Additional Ligand Screening

rac-Ethyl 2-((4-methoxyphenyl)amino)-3,3-dimethyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3aa) and *rac*-Ethyl 2-((4-methoxyphenyl)amino)-5-methyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-enoate (3aa')

Prepared according to General Procedure B on a 0.250 mmol scale (17:83 r.s. of crude material). Column chromatography (5% Et_2O in hexane + 1% NEt_3) afforded the title compound as a yellow gum. The yield (73%) was determined by 1 H NMR analysis using MeNO₂ as an internal standard. MS (ES⁻) m/z: 478 ([M-H]⁻). HRMS calcd for C₂₈H₃₈NBO₅K: 518.2475. Found: 518.2475; v_{max} (thin film/cm⁻¹): 3379, 2978, 2932, 1726, 1620, 1511, 1445, 1372, 1353, 1292, 1237, 1218, 1175, 1145, 1110, 1075, 1039; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.93 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃ minor), 1.00 (t, J = 7.2 Hz, 3 H CO₂CH₂CH₃ major), 1.17 (s, 6 H, OC(CH₃)₂ minor), 1.19 (s, 6 H, OC(CH₃)₂ minor), 1.20 (s, 6 H, OC(CH₃)₂ major), 1.26 (s, 6 H, OC(CH₃)₂ major), 1.36 (s, 6 H, C(CH₃)₂C=CH₂ minor), 1.37 (s, 3 H, $C=C(CH_3)_2$ major), 1.89 (s, 3 H, $C=C(CH_3)_2$ major), 3.00 (d, J = 13.8 Hz, 1 H, $CH_2C=C(CH_3)_2$ major), 3.26 $(d, J = 13.8 \text{ Hz}, 1 \text{ H}, CH_2C=C(CH_3)_2 \text{ major}), 3.65 (s, 3 \text{ H}, OCH_3 \text{ minor}), 3.66 (s, 3 \text{ H}, OCH_3 \text{ major}), 3.78 -$ 3.91 (m, 1 H, CO₂CH₂CH₃ minor), 3.92 - 4.01 (m, 1 H, CO₂CH₂CH₃ minor), 4.06 (m, J = 1.0 Hz, 2 H, $CO_2CH_2CH_3$ major), 5.26 (br. s, 1 H, NH major), 5.52 (d, J = 1.8 Hz, 1 H, C=CH₂ minor), 5.95 (d, J = 2.3Hz, 1 H, C=CH₂ minor), 6.13 (s, 1 H, NH minor), 6.14 - 6.19 (m, 2 H, ArCH minor), 6.37 (d, J = 9.0 Hz, 2 H, ArCH major), 6.53 (d, J = 9.0 Hz, 2 H, ArCH minor), 6.57 (d, J = 9.0 Hz, 2 H, ArCH major), 7.16 - 7.23 (m, 2 H, ArCH major + ArCH minor), 7.23 - 7.27 (m, 4 H, 2 x ArCH major + 2 x ArCH minor), 7.54 (d, J = 7.0 Hz, 4 H, 2 x ArCH major + 2 x ArCH minor); 13 C NMR (101 MHz, CDCl₃) δ ppm 13.7 (CO₂CH₂CH₃) minor), 13.8 (CO₂CH₂CH₃ major), 21.4 (C=C(CH₃)₂ major), 23.6 (OC(CH₃)₂ minor), 24.6 (C=C(CH₃)₂ major), 25.0 (OC(*C*H₃)₂ major), 25.1 (OC(*C*H₃)₂ major), 25.8 (OC(*C*H₃)₂ minor), 41.6 (*C*H₂C=C(CH₃)₂ major), 46.1 (*C*(CH₃)₂C=CH₂ minor), 55.5 (OCH₃ major + OCH₃ minor), 60.0 (CO₂CH₂CH₃ minor), 61.1 (CO₂CH₂CH₃ major), 68.7 (CCO₂CH₂CH₃ major), 72.8 (CCO₂CH₂CH₃ minor), 83.0 (OC(CH₃)₂ major), 83.9 (OC(CH₃)₂ minor), 113.7 (ArCH minor), 113.8 (ArCH major), 115.6 (ArCH minor), 117.1 (ArCH major), 123.8 (ArCH minor), 126.8 (ArCH major), 127.1 (ArCH minor), 127.7 (ArCH major), 128.0 (ArCH major), 130.1 (ArCH minor), 131.4 (C=*C*H₂ minor), 137.8 (ArC minor), 140.2 (ArC major), 140.3 (ArC major), 141.5 (ArC minor), 150.7 (C=*C*(CH₃)₂ major), 151.1 (ArC minor), 151.9 (ArC major), 172.9 (C=O minor), 174.1 (C=O major), (B*C*=C(CH₃)₂ major and B*C*=CH₂ minor not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 30.5.

Alternative procedure for the synthesis of *rac*-ethyl 2-((4-methoxyphenyl)amino)-3,3-dimethyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3aa) and*rac*-Ethyl2-((4-methoxyphenyl)amino)-5-methyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-enoate (3aa') using (β-ICyD)-CuCl

Figure S2: Structure of (β-ICyD)-CuCl

To a solution of (β -ICyD)-CuCl (14.9 mg, 0.005 mmol, 5 mol%) in THF (0.4 mL) at room temperature under N₂, was added *t*-BuOK (0.1 mL of a 1 M THF solution, 0.100 mmol, 1.0 equiv), and the reaction was stirred for 25 minutes at room temperature. B₂pin₂ (1.3 equiv) in THF (0.4 mL) was then added and the resulting mixture stirred for 40 minutes. 3-Methylbuta-1,2-diene (14.7 µL, 0.150 mmol, 1.5 equiv) and a solution of ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2-phenylacetate (28.3 mg, 0.100 mmol, 1.0 equiv) in THF (0.5 mL) were then added dropwise simultaneously at room temperature. The reaction mixture was then heated to 60 °C. The reaction mixture was stirred at 60 °C for 24 hours then filtered through a Celite plug, concentrated *in vacuo* to afford the crude product mixture (87:13

r.s. of crude material). The yield (43%) was determined by ¹H NMR analysis using MeNO₂ as an internal standard. A sample was taken and purified by column chromatography (5% Et_2O in hexane).

Enantiomeric purities of **3aa** and **3aa'** were determined by HPLC analysis in comparison with authentic racemic material (52:48 e.r. and 51:49 e.r. respectively shown; Lux 5 μ m Amylose-1 column, 98:2 hexanes:*i*-PrOH, 1.0 mL/min, 20 °C, 230 nm).

