Supporting Information

Unraveling the Factors Affecting the Electrochemical Performance of MoS₂–Carbon Composite Catalysts for Hydrogen Evolution Reaction: Surface Defect and Electrical Resistance of Carbon Supports

Yuhwan Hyeon,^{†,#} Su-Ho Jung,^{†,#} Wonseok Jang,[‡] Mansu Kim,[‡] Byung-Sung Kim,[§] Jae-Hyun Lee,[∥] Koteeswara Reddy Nandanapalli,[‡] Namgee Jung^{*,⊥} and Dongmok Whang^{*,†,‡}

[†]SKKU Advanced Institute of Nanotechnology (SAINT) and [‡]School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

[§]Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.

Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea

^LGraduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34148, Republic of Korea

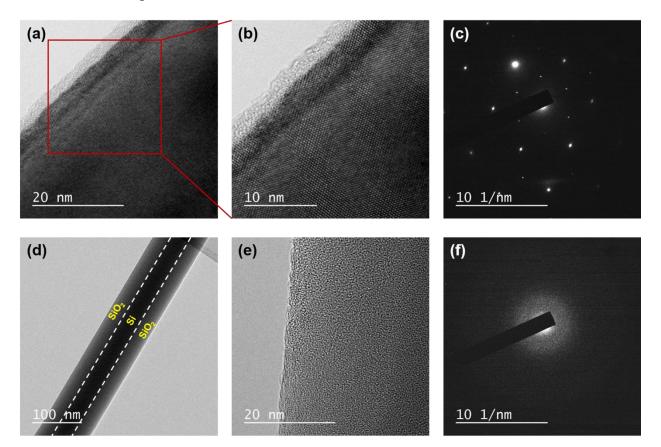
*Corresponding authors: njung@cnu.ac.kr (N. Jung), dwhang@skku.ac.kr (D. Whang)

1. Calculation of the number of active sites & turnover frequency (TOF)

To calculate the number of active sites of MoS_2 catalysts, cyclic voltammetry (CV) measurements were carried out in phosphate buffer solution (pH = 7). Before the measurements, phosphate buffer solution was deaerated by N₂ gas purging. The potential window was between -0.2 and 0.6 V versus reversible hydrogen electrode (RHE), and the scan rate was 50 mV/s for the CV measurements. The number of active sites of MoS_2 was calculated by equation (1).

First, the voltammetric charges obtained from the CVs in Figure 2e were divided by "2". The result was then divided by Faraday constant to get the total number of active sites of MoS_2 catalysts. Table S1 shows the total number of active sites and the number of active sites per area (0.25 cm²).

When the number of active sites is known, the turnover frequencies can be calculated by equation (2).


The current value should be divided by "2" since two electrons are involved in the formation of a H₂ molecule from two protons.

Sample	MoS ₂ /GCS@SiO ₂ (G0)	MoS ₂ /GCS@SiO ₂ (G1)	MoS ₂ /GCS@SiO ₂ (G2)	MoS ₂ /GCS@SiO ₂ (G5)
The number of active sites (mol)	1.46×10^{-8}	1.74×10^{-8}	3.34×10^{-8}	5.02×10^{-8}
The number of active sites per area (mol/cm ²)	5.83×10^{-8}	6.96 × 10 ⁻⁸	1.33×10^{-7}	2.00×10^{-7}

Table S1. The number of active sites (or divided by geometric area) calculated from CVs.

2. Synthesis of MoS₂ NPs and preparation of working electrode using MoS₂ NPs

MoS₂ nanoaparticles (NPs) were prepared in the same manner as the synthesis of MoS₂ described in the main text except for the addition of GCS@SiO₂ NWs. To prepare the MoS₂ catalyst ink, MoS₂ NPs of 10 mg were well dispersed in a mixed solution of Nafion (60 μ L) and isopropyl alcohol (800 μ L). The catalyst ink solution was used to load the synthesized MoS₂ NPs on a Ti foil of 0.25 cm². After the deposited catalyst ink was sufficiently dried under air conditions, the Ti foil covered with MoS₂ NPs was used as a working electrode for the HER.

