Ligand-Free Iron-Catalyzed Carbon(sp²)–Carbon(sp²) Oxidative Homo-Coupling of Alkenyllithiums

Zhuliang Zhong,^{†,}" Zhi-Yong Wang,^{†,}" Shao-Fei Ni,[§] Li Dang,^{*,§} Hung Kay Lee,[†] Xiao-Shui Peng^{*,†,‡} and Henry N.C. Wong^{*,†,‡}

[†]Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China. [‡]Shenzhen Center of Novel Functional Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No.10, Second Yuexing Road, Shenzhen 518507, P. R. China. [§]Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural

Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China. "These authors contributed equally.

Table of contents

1. General Information	3
2. Experimental Section	4
2.1. Preparation of Vinyl Iodides 1	4
2.2. General Procedure for Acetylenic Alkyl Iodides 4	6
2.3. General Procedure for Acetylenic Phenyl Iodides 7	12
2.4. Reaction Conditions Optimization	14
2.5. General Procedure for Butadienes	15
2.6. Scale-up Syntheses of Butadienes 3a and 6a	29
2.7. Procedure for Indene 9a	29
3. X-ray Structure Determination	
4. Computational Results	
5. EPR Experiments	
6 References	35

1. General Information

All reactions were carried out under an atmosphere of dry argon with the rigid exclusion of air and moisture using standard Schlenk techniques or in a glovebox unless otherwise specified. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC) on MERCK silica gel 60 F254 coated on aluminum plates. Visualization was accomplished by irradiation with UV light at 254 nm followed by staining with ceric ammonium molybdate (CAM). Organic solvents were concentrated under reduced pressure at appropriate temperature on a rotary evaporator unless otherwise stated. Column chromatography was performed on silica gel (300-400 mesh). Preparative thin-layer chromatography (PTLC) was performed on glass plates (20×20 cm) impregnated with silica gel 60 F254 (0.3-0.4 mm thickness). Pentane, diethyl ether, THF and toluene for reactions were dried over sodium wire and distilled under an atmosphere of dry Ar. CH₂Cl₂ was dried over calcium hydride and distilled under an atmosphere of dry Ar. NMR spectra were recorded on a Bruker Ultrashield 400 Plus NMR spectrometer (400 MHz for ¹H, 101 MHz for ¹³C, 377 MHz for ¹⁹F) or Bruker Ascend 500 NMR spectrometer (500 MHz for ¹H, 126 MHz for ¹³C, 471 MHz for ¹⁹F). Chemical shifts of ¹H NMR and 13 C NMR spectra were reported as parts per million in δ scale using residual solvent signal as internal standard (note: CDCl₃ referenced at δ 7.26 in ¹H and δ 77.0 for central line of the triplet in ¹³C; CD₂Cl₂ referenced at δ 5.32 in ¹H and δ 54.0 for central line of the quintet in ¹³C). Chemical shifts of ¹⁹F NMR spectra were reported as parts per million in δ scale using CF₃CO₂H (-76.55 ppm) as internal standard. Data are represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad) and coupling constant (J, Hz). High resolution mass spectra (HRMS) were obtained on a Thermo Finnigan MAT95XL Mass Spectrometer or a Thermo Scientific Q Exactive Focus Mass Spectrometer. Melting points were measured on a STUART Melting Point Apparatus SMP40 and were uncorrected. GC-MS analyses were performed on an Agilent 7890B system with an Agilent 5977B MSD.

2. Experimental Section

2.1. Preparation of Vinyl Iodides 1

Vinyl iodides **1a**, **1b**, **1c**, **1d**, **1e**, **1f**, **1g**, **1h**, **1i**, **1j**, **1k**, **1l**, **1m** and **1n** were prepared in accordance with a previously reported procedure.¹ The spectral data are in full accordance with the literature report respectively.¹⁻⁴

Vinyl iodide **10** was prepared in accordance with a previously reported procedure.⁵ The spectral data is in full accordance with the literature reported.⁶

Vinyl iodide **1p** was prepared in accordance with a previously reported procedure.⁷ The spectral data is in full accordance with the literature reported.⁷

Vinyl iodides **1q**, **1r** and **1s** were prepared in accordance with a previously reported procedure.⁸ The spectral data of **1q**, **1r** and **1s** are in full accordance with the literature reported respectively.⁸⁻¹⁰.