Derivatisations of 3a

rac-Ethyl (2S,3R)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-oxo-2-phenylpentanoate (4)

To a solution of *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (40.0 mg, 0.075 mmol, 1.0 equiv, >95:5 d.r.) in THF (0.38 mL) at 0 °C, were added H_2O_2 (0.04 mL of a 30% w:w aqueous solution, 0.375 mmol, 5.0 equiv) and NaOH (0.19 mL of a 2 M aqueous solution, 0.375 mmol, 5.0 equiv). The reaction mixture was stirred at 0 °C for 30 minutes then extracted with Et₂O (3 x 1 mL). The organic layers were combined, dried over MgSO₄ and concentrated *in vacuo*. The crude product mixture (>95:5 d.r.) was purified by column chromatography (8% Et₂O in hexane) to afford the title compound as a yellow gum (32.1 mg, 0.075 mmol, 99%).
MS (ES⁺) m/z: 462 ([M+H]⁺). HRMS calcd for C₂₆H₃₃NO₄Na: 446.2302. Found: 446.2303; v_{max} (thin film/cm⁻¹): 3387, 2928, 2851, 1703, 1511, 1446, 1355, 1298, 1240, 1179, 1131, 1036; ¹H NMR (400 MHz, CDCl₃) δ ppm 1.04 - 1.17 (m, 4 H, CH₂), 1.19 (t, J = 7.2 Hz, 3 H, CO₂CH₂CH₃), 1.23 - 1.30 (m, 1 H, CH₂), 1.50 (s, 3 H, C(O)CH₃), 1.60 - 1.66 (m, 1 H, CH₂), 1.67 - 1.76 (m, 2 H, CH₂), 1.80 (t, J = 11.9 Hz, 2 H, CH₂), 1.91 - 2.01 (m, 1 H, CHCHC(O)CH₃), 3.49 (d, J = 6.3 Hz, 1 H, CHC(O)CH₃), 3.69 (s, 3 H, OCH₃), 4.22 (m, 2 H, CO₂CH₂CH₃), 5.40 (br. s, 1 H, NH), 6.31 (d, J = 9.0 Hz, 2 H, ArCH), 6.61 (d, J = 9.0 Hz, 2 H, ArCH), 7.21 - 7.26 (m, 3 H, ArCH), 7.57 (dd, J = 8.2, 1.4 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 26.0 (CH₂), 26.5 (CH₂), 27.0 (CH₂), 30.9 (CH₂), 32.3 (CH₂), 35.2 (C(O)CH₃), 39.2 (CHCHC(O)CH₃), 55.6 (OCH₃), 61.6 (CO₂CH₂CH₃), 65.7 (CHC(O)CH₃), 68.4 (CCO₂CH₂CH₃), 113.7 (ArCH), 117.0 (ArCH), 127.4 (ArCH), 128.2 (ArCH), 128.5 (ArCH), 137.7 (ArC), 139.3 (ArC), 151.7 (ArC), 172.3 (CO₂CH₂CH₃), 212.2 (C(O)CH₃).

rac-(4*S*,5*S*)-4-Cyclohexyl-5-(hydroxymethyl)-1-(4-methoxyphenyl)-3-methylene-5-phenyl-1,2azaborolidin-2-ol (5)

To a solution of lithium aluminium hydride (0.075 mL of a 1 M Et₂O solution, 0.075 mmol, 1.0 equiv) in THF (0.35 mL) at 0 °C, was added a solution of *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (40.0 mg, 0.075 mmol, 1.0 equiv, >95:5 d.r.) in THF (0.40 mL) at 0 °C. The reaction mixture was stirred at 0 °C for 4 hours then NaOH (2 M aqueous solution, 0.2 mL) and H₂O (0.3 mL) were added dropwise at 0 °C. The reaction mixture was filtered, washed with Et₂O and concentrated *in vacuo*. The crude product mixture (>95:5 d.r.) was purified by column chromatography (30 - 70% Et₂O in hexane) to afford the title compound as a yellow gum (14.9 mg, 0.038 mmol, 51%).

MS (APCI⁻) HRMS calcd for C₂₄H₂₉NBO₃: 390.2246. Found: 390.2258; v_{max} (thin film/cm⁻¹): 3403, 2924, 2851, 1618, 1509, 1481, 1447, 1422, 1373, 1303, 1235, 1179, 1110, 1035; ¹H NMR (500 MHz, CDCl₃) δ ppm 0.91 - 1.00 (m, 3 H, CH₂), 1.04 - 1.12 (m, 2 H, CH₂), 1.18 - 1.23 (m, 1 H, CHCHC=CH₂), 1.45 - 1.54 (m, 3 H, CH₂), 1.54 - 1.59 (m, 1 H, CH₂), 1.65 (d, *J* = 12.7 Hz, 1 H, CH₂), 2.25 (apparent s, 1 H, CHC=CH₂), 3.65 (s, 3 H, OCH₃), 3.80 (br. s, 1 H, OH), 4.06 (br. s, 1 H, OH), 4.57 (dd, *J* = 11.7, 2.0 Hz, 1 H, CH₂OH), 4.71 (d, *J* = 11.7 Hz, 1 H, CH₂OH), 5.71 (d, *J* = 3.2 Hz, 1 H, C=CH₂), 6.14 (d, *J* = 3.2 Hz, 1 H, C=CH₂), 6.20

(d, J = 9.0 Hz, 2 H, ArCH), 6.55 (d, J = 9.0 Hz, 2 H, ArCH), 7.30 (t, J = 7.3 Hz, 1 H, ArCH), 7.38 (t, J = 7.7 Hz, 2 H, ArCH), 7.45 (d, J = 7.3 Hz, 2 H, ArCH); ¹³C NMR (126 MHz, CDCl₃) δ ppm 26.1 (CH₂), 26.6 (CH₂), 26.7 (CH₂), 29.8 (CH₂), 34.6 (CH₂), 37.2 (CHCHC=CH₂), 55.5 (OCH₃), 60.9 (CHC=CH₂), 62.0 (CCH₂OH), 62.8 (CH₂OH), 114.3 (ArCH), 118.0 (ArCH), 126.5 (ArCH), 127.1 (ArCH), 128.6 (ArCH), 130.8 (C=CH₂), 138.3 (ArC), 143.0 (ArC), 152.8 (ArC), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.6.

rac-Ethyl (2*S*,3*S*)-2-amino-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (6)