3. Structures of pristine Si NW and oxidized Si NW

Figure S1. (a,b) TEM images of the pristine Si NW surface. (c) SAED pattern obtained at the position corresponding to the image of (b). (d) TEM image of oxidized Si NW having a thick SiO_2 layer formed by wet oxidation process. (e) Enlarged TEM image of the SiO_2 layer formed on the Si NW surface. (f) SAED pattern obtained from the SiO_2 layer.

4. XPS spectra of MoS₂/GCS@SiO₂ (G0)

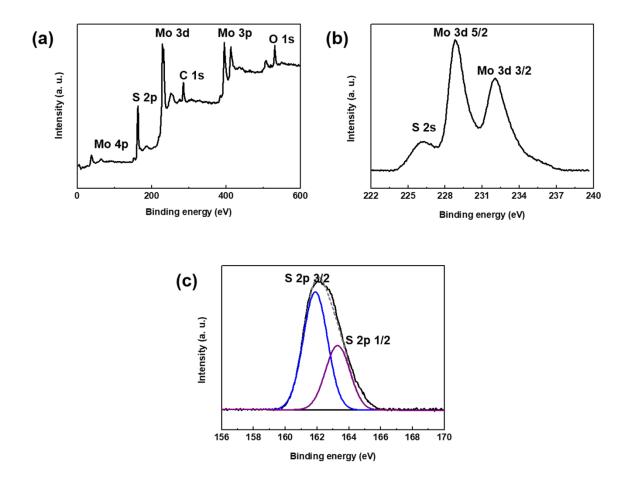
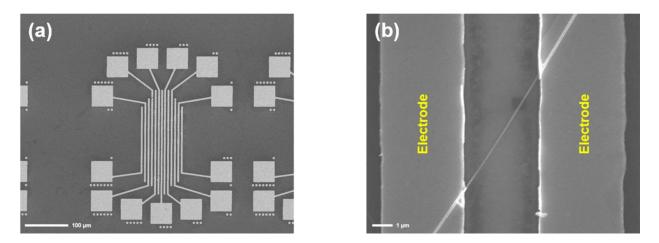



Figure S2. (a) Wide scan, (b) Mo 3d, and (c) S 2p XPS spectra for MoS₂/GCS@SiO₂ (G0)

5. Micro-device structure for resistance measurement of GCS@SiO2 NWs

Figure S3. SEM images of (a) micro-device patterned for the resistance mesaurement of GCS@SiO₂ NWs and (b) a single GCS@SiO₂ NW loaded between two electrodes.

6. Resistivity of GCS@SiO2 nanowires

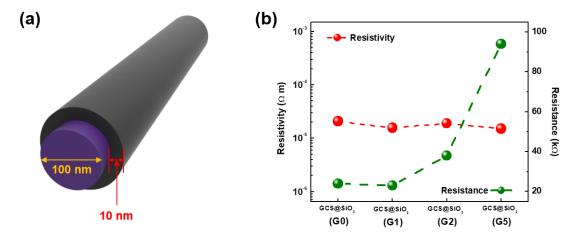
To systematically analyze the electrical property of GCS@SiO₂ nanowires, the electrical resistances of "single" nanowires were measured using a micro-device consisting of two electrodes widely used in carbon nanomaterials research. For example, after a single GCS@SiO₂ nanowire is loaded between the electrodes, an I-V curve is measured and a resistance is calculated using Ohm's law. Meanwhile, the resistance is affected by dimensions such as the length and cross-sectional area of the nanowire as shown in equation (3).

$$R = \rho \frac{l}{A} \tag{3}$$

R: resistance [Ω] *ρ*: resistivity [Ω·m] *l*: length of conductive channel [m] *A*: cross-sectional area of conductive channel [m²]

Therefore, high resistance values $(24 \sim 94 \text{ k}\Omega)$ for the single GCS@SiO₂ nanowires are obtained since the graphitic carbon shells (GCS) with very small thickness $(2 \sim 10 \text{ nm})$ have extremely small cross-sectional areas compared to the length (several µm) of the nanowires.