(E)-1-butyl-4-(2-iodovinyl)benzene (1i): 498mg; Yield 87%. Yellow oil. A solution of CH₂I₂ (242 µL, 3.0 mmol) in THF (0.8 mL) was added dropwise to a solution of NaHMDS (1.10 g, 6.0 mmol) in THF (4 mL) and ether (4 mL) at -78 °C (dry ice/acetone bath) in the dark. After 20 min, a solution of the 1-(bromomethyl)-4-butylbenzene (454 mg, 2.0 mmol) in THF (1.5 mL) was added dropwise. The reaction mixture was stirred for 90 min then removed from the cold bath to warm to rt. After 30 min, DBU (298 µL, 2.0 mmol) was added dropwise and the solution stirred for 1 h before ether (25 mL) was added. The mixture was filtered through a plug of celite/silica (approximately 3 cm celite over 3 cm silica) and the solvent removed under reduced pressure. The residue was purified by column chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.40 (d, *J* = 14.9 Hz, 1H), 7.22-7.18 (m, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 14.9 Hz, 1H), 2.61-2.56 (m, 2H), 1.62-1.55 (m, 3H), 1.35 (dd, *J* = 15.0, 7.4 Hz, 2H), 0.92 (t, *J* = 7.4 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 143.4, 135.2, 128.7, 125.9, 75.3, 35.4, 33.4, 22.3, 13.9 ppm. HRMS *m*/z (APCI) calcd. for C₁₂H₁₆I [M+H]⁺: 287.0291; found: 287.0294.

tert-butyl(((**5S,8R,9S,10S,13S,14S,17S**)-**3-iodo-10,13-dimethyl-4,5,6,7,8,9,10,11,12,13,14,15,16,17-t etradecahydro-1H-cyclopenta[a]phenanthren-17-yl)oxy)dimethylsilane** (**1t**): 3.29 g; Yield 64% for 3 steps. Yellow solid. Stanolone (**S1**, 2.91 g, 10 mmol), Imidazone (1.02 g, 15 mmol) and TBSCl