To a solution of *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (40.0 mg, 0.075 mmol, 1.0 equiv, >95:5 d.r.) in MeCN (0.5 mL) at -10 °C, was added a solution of (NH₄)₂Ce(NO₃)₆ (0.123 g, 0.225 mmol, 3.0 equiv) in H₂O (1.5 mL). The reaction mixture was stirred at -10 °C for 75 minutes then H₂O (1 mL) was added. The reaction mixture was then extracted with EtOAc (4 x 2 mL). The organic layers were combined, washed with saturated aqueous NaHCO₃ solution (2 mL), saturated aqueous Na₂SO₃ solution (2 mL), saturated aqueous NaHCO₃ solution (2 mL) and saturated brine solution (2 mL), then dried over MgSO₄, filtered and concentrated *in vacuo*. The crude was dissolved in MeCN (0.5 mL) at 20 °C and HCl (0.2 mL of a 1 M aqueous solution, 0.2 mmol, 2.7 equiv) was added. The reaction mixture was stirred at 20 °C for 15 minutes then concentrated *in vacuo*. Saturated aqueous Na₂CO₃ solution (1 mL) was added to the reaction mixture. The reaction mixture was then extracted with EtOAc (3 x 1 mL). The organic layers were combined, washed with saturated brine solution (1 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (30 - 100% Et₂O in hexane + 1% NEt₃) to afford the title compound as a yelloworange gum (12.4 mg, 0.029 mmol, 39%, >95:5 d.r.).

MS (ES⁺) m/z: 450 ([M+Na]⁺). HRMS calcd for C₂₅H₃₈NBO₄Na: 450.2786. Found: 450.2778; v_{max} (thin film/cm⁻¹): 3412, 2976, 2925, 2851, 1726, 1599, 1446, 1423, 1379, 1371, 1301, 1275, 1214, 1167, 1142, 1111, 1079, 1031; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.81 - 0.92 (m, 1 H, CH₂), 1.08 (dd, J = 12.7, 2.7 Hz, 1 H, CH₂), 1.11 - 1.16 (m, 1 H, CH₂), 1.18 (s, 6 H, 2 x CH₃), 1.21 (s, 6 H, 2 x CH₃), 1.24 (t, J = 7.1 Hz, 3 H, CO₂CH₂CH₃), 1.27 - 1.31 (m, 1 H, CH₂), 1.57 - 1.64 (m, 1 H, CH₂), 1.64 - 1.73 (m, 3 H, CH₂), 1.73 - 1.85 (m, 3 H, 2 H from CH₂ + CHCHC=CH₂), 2.65 (br. s, 2 H, NH₂), 3.26 (d, J = 7.8 Hz, 1 H, CHC=CH₂), 4.06 - 4.16 (m, 1 H, CO₂CH₂CH₃), 4.16 - 4.26 (m, 1 H, CO₂CH₂CH₃), 5.34 (d, J = 3.2 Hz, 1 H, C=CH₂), 5.56

S38

(d, J = 3.7 Hz, 1 H, C=CH₂), 7.15 (t, J = 7.3 Hz, 1 H, ArCH), 7.23 (t, J = 7.1 Hz, 2 H, ArCH), 7.48 (d, J = 7.3 Hz, 2 H, ArCH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.4 (CH₃), 24.7 (CH₃), 26.4 (CH₂), 26.8 (CH₂), 26.9 (CH₂), 32.2 (CH₂), 32.6 (CH₂), 39.0 (CHCHC=CH₂), 59.5 (CHC=CH₂), 61.4 (CO₂CH₂CH₃), 66.7 (CCO₂CH₂CH₃), 83.0 (OC(CH₃)₂), 126.2 (ArCH), 126.7 (ArCH), 127.8 (ArCH), 133.3 (C=CH₂), 143.6 (ArC), 175.1 (C=O), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 29.9.

rac-Ethyl (2*S*,3*S*)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (7)

To a solution of (*tert*-butoxycarbonyl)glycine (5.3 mg, 0.0304 mmol, 1.0 equiv) and *N*-methylmorpholine (3.5 μ L, 0.0319 mmol, 1.05 equiv) in THF (0.5 mL) at -15 °C, was added isobutyl chloroformate (4.0 μ L, 0.0304 mmol, 1.0 equiv). The reaction mixture was stirred for 15 minutes at -15 °C. A solution of *rac*-ethyl (2*S*,3*S*)-2-amino-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (13.0 mg, 0.0304 mmol, 1.0 equiv, >95:5 d.r.) in THF (0.5 mL) was then added. The reaction mixture was stirred at 20 °C for 17 hours then concentrated *in vacuo*. The crude product was purified by column chromatography (20 - 100% Et₂O in hexane + 1% NEt₃) to afford the title compound as a colourless gum (10.0 mg, 0.0171 mmol, 56%, >95:5 d.r.).

MS (ES⁺) *m/z*: 607 ([M+Na]⁺). HRMS calcd for C₃₂H₄₉N₂BO₇Na: 607.3525. Found: 607.3527; v_{max} (thin film/cm⁻¹): 3339, 2978, 2927, 2852, 1720, 1699, 1498, 1447, 1422, 1391, 1366, 1329, 1297, 1243, 1217, 1167, 1141, 1108, 1059, 1043; ¹H NMR (400 MHz, CDCl₃) δ ppm 0.81 (qd, *J* = 12.3, 2.9 Hz, 1 H, CH₂), 0.98 - 1.12 (m, 2 H, CH₂), 1.15 (t, *J* = 7.2 Hz, 4 H, CO₂CH₂CH₃ + 1 H from CH₂), 1.22 (s, 6 H, OC(CH₃)₂), 1.27 (s, 6 H, OC(CH₃)₂), 1.35 (m, *J* = 2.5 Hz, 1 H, CH₂), 1.47 (s, 9 H, C(CH₃)₃), 1.61 - 1.78 (m, 5 H, CH₂), 2.13 (td, *J* = 11.9, 2.6 Hz, 1 H, CHCHC=CH₂), 3.19 (br. s, 1 H, CHC=CH₂), 3.99 (m, 2 H, CH₂CONH), 4.15 (qd, *J* = 7.2, 2.1 Hz, 2 H, CO₂CH₂CH₃), 5.27 (br. s, 1 H, CH₂NH), 5.31 (d, *J* = 3.5 Hz, 1 H, C=CH₂), 7.12 - 7.18 (m, 1 H, ArCH), 7.22 (t, *J* = 7.5 Hz, 2 H, ArCH), 7.31 (d, *J* = 7.8 Hz, 2 H, ArCH), 8.32 (br. s, 1 H, CH₂CONH); ¹³C NMR (101 MHz, CDCl₃) δ ppm 13.9 (CO₂CH₂CH₃), 24.3 (OC(CH₃)₂), 24.7 (OC(CH₃)₂), 26.3 (CH₂), 26.8 (CH₂), 26.9 (CH₂), 28.4 (C(CH₃)₃), 31.2 (CH₂), 33.6 (CH₂), 38.5 (CHCHC=CH₂), 44.1 (CH₂CONH), 61.4 (CO₂CH₂CH₃), 62.6 (CHC=CH₂), 67.9 (CCO₂CH₂CH₃), 79.6 (C(CH₃)₃), 84.1 (OC(CH₃)₂), 126.7 (ArCH), 126.9 (ArCH), 127.6 (ArCH), 137.7

