Supporting Information for

Broadening Frontiers of Infrared Nonlinear Optical Materials with π -Conjugated Trigonal Planar Groups

Zhuang Li,^{a,b,c} Yi Yang,^{a,c} Yangwu Guo,^{a,b,c} Wenhao Xing,^{a,b,c} Xiaoyu Luo,^{a,b,c} Zheshuai Lin,^a Jiyong Yao,^{a,b,*} Yicheng Wu^{a,d}

^a Center for Crystal Research and Development, Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

° University of Chinese Academy of Sciences, Beijing 100190, PR China

^d Institute of Functional Crystal Materials, Tianjin University of Technology, Tianjin 300384, P.R. China

*Corresponding author:

Jiyong Yao; jyao@mail.ipc.ac.cn.

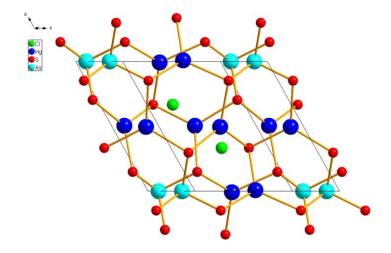


Figure S1. Crystal structure of Hg₃AsS₄Cl.

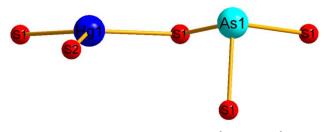


Figure S2. Coordination environment of Hg^{2+} and As^{3+} in Hg_3AsS_4Cl .

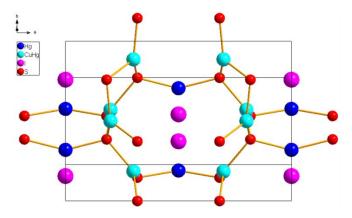


Figure S3. Crystal structure of $CuHg_2S_2I$.

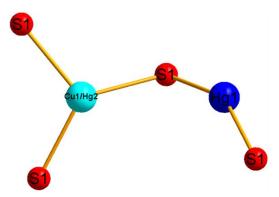


Figure S4. Coordination environment of $Cu1^+/Hg2^{2+}$ and $Hg1^{2+}$ in $CuHg_2S_2I$.

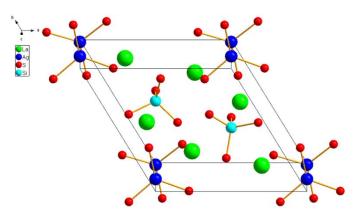


Figure S5. Crystal structure of La₃AgSiS₇.

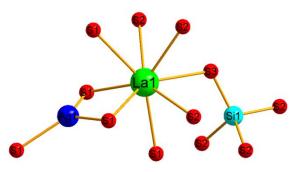


Figure S6. Coordination environment of Ag^+ , La^{3+} and Si^{4+} in La_3AgSiS_7 .

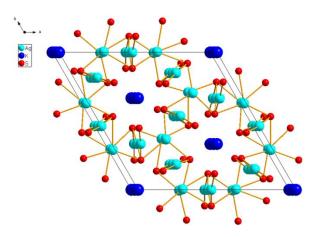


Figure S7. Crystal structure of KAg_5S_3 .

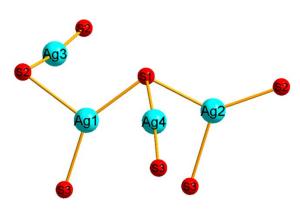


Figure S8. Coordination environment of Ag^+ in KAg_5S_3 .

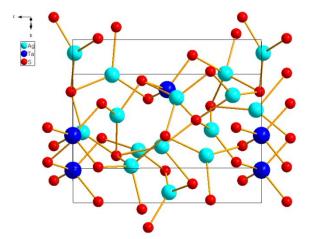


Figure S9. Crystal structure of Ag₇TaS₆ (*Pn* space group).

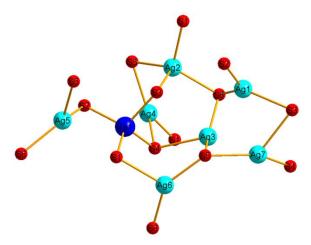


Figure S10. Coordination environment of Ag^+ and Ta^{5+} in Ag_7TaS_6 .

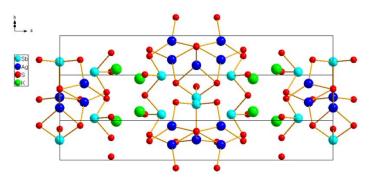


Figure S11. Crystal structure of K₂Ag₃Sb₃S₇.

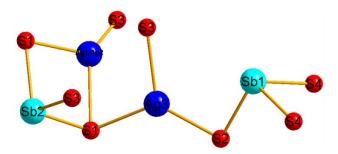


Figure S12. Coordination environment of Ag^+ and Sb^{3+} in $K_2Ag_3Sb_3S_7$.