(2.26g, 15 mmol) were added to a 100 mL round bottom flask with CH₂Cl₂ (20 mL) and stirred at rt for 2 h to produce S2. Crude hadrazone was synthesized by combining S2 (4.04g, 10 mmol), hydrazine monohydrate (1.0 mL, 20 mmol) and methanol (25mL) and refluxed for 6 hours. Later iodine (5.0 g, 20 mmol) and ether (15 mL) was added to a flame dried 250 mL 2-neck round bottom flask equipped with a stir bar and a pressure equalized addition funnel, and the mixture was stirred in an ice bath. 1,1,3,3-tetramethylguanidine (24 mL, 20 mmol) was then added to the addition funnel along with ether (15 mL). The guanidine solution was added to the iodine solution dropwise. After the guanidine solution was added the mixture was stirred in the ice bath. After 15 mins, Crude hydrazone (4.2 g) was added slowly to the reaction mixture and was allowed to stir for 45 minutes in the ice bath after addition was complete. After the addition was complete, stirring continued for 45 minutes, after which 10 % HCl (20 mL) was added to quench the reaction. The contents of the reaction flask were poured into a separatory funnel. The organic layer was washed with water, then saturated sodium thiosulfate, then twice 10 % HCl. The organic layer was dried with magnesium sulphate and concentrated. The residue was purified by column chromatography using a mixture of hexane and EA [20:1 to 10:1(v/v)] to get **1t**. ¹**H NMR** (500 MHz, CDCl₃) δ = 6.11 (dd, *J* = 3.2, 1.6 Hz, 1H), 3.59-3.51 (m, 1H), 2.12 (ddd, J = 14.9, 6.3, 3.2 Hz, 1H), 1.91 (ddd, J = 14.9, 11.3, 1.6 Hz, 1H), 1.72-1.62 (m, 4H), 1.58 (d, J = 8.0Hz, 2H), 1.45 (ddd, J = 9.2, 7.0, 4.4 Hz, 3H), 1.37-1.31 (m, 2H), 1.28 (ddd, J = 10.4, 7.7, 2.5 Hz, 2H), 1.21-1.14 (m, 1H), 1.12-1.05 (m, 1H), 0.95 (ddd, *J* = 13.8, 10.7, 4.9 Hz, 2H), 0.88 (s, 9H), 0.82 (s, 3H), 0.71 (s, 3H), 0.70-0.65 (m, 1H), 0.05 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) $\delta = 137.5$, 112.9, 72.1, 54.8, 54.8, 50.1, 45.2, 38.6, 37.0, 36.3, 35.7, 34.6, 33.7, 31.9, 31.6, 28.6, 26.0, 21.1, 18.3, 15.3, 12.3, -4.6 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₂₅H₄₄IOSi [M+H]⁺: 515.2200; found: 515.2201. M.p. 176-178 °C.

2.2. General Procedure for Acetylenic Alkyl Iodides 4

$$R \longrightarrow + I \longrightarrow I \xrightarrow{n-BuLi} I \xrightarrow{n-BuLi} I \xrightarrow{n}_n$$

To a two- neck flask equipped with a reflux condenser, a gas inlet tube and a magnetic stirring bar, were added the terminal alkyne (3.0 mmol) and dry THF (15 mL, 0.2 M), and the resulting solution was cooled to -78 °C in an acetone-dry ice bath. Then, *n*-BuLi (2.0 mL, 1.6 M) was slowly added via an argon-flushed syringe. The reaction mixture was stirred for 30 min at -78 °C and then warmed up to room temperature. The appropriate diiodide (4.5 mmol) was added and the reaction mixture was heated to reflux overnight. After cooling down to room temperature, the reaction mixture was quenched by saturated aqueous NH₄Cl and extracted with Et₂O. The combined organic layers were dried over anhydrous MgSO₄, concentrated under reduced pressure, and purified by column chromatography to deliver the corresponding alkyl iodide.

(6-iodohex-1-yn-1-yl)benzene (4a): 680 mg; Yield 80%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.42-7.36 (m, 2H), 7.31-7.27 (m, 3H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.46 (t, *J* = 6.9 Hz, 2H), 2.06-1.98 (m, 2H), 1.77-1.69 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 131.5, 128.2, 127.6, 123.7, 89.2, 81.2, 32.5, 29.4, 18.4, 6.2 ppm. Data was in accordance with that reported in the literature.¹¹

(5-iodopent-1-yn-1-yl)benzene (4b): 608 mg; Yield 75%. Orange oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.44-7.36 (m, 2H), 7.33-7.27 (m, 3H), 3.37 (t, *J* = 6.8 Hz, 2H), 2.56 (t, *J* = 6.7 Hz, 2H), 2.14-2.05 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 131.6, 128.2, 127.8, 123.5, 87.8, 81.7, 32.2, 20.5, 5.4 ppm. Data was in accordance with that reported in the literature.¹²

(7-iodohept-1-yn-1-yl)benzene (4c) : 645 mg; Yield 72%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.40 (dd, J = 6.6, 3.2 Hz, 2H),