(C=CH₂), 139.4 (ArC), 155.7 ($CO_2C(CH_3)_3$), 167.9 (CH₂CONH), 171.3 ($CO_2CH_2CH_3$), (BC=CH₂ not observed); ¹¹B NMR (128 MHz, CDCl₃) δ ppm 31.9.

¹H and ¹³C NMR spectra

Ethyl 2-(4-(methylthio)phenyl)-2-oxoacetate (S4)

Ethyl 2-(4-(methylthio)phenyl)-2-oxoacetate (S4)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(4-(methylthio)phenyl)acetate (1d)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(4-(methylthio)phenyl)acetate (1d)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate (1g)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate (1g)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate (1h)

Ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate (1h)

Ethyl (E)-3,3,3-trifluoro-2-((4-methoxyphenyl)imino)propanoate (1i)

Ethyl (E)-3,3,3-trifluoro-2-((4-methoxyphenyl)imino)propanoate (1i)

Ethyl (Z)-2-((4-bromophenyl)imino)-2-phenylacetate (1j)

400 MHz, CDCl₃

Ethyl (Z)-2-((4-fluorophenyl)imino)-2-phenylacetate (1k)

Ethyl (Z)-2-((4-fluorophenyl)imino)-2-phenylacetate (1k)

Ethyl (Z)-2-((4-morpholinophenyl)imino)-2-phenylacetate (11)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3a)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3a)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl)pent-4-enoate (3b)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(trifluoromethyl)phenyl)pent-4-enoate (3b)

rac-Ethyl (2S,3S)-2-(4-bromophenyl)-3-cyclohexyl-2-((4methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (3c)

rac-Ethyl (2S,3S)-2-(4-bromophenyl)-3-cyclohexyl-2-((4methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (3c)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(4-(methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (3d)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(4-(methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (3d)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3e)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3e)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*p*-tolyl)pent-4-enoate (3f)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(*p*-tolyl)pent-4-enoate (3f)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(naphthalen-2-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)pent-4-enoate (3g)

rac-Ethyl (2*R*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiophen-2-yl)pent-4-enoate (3h)

rac-Ethyl 3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethyl)pent-4-enoate (3i)

rac-Ethyl (2R,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(trifluoromethyl)pent-4-enoate (3i)

rac-Ethyl (2*S*,3*S*)-2-((4-bromophenyl)amino)-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3j)

rac-Ethyl (2*S*,3*S*)-2-((4-bromophenyl)amino)-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3j)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-fluorophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3k)

rac-Ethyl (2S,3S)-3-cyclohexyl-2-((4-fluorophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3k)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-morpholinophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3l)

rac-Ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-morpholinophenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3l)

rac-Benzyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3n)

rac-Benzyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3n)

rac-Methyl (2S,3S)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (30)

rac-Ethyl (2*S*,3*S*)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,2-oxaborolan-2-yl)vinyl)undecanoate (3p)

rac-Ethyl (2S,3S)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,2-oxaborolan-2-yl)vinyl)undecanoate (3p)

rac-Ethyl (2*S*,3*S*)-2-((4-methoxyphenyl)amino)-3-phenethyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3q)

rac-Ethyl (2S,3S)-2-((4-methoxyphenyl)amino)-3-phenethyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3q)

rac-Ethyl (2*S*,3*S*)-3-(cyclohexylmethyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3r)

rac-Ethyl (2*S*,3*S*)-3-(cyclohexylmethyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3r)

rac-Ethyl (2*S*,3*S*)-7-((*tert*-butyldimethylsilyl)oxy)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3s)

rac-Ethyl (2*S*,3*S*)-7-((*tert*-butyldimethylsilyl)oxy)-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3s)

rac-Ethyl (2*S*,3*S*)-7-bromo-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3t)

rac-Ethyl (2*S*,3*S*)-7-bromo-2-((4-methoxyphenyl)amino)-2-phenyl-3-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)heptanoate (3t)

rac-Ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3u)

rac-Ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3u)

rac-Ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(m-tolyl)pent-4-enoate (3v)

rac-Ethyl (2S,3R)-3-(3-fluorophenyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3w)

rac-Ethyl (2S,3R)-3-(3-(diethylcarbamoyl)phenyl)-2-((4methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)pent-4-enoate (3x)

rac-Ethyl (2S,3R)-3-(4-chlorophenyl)-2-((4-methoxyphenyl)amino)-2phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3y)

rac-Ethyl (2S,3R)-3-(4-chlorophenyl)-2-((4-methoxyphenyl)amino)-2phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3y)

rac-(*S*)-3-((*S*)-1-Cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)-3-phenyl-3,4-dihydro-2H-benzo[*b*][1,4]oxazin-2-one (3z)

rac-(S)-3-((S)-1-Cyclohexyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)allyl)-

rac-Ethyl 2-((4-methoxyphenyl)amino)-3,3-dimethyl-2-phenyl4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3aa) and
rac-Ethyl 2-((4-methoxyphenyl)amino)-5-methyl-2-phenyl4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-enoate (3aa')

rac-Ethyl 2-((4-methoxyphenyl)amino)-3,3-dimethyl-2-phenyl4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (3aa) and
rac-Ethyl 2-((4-methoxyphenyl)amino)-5-methyl-2-phenyl4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-4-enoate (3aa')

rac-Ethyl (2S,3R)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-oxo-2-phenylpentanoate (4)

rac-Ethyl (2S,3R)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-oxo-2-phenylpentanoate (4)

rac-(4*S*,5*S*)-4-Cyclohexyl-5-(hydroxymethyl)-1-(4-methoxyphenyl)-3-methylene-5-phenyl-1,2-azaborolidin-2-ol (5)

rac-Ethyl (2S,3S)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (7)

rac-Ethyl (2S,3S)-2-(2-((*tert*-butoxycarbonyl)amino)acetamido)-3-cyclohexyl-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (7)

X-ray Crystal Structures

Data Collection

X-ray data was collected at a temperature of 100 K or 150 K on a Rigaku FR-X diffractometer with an Atlas HP6000 detector with MoK α radiation, (λ = 0.71073 Å) for compounds **3c**, **3d**, **3v**, **3w**.