To help your understanding, we have calculated the resistivity (ρ) of the nanowires through following assumptions.


- 1. GCS@SiO₂ nanowire has a perfect cylinder shape. (Figure S4a)
- The diameter of the SiO₂ nanowire is 100 nm (Figure S1d), and the thickness of the GCS are estimated from TEM images. (Figure 1b)
- 3. Nanowire lies between two electrodes, and its channel length is 4 μ m.

For example, in case of $GCS@SiO_2$ (G0), the thickness of GCS (G0) estimated from TEM image is 10 nm.

$$R = \rho \frac{l}{A}$$

$$2.4 \times 10^4 \,\Omega = \rho \times \frac{4 \times 10^{-6} \,m}{\pi \,(60^2 - 50^2) \,\times \,10^{-18} \,m^2}$$

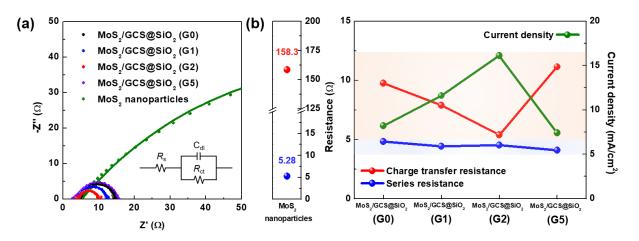

$$\rho = 2.07 \times 10^{-5} \,\Omega \cdot m$$

Figure S4. (a) Illustration of GCS@SiO₂ (G0) nanowire. (b) Resistivity and resistance values of GCS@SiO₂ (G0, G1, G2, and G5) nanowires.

The resistivity of other GCS@SiO₂ nanowires with 8, 6, and 2 nm thickness can be calculated in the same way. As a result, it is confirmed that the GCS@SiO₂ nanowires exhibit quite good electrical properties since a graphite generally has the resistivity value between 2.5×10^{-6} and $5 \times 10^{-6} \Omega \cdot m$.¹ Furthermore, in case of reduced graphene oxide (rGO), which has been widely used as support materials of MoS₂, rGO films have the electrical conductivity of $20 \sim 100$ S/cm, and the electrical resistance of the individual rGO sheet is about $6 \times 10^{6} \Omega$ when the gate voltage is zero.^{2,3} Therefore, the resistances of the GCS@SiO₂ nanowires are comparable to those of general carbon materials, but they are properly controlled within an acceptable range by changing the thickness of the GCS coated on SiO₂ nanowire.

7. Electrochemical impedance spectroscopy (EIS) measurements of MoS₂/GCS@SiO₂

Figure S5. Nyquist plots of (a) $MoS_2/GCS@SiO_2$ (G0, G1, G2, and G5) and MoS_2 nanoparticles (Inset: equivalent circuit model; R_s : series resistance, R_{ct} : charge transfer resistance, C_{dl} : double layer capacitance). (b) Correlation among R_{ct} , Rs, and current density measured at -0.2 V for the samples.

Table S2.	Comparison of	of series resistance	$e(R_s)$ and char	ge transfer res	istance (R _{ct}).
			- (0	

Materials	Series resistance (Ω)	Charge transfer resistance (Ω)
MoS ₂ /GCS@SiO ₂ (G0)	4.83	9.76
MoS ₂ /GCS@SiO ₂ (G1)	4.43	7.9
MoS ₂ /GCS@SiO ₂ (G2)	4.53	5.39
MoS ₂ /GCS@SiO ₂ (G5)	4.1	11.15
MoS ₂ nanoparticles	5.28	158.3

REFERENCES

(1) Pierson, H. O. Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing, and Applications, p. 61, William Andrew, **1993**.

(2) Mohan, V. B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterisation of Reduced Graphene Oxide: Effects of Reduction Variables on Electrical Conductivity. Mater. Sci. Eng. B **2015**, 193, 49-60.

(3) Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern,

K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. **2007**, 7, 3499-3503.