7.31-7.26 (m, 3H), 3.22 (t, J = 7.0 Hz, 2H), 2.43 (t, J = 6.7 Hz, 2H), 1.94-1.84 (m, 2H), 1.68-1.54 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 131.5$, 128.2, 127.6, 123.9, 89.7, 80.9, 33.0, 29.7, 27.6, 19.2, 6.7 ppm. Data was in accordance with that reported in the literature.¹³

1-fluoro-2-(6-iodohex-1-yn-1-yl)benzene (4d): 613 mg; Yield 68%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.40 (td, *J* = 7.4, 1.7 Hz, 1H), 7.33-7.22 (m, 1H), 7.17-7.01 (m, 2H), 3.27 (t, *J* = 6.9 Hz, 2H), 2.50 (t, *J* = 7.0 Hz, 2H), 2.06-1.96 (m, 2H), 1.78-1.68 (m, 2H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 163.3 (d, *J* = 249.4 Hz), 134.0 (d, *J* = 1.2 Hz), 129.9 (d, *J* = 7.9 Hz), 124.5 (d, *J* = 3.7 Hz), 115.8 (d, *J* = 21.1 Hz), 112.7 (d, *J* = 15.8 Hz), 95.5 (d, *J* = 3.2 Hz), 74.8, 33.1, 29.8, 19.0, 6.9 ppm. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ = -112.30 (ddd, *J* = 9.6, 7.1, 5.5 Hz) ppm. HRMS *m*/*z* (APCI) calcd. for C₁₃H₁₇FIO [M+H+CH₃OH]⁺: 335.0303; found: 335.0300.

1-fluoro-3-(6-iodohex-1-yn-1-yl)benzene (4e): 617 mg; Yield 68%. Colorless oil. Purified by column chromatography using hexane. ¹**H** NMR (400 MHz, CD₂Cl₂) δ = 7.31-7.23 (m, 1H), 7.18 (d, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 9.7 Hz, 1H), 7.00 (td, *J* = 8.7, 2.3 Hz, 1H), 3.26 (t, *J* = 6.9 Hz, 2H), 2.45 (t, *J* = 7.0 Hz, 2H), 2.05-1.93 (m, 2H), 1.77-1.66 (m, 2H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 162.9 (d, *J* = 245.3 Hz), 130.4 (d, *J* = 8.8 Hz), 128.0 (d, *J* = 2.9 Hz), 126.3 (d, *J* = 9.6 Hz), 118.7 (d, *J* = 22.6 Hz), 115.4 (d, *J* = 21.2 Hz), 91.2, 80.3 (d, *J* = 3.4 Hz), 33.1, 29.8, 18.8, 6.9 ppm. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ = -114.36 (td, *J* = 9.2, 6.1 Hz) ppm. HRMS *m*/*z* (APCI) calcd. for C₁₃H₁₇FIO [M+H+CH₃OH]⁺: 335.0303; found: 335.0297.

1-fluoro-4-(6-iodohex-1-yn-1-yl)benzene (4f): 620 mg; Yield 68%. Colorless oil. Purified by column chromatography using hexane. ¹**H NMR** (500 MHz, CDCl₃) δ = 7.41-7.32 (m, 2H), 7.03-6.93 (m, 2H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.43 (t, *J* = 7.0 Hz, 2H), 2.04-1.96 (m, 2H), 1.76-1.67 (m, 2H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ = 162.1 (d, *J* = 248.4 Hz), 133.3 (d, *J* = 8.2 Hz), 119.8 (d, *J* = 3.4 Hz), 115.4 (d, *J* = 21.9 Hz), 88.8 (d, *J* = 1.3 Hz), 80.1, 32.5, 29.3, 18.3, 6.2 ppm. ¹⁹**F NMR** (471 MHz, CDCl₃) δ = -112.96 (tt, *J* = 8.6, 5.4 Hz) ppm. **HRMS** *m*/*z* (APCI) calcd. for C₁₁H₁₃FIO [M+H+H₂O]⁺: 306.9990; found: 306.9989.