X-ray data was collected at a temperature of 150 K on an Agilent Technologies Supernova diffractometer equipped with an Eos CCD detector with MoK α radiation, (λ = 0.71073 Å) for compounds **1c**, **1d**, **1e**, **1f**, **1g**, **1h**, **3a**, **3o**, **3u**.

All diffractometers were equipped with an Oxford Cryosystems Cobra nitrogen flow gas system. Data was measured using CrysAlisPro suite of programs.

Crystal structure determinations and refinements

X-ray data were processed and reduced using CrysAlisPro suite of programs. The crystal structures were solved and refined against all F2 values using the SHELX and Olex 2 suite of programs.^{20,21} All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions refined using idealised geometries (riding model) and assigned fixed isotropic displacement parameters. Some carbon atoms were found disordered and modelled over two positions were possible. In such cases, C-C bond distances were restrained using DFIX and SADI commands. The atomic displacement parameters (adp) of the disordered atoms have been restrained using the RIGU command.

These data sets can be obtained free of charge via <u>www.ccdc.cam.ac.uk/conts/retrieving.html</u> (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223 336033; or <u>deposit@ccdc.cam.ac.uk</u>).

X-ray structure of ethyl (*Z*)-2-(4-bromophenyl)-2-((4-methoxyphenyl)imino)acetate **1c** – CCDC: 1871104

Table S5: Crystal data and structure refinement for ethyl (Z)-2-(4-bromophenyl)-2-((4-methoxyphenyl)imino)acetate **1c**.

Identification code	ethyl (Z)-2-(4-bromophenyl)-2-((4-methoxyphenyl)imino)acetate
Empirical formula	$C_{17}H_{16}BrNO_3$
Formula weight	362.22
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	7.9501(4)
b/Å	9.4952(5)
c/Å	11.4307(6)
α/°	73.104(5)
β/°	75.437(4)
γ/°	78.835(4)
Volume/Å ³	792.31(8)
Z	2
$\rho_{calc}g/cm^3$	1.518
µ/mm⁻¹	2.606
F(000)	368.0
Crystal size/mm ³	$0.4 \times 0.2 \times 0.2$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.878 to 58.01
Index ranges	-10 ≤ h ≤ 10, -12 ≤ k ≤ 12, -14 ≤ l ≤ 14
Reflections collected	10378
Independent reflections	3696 [R _{int} = 0.0407, R _{sigma} = 0.0489]
Data/restraints/parameters	3696/0/201
Goodness-of-fit on F ²	1.057
Final R indexes [I>=2σ (I)]	$R_1 = 0.0368$, $wR_2 = 0.0776$
Final R indexes [all data]	$R_1 = 0.0502$, $wR_2 = 0.0853$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.45

X-ray structure of ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2-(4-(methylthio)phenyl)acetate **1d** – CCDC: 1871097

Table S6: Crystal data and structure refinement for ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(4-
(methylthio)phenyl)acetate 1d.

Identification code	ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(4-(methylthio)phenyl)acetate
Empirical formula	C ₁₈ H ₁₉ NO ₃ S
Formula weight	329.40
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.2382(8)
b/Å	9.2717(9)
c/Å	10.5995(9)
α/°	68.295(9)
β/°	80.090(7)
γ/°	81.698(7)
Volume/Å ³	827.69(14)
Z	2
$\rho_{calc}g/cm^3$	1.322
µ/mm⁻¹	0.210
F(000)	348.0
Crystal size/mm ³	$0.5 \times 0.3 \times 0.2$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.724 to 57.932
Index ranges	-12 ≤ h ≤ 11, -12 ≤ k ≤ 12, -13 ≤ l ≤ 14
Reflections collected	10813
Independent reflections	3837 [R _{int} = 0.0526, R _{sigma} = 0.0727]
Data/restraints/parameters	3837/0/211
Goodness-of-fit on F ²	1.069
Final R indexes [I>=2σ (I)]	$R_1 = 0.0559$, $wR_2 = 0.1171$
Final R indexes [all data]	$R_1 = 0.0955$, $wR_2 = 0.1461$
Largest diff. peak/hole / e $Å^{-3}$	0.30/-0.33

X-ray structure of ethyl (*Z*)-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)acetate **1e** – CCDC: 1871093

Table S7: Crystal data and structure refinement for ethyl (Z)-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)acetate **1e**.

Identification code	ethyl (Z)-2-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)acetate
Empirical formula	C ₁₈ H ₁₉ NO ₄
Formula weight	313.34
Temperature/K	293(1)
Crystal system	triclinic
Space group	P-1
a/Å	9.1497(7)
b/Å	9.3649(7)
c/Å	10.9164(8)
α/°	65.756(7)
β/°	74.906(6)
γ/°	79.307(7)
Volume/Å ³	820.17(12)
Z	2
$\rho_{calc}g/cm^3$	1.269
µ/mm⁻¹	0.090
F(000)	332.0
Crystal size/mm ³	$0.3 \times 0.3 \times 0.3$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.564 to 57.948
Index ranges	$-12 \le h \le 12, -11 \le k \le 11, -14 \le l \le 14$
Reflections collected	10655
Independent reflections	3839 [R _{int} = 0.0403, R _{sigma} = 0.0540]
Data/restraints/parameters	3839/0/211
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	$R_1 = 0.0580$, $wR_2 = 0.1403$
Final R indexes [all data]	$R_1 = 0.1263$, $wR_2 = 0.1895$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.18

X-ray structure of ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(p-tolyl)acetate **1f** – CCDC: 1871094

Table S8: Crystal data and structure refinement for ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2-(*p*-tolyl)acetate **1f**.

