SUPPORTING INFORMATION

Comparative proteomic analysis of slime from the striped pyjama squid, *Sepioloidea lineolata* and the southern bottletail squid, *Sepiadarium austrinum* (Cephalopoda: Sepiadariidae)

Nikeisha J. Caruana^a, Jan M. Strugnell^{b,a}, Pierre Faou^c, Julian Finn^d, Ira R. Cooke^{e,c}

^aDepartment of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC, 3086, Australia

^bCentre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, 4811, Australia

^c Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Vic 3086, Australia

^d Sciences, Museums Victoria, Carlton, Vic 3053, Australia

^e Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, 4811, Australia

Corresponding author: Nikeisha J. Caruana

Corresponding author email: njcaruana@students.latrobe.edu.au

TABLE OF CONTENTS

Supporting Table 1 – Number of sequenced paired-end reads (in millions) for each tissue library and associated SRA accession numbers.

Supporting Table 2 – ProteinGroups.txt file from *MaxQuant* showing all identified protein groups and relating information. Provided as a separate file, SupportingTable2.xlsx

Supporting Table 3 - All protein groups identified by *MaxQuant* as having a deamidation probability as well as the number of samples the deamidation was identified in, if it was found in proteins from the control samples and if the protein was likely to be glycosylated. Provided as a separate file, SupportingTable3.xlsx

Supporting Figure 1: Relative abundance of orthologous proteins found in *Su. austrinum* and *So. lineolata* by KEGG Brite category.

Supporting Figure 2: Sample clustering based on iBAQ abundance measurements of orthologous proteins between *Su. austrinum* and *So. lineolata*. Points represent individual slime samples with colours indicating differences between species and shape indicating whether the samples were treated with PNGase-F. Axes are principle components based on a matrix of iBAQ intensities from 77 orthologous proteins with measurements across all samples. Note that for *S. lineolata* sample 3 is not shown as it was a strong outlier and its inclusion would obscure relationships between all other samples. Supporting Figure 3A-D: LC-MS/MS mass spectra of a formely N-glycosylated peptides. Peptide identified is A – KQGYN*VSMMFHQAENFFTSIGLKK (m/z 1815.90) from a potential calmodulin protein. B- NVMN*LTPAETQQLHAALESQLSPGELAK (m/z 460.19) from a novel secreted protein. C- WFSGISSLFPKPDVSSSSSIEDIN*GTK (m/z 420.21) from a potential HSP20 protein. D -SLGENPTDAELKDMINEVDADGN*GTIDFAEFLTLMSQK (m/z 1815.90) from a potential calmodulin protein. The asterisk (*) denotes the site of N-glycosylation. Spectra generated using the Lorikeet Spectra Viewer. **Supporting Table 1** – Number of sequenced paired-end reads (in millions) for each tissue library and associated SRA accession numbers.

Sample Tissue	SRA Accession	Read Pairs (Mil)
Slineolata_Brain	SRR5396792	18
	SRR5396791	19
Slineolata_Arms		
Slineolata_Ventral	SRR5396790	20
Slineolata_Dorsal	SRR5396789	19
Slineolata_Slime	SRR5396788	19

Supporting Figure 1: Relative abundance of orthologous proteins found in *Su. austrinum* and *So. lineolata* by KEGG Brite category.

Supporting Figure 2: Sample clustering based on iBAQ abundance measurements of orthologous proteins between *Su. austrinum* and *So. lineolata*. Points represent individual slime samples with colours indicating differences between species and shape indicating whether the samples were treated with PNGase-F. Axes are principle components based on a matrix of iBAQ intensities from 77 orthologous proteins with measurements across all samples. Note that for *So. lineolata* sample 3 is not shown as it was a strong outlier and its inclusion would obscure relationships between all other samples.

Supporting Figure 3A-D: LC-MS/MS mass spectra of a formely N-glycosylated peptides. Peptide identified is A – KQGYN*VSMMFHQAENFFTSIGLKK (m/z 1815.90) from a potential calmodulin protein. B- NVMN*LTPAETQQLHAALESQLSPGELAK (m/z 460.19) from a novel secreted protein. C-WFSGISSLFPKPDVSSSSSIEDIN*GTK (m/z 420.21) from a potential HSP20 protein. D - SLGENPTDAELKDMINEVDADGN*GTIDFAEFLTLMSQK (m/z 1815.90) from a potential calmodulin protein. The asterisk (*) denotes the site of N-glycosylation. Spectra generated using the Lorikeet Spectra Viewer.

Lorikeet by vsharma@uw.edu

Lorikeet Spectrum Viewer is a Javascript plugin for JQuery that uses a modified version of the Flot plotting library.

Lorikeet by vsharma@uw.edu

Lorikeet Spectrum Viewer is a Javascript plugin for JQuery that uses a modified version of the Flot plotting library.

Lorikeet by vsharma@uw.edu

Lorikeet Spectrum Viewer is a Javascript plugin for JQuery that uses a modified version of the Flot plotting library.

С

D

S- 10