1-(6-iodohex-1-yn-1-yl)-3-(trifluoromethyl)benzene (4g): 710 mg; Yield 67%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.66 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 1H), 3.27 (t, *J* = 6.9 Hz, 2H), 2.47 (t, *J* = 7.0 Hz, 2H), 2.04-1.96 (m, 2H), 1.76-1.69 (m, 2H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 135.3, 131.1 (q, *J* = 32.4 Hz), 129.4, 128.8 (q, *J* = 3.8 Hz), 125.4, 124.7 (q, *J* = 3.8 Hz), 122.5 (q, *J* = 272.3 Hz), 91.9, 80.1, 33.2, 29.8, 18.8, 6.8 ppm. ¹⁹F NMR (471 MHz, CD₂Cl₂) δ = -63.62 (s) ppm. HRMS *m*/*z* (EI) calcd. for C₁₃H₁₂F₃I [M]⁺: 351.9930; found: 351.9928.

1-(6-iodohex-1-yn-1-yl)-2-methoxybenzene (**4h**): 660 mg; Yield 70%. Colorless oil. Purified by column chromatography using a mixture of hexane and EA [50:1 to 20:1(v/v)]. ¹**H NMR** (500 MHz, CD₂Cl₂) δ = 7.34 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.30-7.21 (m, 1H), 6.92-6.85 (m, 2H), 3.85 (s, 3H), 3.28 (t, *J* = 7.0 Hz, 2H), 2.49 (t, *J* = 7.0 Hz, 2H), 2.07-1.99 (m, 2H), 1.75-1.67 (m, 2H) ppm. ¹³**C NMR** (126 MHz, CD₂Cl₂) δ = 160.5, 133.9, 129.6, 120.8, 113.4, 111.2, 93.9, 77.8, 56.2, 33.2, 30.1, 19.2, 7.1 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₁₄H₂₀IO₂ [M+H+CH₃OH]⁺: 347.0502; found: 347.0506.

1-(6-iodohex-1-yn-1-yl)-3-methoxybenzene (4i): 650 mg; Yield 69%. Colorless oil. Purified by column chromatography using a mixture of hexane and EA [50:1 to 20:1(v/v)]. ¹**H NMR** (500 MHz, CDCl₃) δ = 7.19 (t, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.93 (s, 1H), 6.84 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.79 (s, 3H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.45 (t, *J* = 6.9 Hz, 2H), 2.06-1.97 (m, 2H), 1.76-1.67 (m, 2H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ = 159.2, 129.2, 124.7, 124.1, 116.4, 114.2, 89.1, 81.1, 55.2, 32.5, 29.3, 18.4, 6.2 ppm. **HRMS** *m/z* (APCI) calcd. for C₁₃H₁₆IO [M+H]⁺: 315.0240; found: 315.0244.

1-(6-iodohex-1-yn-1-yl)-4-methoxybenzene (**4j**): 670 mg; Yield 71%. Colorless oil. Purified by column chromatography using a mixture of hexane and EA [50:1 to 20:1(v/v)]. ¹H NMR (500 MHz,

CDCl₃) δ = 7.33 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 8.1 Hz, 2H), 3.80 (s, 3H), 3.25 (t, *J* = 6.8 Hz, 2H), 2.43 (t, *J* = 6.7 Hz, 2H), 2.07-1.96 (m, 2H), 1.76-1.66 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 159.1, 132.9, 115.9, 113.8, 87.6, 80.9, 55.3, 32.5, 29.5, 18.4, 6.3 ppm. Data was in accordance with that reported in the literature.¹¹

1-(6-iodohex-1-yn-1-yl)-4-methylbenzene (4k): 650 mg; Yield 73%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.28 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.44 (t, *J* = 6.9 Hz, 2H), 2.33 (s, 3H), 2.06-1.96 (m, 2H), 1.77-1.67 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 137.6, 131.4, 129.0, 120.6, 88.4, 81.2, 32.5, 29.4, 21.4, 18.4, 6.3 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₄H₂₀IO [M+H+CH₃OH]⁺: 331.0553; found: 331.0551.