Identification code	ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(p-tolyl)acetate
Empirical formula	C ₁₈ H ₁₉ NO ₃
Formula weight	297.34
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	12.7826(5)
b/Å	7.8823(4)
c/Å	15.4754(7)
α/°	90
β/°	93.667(4)
γ/°	90
Volume/Å ³	1556.05(12)
Z	4
$\rho_{calc}g/cm^3$	1.269
µ/mm⁻¹	0.086
F(000)	632.0
Crystal size/mm ³	$0.4 \times 0.3 \times 0.2$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.276 to 57.728
Index ranges	-17 ≤ h ≤ 17, -10 ≤ k ≤ 8, -20 ≤ l ≤ 20
Reflections collected	10336
Independent reflections	3613 [R _{int} = 0.0398, R _{sigma} = 0.0547]
Data/restraints/parameters	3613/0/202
Goodness-of-fit on F ²	1.039
Final R indexes [I>=2σ (I)]	$R_1 = 0.0536$, $wR_2 = 0.1282$
Final R indexes [all data]	$R_1 = 0.0825$, $wR_2 = 0.1535$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.28

X-ray structure of ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate **1g** – CCDC: 1871099

Table S9: Crystal data and structure refinement for ethyl (*Z*)-2-((4-methoxyphenyl)imino)-2- (naphthalen-2-yl)acetate **1g**.

Identification code	ethyl (Z)-2-((4-methoxyphenyl)imino)-2-(naphthalen-2-yl)acetate
Empirical formula	C ₂₁ H ₁₉ NO ₃
Formula weight	333.37
Temperature/K	149.9(3)
Crystal system	triclinic
Space group	P-1
a/Å	8.8271(6)
b/Å	10.7792(9)
c/Å	11.1856(8)
α/°	61.811(8)
β/°	69.041(7)
γ/°	78.745(6)
Volume/Å ³	875.56(13)
Z	2
$\rho_{calc}g/cm^3$	1.265
µ/mm⁻¹	0.085
F(000)	352.0
Crystal size/mm ³	$0.25 \times 0.2 \times 0.2$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.488 to 57.512
Index ranges	-11 ≤ h ≤ 11, -14 ≤ k ≤ 14, -14 ≤ l ≤ 15
Reflections collected	11384
Independent reflections	4058 [R _{int} = 0.0449, R _{sigma} = 0.0616]
Data/restraints/parameters	4058/0/228
Goodness-of-fit on F ²	1.072
Final R indexes [I>=2σ (I)]	$R_1 = 0.0558$, $wR_2 = 0.1208$
Final R indexes [all data]	$R_1 = 0.1055$, $wR_2 = 0.1551$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.27

X-ray structure of ethyl (E)-2-((4-methoxyphenyl)imino)-2-(thiophen-2-yl)acetate **1h** – CCDC: 1871096

Table S10: Crystal data and structure refinement for ethyl (*E*)-2-((4-methoxyphenyl)imino)-2- (thiophen-2-yl)acetate **1h**.

Identification code	ethyl (E)-2-((4-methoxyphenyl)imino)-2-(thiophen-2-yl)acetate
Empirical formula	C ₁₅ H ₁₅ NO ₃ S
Formula weight	289.34
Temperature/K	150.01(18)
Crystal system	monoclinic
Space group	Pc
a/Å	9.0485(11)
b/Å	10.3116(6)
c/Å	8.6960(9)
α/°	90
β/°	117.652(14)
γ/°	90
Volume/Å ³	718.70(15)
Z	2
$\rho_{calc}g/cm^3$	1.337
µ/mm⁻¹	0.231
F(000)	304.0
Crystal size/mm ³	$0.5 \times 0.3 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.438 to 49.958
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -10 \le l \le 10$
Reflections collected	2486
Independent reflections	1878 [R _{int} = 0.0214, R _{sigma} = 0.0500]
Data/restraints/parameters	1878/2/184
Goodness-of-fit on F ²	1.030
Final R indexes [I>=2σ (I)]	$R_1 = 0.0357$, $wR_2 = 0.0753$
Final R indexes [all data]	$R_1 = 0.0411$, $wR_2 = 0.0793$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.17
Flack parameter	0.03(9)

X-ray structure of *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3a** – CCDC: 1871092

Table S11: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate**3a.**

Identification code	<i>rac</i> -ethyl (2 <i>S</i> ,3 <i>S</i>)-3-cyclohexyl-2-((4-methoxyphenyl)amino)- 2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate
Empirical formula	$C_{32}H_{44}BNO_5$
Formula weight	533.49
Temperature/K	149.9(4)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	17.2170(6)
b/Å	11.6345(4)
c/Å	15.2004(5)
α/°	90
β/°	103.642(3)
γ/°	90
Volume/Å ³	2958.91(18)
Z	4
$\rho_{calc}g/cm^3$	1.198
µ/mm⁻¹	0.079
F(000)	1152.0
Crystal size/mm ³	$0.6 \times 0.4 \times 0.3$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.534 to 57.976
Index ranges	$-19 \le h \le 23, -11 \le k \le 14, -20 \le l \le 13$
Reflections collected	17641
Independent reflections	6883 [R _{int} = 0.0326, R _{sigma} = 0.0436]
Data/restraints/parameters	6883/0/366
Goodness-of-fit on F ²	1.067
Final R indexes [I>=2σ (I)]	$R_1 = 0.0518$, $wR_2 = 0.1178$
Final R indexes [all data]	$R_1 = 0.0674$, $wR_2 = 0.1257$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.26

X-ray structure of ethyl *rac*-(2*S*,3*S*)-2-(4-bromophenyl)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3c** – CCDC: 1871100

Table S12: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*S*)-2-(4-bromophenyl)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3c**.

	rac-ethyl (25,35)-2-(4-bromophenyl)-3-cyclohexyl-2-((4-
Identification code	methoxyphenyl)amino)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan
	2-yl)pent-4-enoate
Empirical formula	$C_{32}H_{43}BBrNO_5$
Formula weight	612.39
Temperature/K	150
Crystal system	triclinic
Space group	P-1
a/Å	10.1641(7)
b/Å	10.5800(12)
c/Å	15.5576(17)
α/°	100.398(9)
β/°	100.500(7)
γ/°	104.669(7)
Volume/Å ³	1545.5(3)
Z	2
ρ _{calc} g/cm ³	1.316
µ/mm⁻¹	1.370
F(000)	644.0
Crystal size/mm ³	5 × 5 × 5
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.736 to 50.7
Index ranges	-10 ≤ h ≤ 12, -12 ≤ k ≤ 12, -18 ≤ l ≤ 15
Reflections collected	11014
Independent reflections	5658 [R _{int} = 0.0763, R _{sigma} = 0.1085]
Data/restraints/parameters	5658/0/367
Goodness-of-fit on F ²	1.016
Final R indexes [I>=2σ (I)]	$R_1 = 0.0622$, $wR_2 = 0.1388$
Final R indexes [all data]	$R_1 = 0.0980$, $wR_2 = 0.1638$
Largest diff. peak/hole / e Å ⁻³	0.94/-0.69