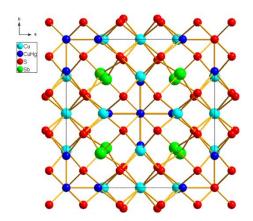


Figure S13. Crystal structure of $Cu_{10}Hg_2Sb_4S_{13}$.

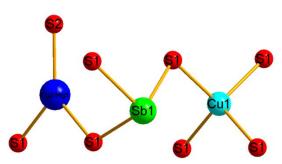


Figure S14. Coordination environment of (Cu2⁺/Hg1²⁺), Sb³⁺[‡] Cu1⁺ in Cu₁₀Hg₂Sb₄S₁₃.

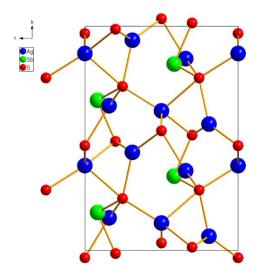


Figure S15. Crystal structure of Ag₅SbS₄.

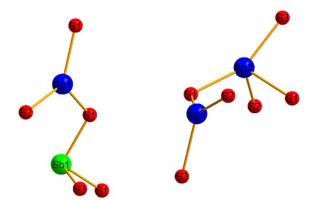


Figure S16. Coordination environment of Ag⁺ and Sb³⁺ in Ag₅SbS₄.

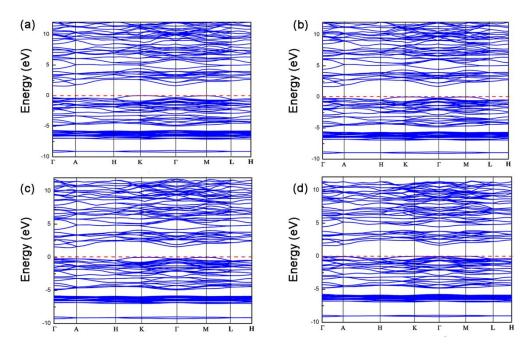


Figure S17. Electronic band structure of Hg₃AsS₄Cl (a), Hg₃AsS₄Br (b), Hg₃AsSe₄Br (c), Hg₃AsSe₄I (d).

Table S1. Band gap, the second-order polarization tensor and the contribution of different building blocks to NLO effect of Hg_3AsQ_4X (Q = S, Se; X = Cl, Br, I).

	E _g (Sx-LDA)	E _g (GGA)	SHG tensors	[Hg(S/Se) ₃] trigonal planar unit	[As(S/Se) ₃] pyramidal
Hg ₃ AsS ₄ Cl	1.975	1.550	$d_{31} = 11.029$	$d_{31} = 12.561$	$d_{31} = 5.855$
11g3/1354C1	1.775	1.550	$d_{33} = -6.939$	$d_{33} = 0.162$	$d_{33} = -4.865$
Hg ₃ AsS ₄ Br	2.020	1.653	$d_{31} = 13.93$	$d_{31} = 14.94$	$d_{31} = 7.535$
11g3A554D1	2.020	1.055	$d_{33} = -4.88$	$d_{33} = 1.145$	$d_{33} = -2.871$
Hg ₃ AsSe ₄ Br	1.792	1.447	$d_{31} = 21.117$	$d_{31} = 23.406$	$d_{31} = 10.328$
11g3AS5C4DI	1.792	1.44/	$d_{33} = -4.318$	$d_{33} = 5.417$	$d_{33} = -4.014$
Hg ₃ AsSe ₄ I	1.875	1.598	$d_{31} = 27.993$	$d_{31} = 26.992$	$d_{31} = 13.038$
1123A55C41	1.075	1.370	$d_{33} = 3.088$	$d_{33} = 8.575$	$d_{33} = 0.772$

Table S2. Space group, SHG coefficient and birefringence of several benchmark crystals and compounds that contain trigonal planar units (marked in red).

Compounds	Space group	d _{ij} (pm/V)	Δn
AgGaS ₂	$I \overline{4}2d$	13.4	0.034
BaGa ₄ S ₇	$Pmn2_1$	16.6	0.063
BaGa ₄ Se ₇	Pc	24	0.06
BaGa ₂ GeS ₆	<i>R</i> 3	12.0	0.068
BaGa ₂ GeSe ₆	<i>R</i> 3	27.4	0.15
LiGaGe ₂ Se ₆	Fdd2	18.6	0.04
BaHgSe ₂	$Pmc2_1$	39.87	0.1649
Ag ₆ HgSiSe ₆	$Pmn2_1$	43.22	0.233
Ag ₆ HgGeSe ₆	$Pmn2_1$	21.36	0.207