4-(6-iodohex-1-yn-1-yl)-*N*,*N*-dimethylaniline (4l): 661 mg; Yield 67%. Brown oil. Purified by column chromatography using a mixture of hexane and EA [20:1 to 10:1(v/v)]. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.28$ (d, J = 8.9 Hz, 2H), 6.62 (d, J = 8.9 Hz, 2H), 3.25 (t, J = 6.9 Hz, 2H), 2.96 (s, 6H), 2.44 (t, J = 6.9 Hz, 2H), 2.06-1.96 (m, 2H), 1.76-1.65 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 149.7$, 132.5, 111.9, 110.8, 86.5, 81.7, 40.3, 32.5, 29.6, 18.5, 6.5 ppm. Data was in accordance with that reported in the literature.¹¹

1-(6-iodohex-1-yn-1-yl)-3,5-dimethoxybenzene (4m): 700 mg; Yield 68%. Colorless oil. Purified by column chromatography using a mixture of hexane and EA [50:1 to 20:1(v/v)]. ¹**H NMR** (500 MHz, CD_2Cl_2) $\delta = 6.54$ (d, J = 2.0 Hz, 2H), 6.40 (s, 1H), 3.76 (s, 6H), 3.27 (t, J = 6.9 Hz, 2H), 2.44 (t, J = 7.0 Hz, 2H), 2.04-1.94 (m, 2H), 1.75-1.66 (m, 2H) ppm. ¹³**C NMR** (126 MHz, CD_2Cl_2) $\delta = 161.1$, 125.7, 109.8, 101.4, 89.6, 81.4, 55.9, 33.2, 30.0, 18.8, 7.0 ppm. **HRMS** *m*/*z* (APCI) calcd. for $C_{14}H_{18}IO_2$ [M+H]⁺: 345.0346; found: 345.0340.

1-(tert-butyl)-4-(6-iodohex-1-yn-1-yl)benzene (4n): 735 mg; Yield 72%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.38-7.28 (m, 4H), 3.25 (t, *J* = 6.9 Hz, 2H), 2.45 (t, *J* = 6.9 Hz, 2H), 2.07-1.97 (m, 2H), 1.77-1.67 (m, 2H), 1.31 (s, 9H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 150.8, 131.2, 125.2, 120.7, 88.4, 81.2, 34.6, 32.4, 31.2, 29.4, 18.4, 6.3 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₆H₂₂I [M+H]⁺: 341.0761; found: 341.0762.

2-(6-iodohex-1-yn-1-yl)-6-methoxynaphthalene (40): 710 mg; Yield 65%. Yellow solid. Purified by column chromatography using a mixture of hexane and EA [50:1 to 20:1(v/v)]. ¹**H NMR** (400 MHz, CD_2Cl_2) $\delta = 7.83$ (s, 1H), 7.72-7.62 (m, 2H), 7.42 (dd, J = 8.5, 1.6 Hz, 1H), 7.19-7.10 (m, 2H), 3.91 (s, 3H), 3.29 (t, J = 6.9 Hz, 2H), 2.50 (t, J = 7.0 Hz, 2H), 2.08-1.99 (m, 2H), 1.80-1.70 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CD_2Cl_2) $\delta = 158.7$, 134.4, 131.3, 129.7, 129.6, 129.0, 127.2, 119.8, 119.3, 106.3, 89.5, 81.8, 55.9, 33.2, 30.1, 19.0, 7.0 ppm. **HRMS** *m*/*z* (APCI) calcd. for $C_{17}H_{18}IO$ [M+H]⁺: 365.0397; found: 365.0393. M.p. 75-77 °C.