X-ray structure of *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(4 (methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3d** – CCDC: 1871103

Table S13: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-(4-(methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate**3d.**

	rac-ethyl (25,35)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-
Identification code	2-(4-(methylthio)phenyl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) pent-4-enoate
Empirical formula	C ₃₃ H ₄₆ BNO ₅ S
Formula weight	579.58
Temperature/K	150
Crystal system	triclinic
Space group	P-1
a/Å	9.9671(6)
b/Å	11.8555(8)
c/Å	13.5226(7)
α/°	91.143(5)
β/°	93.483(5)
γ/°	98.164(5)
Volume/Å ³	1578.12(17)
Z	2
$\rho_{calc}g/cm^3$	1.220
µ/mm⁻¹	0.143
F(000)	624.0
Crystal size/mm ³	$0.5 \times 0.5 \times 0.1$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.88 to 56.56
Index ranges	-13 ≤ h ≤ 12, -15 ≤ k ≤ 15, -17 ≤ l ≤ 17
Reflections collected	14379
Independent reflections	7197 [R _{int} = 0.0504, R _{sigma} = 0.1024]
Data/restraints/parameters	7197/0/377
Goodness-of-fit on F ²	1.012
Final R indexes [I>=2σ (I)]	$R_1 = 0.0631$, $wR_2 = 0.1051$
Final R indexes [all data]	$R_1 = 0.1343$, $wR_2 = 0.1352$
Largest diff. peak/hole / e Å ⁻³	0.45/-0.39

X-ray structure of *rac*-methyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3o** – CCDC: 1871098

Table S14: Crystal data and structure refinement for *rac*-methyl (2*S*,3*S*)-3-cyclohexyl-2-((4-methoxyphenyl)amino)2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate**30.**

	rac-methyl (25,35)-3-cyclohexyl-2-((4-methoxyphenyl)amino)-
Identification code	2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
	pent-4-enoate
Empirical formula	$C_{31}H_{42}BNO_5$
Formula weight	519.46
Temperature/K	150.0(3)
Crystal system	monoclinic
Space group	P21/c
a/Å	16.7642(7)
b/Å	11.6105(5)
c/Å	15.0601(7)
α/°	90
β/°	100.923(4)
γ/°	90
Volume/Å ³	2878.2(2)
Z	4
$\rho_{calc}g/cm^3$	1.199
µ/mm ⁻¹	0.079
F(000)	1120.0
Crystal size/mm ³	$0.5 \times 0.4 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.348 to 58.312
Index ranges	-21 ≤ h ≤ 22, -15 ≤ k ≤ 14, -20 ≤ l ≤ 19
Reflections collected	15314
Independent reflections	6632 [R _{int} = 0.0406, R _{sigma} = 0.0545]
Data/restraints/parameters	6632/0/349
Goodness-of-fit on F ²	1.023
Final R indexes [I>=2σ (I)]	$R_1 = 0.0537$, $wR_2 = 0.1261$
Final R indexes [all data]	$R_1 = 0.0756$, $wR_2 = 0.1405$
Largest diff. peak/hole / e Å ⁻³	0.33/-0.39

X-ray structure of *rac*-ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3u** – CCDC: 1871095

Table S15: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate**3u**.

	rac-ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-
Identification code	2,3-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)
	pent-4-enoate
Empirical formula	C ₃₂ H ₃₈ BNO ₅
Formula weight	527.44
Temperature/K	150.0(3)
Crystal system	monoclinic
Space group	P21/c
a/Å	17.1408(7)
b/Å	10.9829(4)
c/Å	15.7412(8)
α/°	90
β/°	101.768(4)
γ/°	90
Volume/Å ³	2901.1(2)
Z	4
$\rho_{calc}g/cm^3$	1.208
µ/mm⁻¹	0.080
F(000)	1128.0
Crystal size/mm ³	$0.8 \times 0.8 \times 0.8$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	6.11 to 57.92
Index ranges	-22 ≤ h ≤ 10, -7 ≤ k ≤ 14, -20 ≤ l ≤ 20
Reflections collected	10735
Independent reflections	6470 [R _{int} = 0.0283, R _{sigma} = 0.0512]
Data/restraints/parameters	6470/0/366
Goodness-of-fit on F ²	0.912
Final R indexes [I>=2σ (I)]	$R_1 = 0.0467$, w $R_2 = 0.1143$
Final R indexes [all data]	$R_1 = 0.0718$, w $R_2 = 0.1303$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.30

X-ray structure of *rac*-ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(m-tolyl)pent-4-enoate **3v** – CCDC: 1871102

Table S16: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*R*)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-(m-tolyl)pent-4-enoate **3v**.

	rac-ethyl (2S,3R)-2-((4-methoxyphenyl)amino)-
Identification code	2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
	yl)-3-(m-tolyl)pent-4-enoate
Empirical formula	$C_{33}H_{40}BNO_5$
Formula weight	541.47
Temperature/K	160
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	17.2140(14)
b/Å	11.3358(7)
c/Å	15.8990(15)
α/°	90
β/°	103.239(9)
γ/°	90
Volume/Å ³	3020.0(4)
Z	4
ρ _{calc} g/cm ³	1.191
µ/mm⁻¹	0.079
F(000)	1160.0
Crystal size/mm ³	$0.3 \times 0.3 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	7.026 to 52.74
Index ranges	-21 ≤ h ≤ 21, -12 ≤ k ≤ 14, -19 ≤ l ≤ 19
Reflections collected	27858
Independent reflections	6167 [R _{int} = 0.0988, R _{sigma} = 0.1019]
Data/restraints/parameters	6167/0/368
Goodness-of-fit on F ²	1.017
Final R indexes [I>=2σ (I)]	$R_1 = 0.0683$, $wR_2 = 0.1390$
Final R indexes [all data]	$R_1 = 0.1606$, $wR_2 = 0.1798$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.31

X-ray structure of *rac*-ethyl (2*S*,3*R*)-3-(3-fluorophenyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate $\mathbf{3w} - \text{CCDC}$: 1871101

Table S17: Crystal data and structure refinement for *rac*-ethyl (2*S*,3*R*)-3-(3-fluorophenyl)-2-((4-methoxyphenyl)amino)-2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate **3w**.

Identification code	<i>rac</i> -ethyl (2 <i>S</i> ,3 <i>R</i>)-3-(3-fluorophenyl)-2-((4-methoxyphenyl)amino)- 2-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate
Empirical formula	$C_{32}H_{37}BFNO_5$
Formula weight	545.43
Temperature/K	150
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	17.2850(9)
b/Å	11.0449(6)
c/Å	15.7475(10)
α/°	90
β/°	102.556(6)
γ/°	90
Volume/Å ³	2934.5(3)
Z	4
$\rho_{calc}g/cm^3$	1.235
µ/mm⁻¹	0.086
F(000)	1160.0
Crystal size/mm ³	$0.4 \times 0.3 \times 0.05$
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	7.038 to 51.358
Index ranges	-17 ≤ h ≤ 21, -12 ≤ k ≤ 13, -15 ≤ l ≤ 19
Reflections collected	14970
Independent reflections	5546 [R _{int} = 0.0356, R _{sigma} = 0.0498]
Data/restraints/parameters	5546/0/367
Goodness-of-fit on F ²	1.057
Final R indexes [I>=2σ (I)]	$R_1 = 0.0470$, $wR_2 = 0.1028$
Final R indexes [all data]	$R_1 = 0.0723$, $wR_2 = 0.1274$
Largest diff. peak/hole / e Å ⁻³	0.39/-0.27

References

- Middleton, W. J.; Bingham, E. M. α,α-Difluoroarylacetic Acids: Preparation from
 (Diethylamino)Sulfur Trifluoride and α-Oxoarylacetates. *J. Org. Chem.* **1980**, *45*, 2883–2887.
- Metz, A. E.; Kozlowski, M. C. 2-Aryl-2-Nitroacetates as Central Precursors to Aryl
 Nitromethanes, α-Ketoesters, and α-Amino Acids. J. Org. Chem. 2013, 78, 717–722.
- Hayashi, M.; Nakamura, S. Catalytic Enantioselective Protonation of α-Oxygenated Ester
 Enolates Prepared through Phospha-Brook Rearrangement. *Angew. Chem. Int. Ed.* 2011, *50*, 2249–2252.
- (4) Infante, R.; Nieto, J.; Andrés, C. Highly Homogeneous Stereocontrolled Construction of Quaternary Hydroxyesters by Addition of Dimethylzinc to α-Ketoesters Promoted by Chiral Perhydrobenzoxazines and B(OEt)₃. *Chem. - A Eur. J.* **2012**, *18*, 4375–4379.
- Li, S.; Xiao, T.; Li, D.; Zhang, X. First Iridium-Catalyzed Highly Enantioselective Hydrogenation of β-Nitroacrylates. *Org. Lett.* 2015, *17*, 3782–3785.
- Niwa, Y.; Shimizu, M. Tandem N-Alkylation-C-Allylation Reaction of α-Imino Esters with
 Organoaluminums and Allyltributyltin. *J. Am. Chem. Soc.* 2003, *125*, 3720–3721.
- Li, G.; Liang, Y.; Antilla, J. C. A Vaulted Biaryl Phosphoric Acid-Catalyzed Reduction of α-Imino
 Esters: The Highly Enantioselective Preparation of α-Amino Esters. J. Am. Chem. Soc. 2007,
 129, 5830–5831.
- Enders, D.; Rembiak, A.; Stöckel, B. A. Chemo- and Enantioselective Brønsted Acid-Catalyzed
 Reduction of α-Imino Esters with Catecholborane. *Adv. Synth. Catal.* 2013, 355, 1937–1942.
- Xue, Z.-Y.; Jiang, Y.; Peng, X.-Z.; Yuan, W.-C.; Zhang, X.-M. The First General, Highly Enantioselective Lewis Base Organocatalyzed Hydrosilylation of Benzoxazinones and Quinoxalinones. *Adv. Synth. Catal.* **2010**, *352*, 2132–2136.
- Kuang, J.; Ma, S. An Efficient Synthesis of Terminal Allenes from Terminal 1-Alkynes. J. Org. Chem. 2009, 74, 1763–1765.
- Liu, J.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. Highly Regio- and Enantioselective
 Alkoxycarbonylative Amination of Terminal Allenes Catalyzed by a Spiroketal-Based
 Diphosphine/Pd(II) Complex. J. Am. Chem. Soc. 2015, 137, 15346–15349.
- Xu, K.; Thieme, N.; Breit, B. Atom-Economic, Regiodivergent, and Stereoselective Coupling of Imidazole Derivatives with Terminal Allenes. *Angew. Chem. Int. Ed.* 2014, *53*, 2162–2165.
- (13) Crandall, J. K.; Batal, D. J.; Lin, F.; Reix, T.; Nadol, G. S.; Ng, R. A. Allene Epoxidation. Highly Functionalized Tetrahydrofurans and Tetrahydropyrans from the Oxidative Cyclization of Allenic Alcohols. *Tetrahedron* **1992**, *48*, 1427–1448.

- Molander, G. A.; Sommers, E. M. Chromium(III) Catalyzed Synthesis of Allenes from Propargyl Derivatives via a Carbometalation-Elimination Sequence. *Tetrahedron Lett.* 2005, *46*, 2345– 2349.
- (15) Steib, P.; Breit, B. Enantioselective Rhodium-Catalyzed Dimerization of ω-Allenyl Carboxylic
 Acids: Straightforward Synthesis of C₂-Symmetric Macrodiolides. *Angew. Chem. Int. Ed.* 2018, 57, 6572–6576.
- Rae, J.; Hu, Y. C.; Procter, D. J. Cu(I)-NHC-Catalyzed Silylation of Allenes: Diastereoselective Three-Component Coupling with Aldehydes. *Chem. - A Eur. J.* 2014, *20*, 13143–13145.
- (17) Gómez-Suárez, A.; Nelson, D. J.; Nolan, S. P. Quantifying and Understanding the Steric
 Properties of N-Heterocyclic Carbenes. *Chem. Commun.* 2017, *53*, 2650–2660.
- Tolman, C. A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. *Chem. Rev.* **1977**, *77*, 313–348.
- (19) Mansell, S. M. Catalytic Applications of Small Bite-Angle Diphosphorus Ligands with Single-Atom Linkers. *Dalt. Trans.* **2017**, *46*, 15157–15174.
- (20) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. *Acta Crystallogr. Sect. A Found. Crystallogr.* **2015**, *71*, 3–8.
- (21) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A
 Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.