4p

1-iododec-5-yne (4p): 572 mg; Yield 72%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 3.21 (t, *J* = 7.0 Hz, 2H), 2.23-2.09 (m, 4H), 1.98-1.89 (m, 2H), 1.63-1.54 (m, 2H), 1.51-1.33 (m, 4H), 0.90 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 81.0, 79.1, 32.5, 31.2, 29.7, 21.9, 18.4, 17.7, 13.6, 6.4 ppm. Data was in accordance with that reported in the literature.¹³

(6-iodohex-1-yn-1-yl)cyclopropane (4q): 500 mg; Yield 67%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 3.19 (t, *J* = 7.0 Hz, 2H), 2.15 (td, *J* = 7.0, 1.9 Hz, 2H), 1.95-1.85 (m, 2H), 1.61-1.52 (m, 2H), 1.24-1.13 (m, 1H), 0.75-0.65 (m, 2H), 0.63-0.56 (m, 2H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 83.9, 74.6, 32.4, 29.6, 17.7, 7.9, 6.4, -0.5 ppm. Data was in accordance with that reported in the literature.¹⁴

(6-iodohex-1-yn-1-yl)trimethylsilane (4r): 565 mg; Yield 67%. Yellow oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 3.22 (t, *J* = 6.9 Hz, 2H), 2.26 (t, *J* = 7.0 Hz, 2H), 1.98-1.90 (m, 2H), 1.67-1.59 (m, 2H), 0.15 (s, 9H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 106.4, 85.2, 32.4, 29.2, 18.8, 6.2, 0.1 ppm. Data was in accordance with that reported in the literature.¹⁵

1-(6-iodohex-1-yn-1-yl)cyclohex-1-ene (4s): 591 mg; Yield 68%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 6.01 (s, 1H), 3.21 (t, *J* = 6.9 Hz, 2H), 2.33 (t, *J* = 6.9 Hz, 2H), 2.12-2.03 (m, 4H), 1.99-1.90 (m, 2H), 1.67-1.52 (m, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 133.5, 120.8, 86.2, 83.0, 32.5, 29.5, 25.5, 22.3, 21.5, 18.2, 6.4 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₃H₂₂IO [M+H+CH₃OH]⁺: 321.0710; found: 321.0709.

2-(5-iodopent-1-yn-1-yl)-6-methoxynaphthalene (4t): 685 mg; Yield 65%. White solid. Purified by column chromatography using a mixture of hexane and EA [20:1 to 10:1(v/v)]. ¹H NMR (500 MHz, CDCl₃) δ = 7.84 (s, 1H), 7.66 (dd, *J* = 12.3, 8.8 Hz, 2H), 7.42 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.14 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.09 (d, *J* = 2.4 Hz, 1H), 3.92 (s, 3H), 3.40 (t, *J* = 6.8 Hz, 2H), 2.60 (t, *J* = 6.7 Hz, 2H), 2.16-2.09 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 158.1, 133.8, 131.0, 129.2, 129.1, 128.5, 126.7, 119.3, 118.4, 105.7, 87.3, 82.1, 55.3, 32.3, 20.6, 5.5 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₇H₂₀IO₂ [M+H+CH₃OH]⁺: 383.0502; found: 383.0500. M.p. 71-73 °C.

1-butyl-4-(5-iodopent-1-yn-1-yl)benzene (4u): 688 mg; Yield 70%. Colorless oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.30 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 3.36 (t, *J* = 6.8 Hz, 2H), 2.59 (t, *J* = 7.7 Hz, 2H), 2.55 (t, *J* = 6.7 Hz, 2H), 2.13-2.04 (m, 2H), 1.62-1.55 (m, 2H), 1.38-1.29 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 142.8, 131.4, 128.3, 120.6, 86.9, 81.8, 35.5, 33.4, 32.2, 22.3, 20.5, 13.9, 5.4 ppm. HRMS *m*/z (APCI) calcd. for C₁₆H₂₄IO [M+H+CH₃OH]⁺: 359.0866; found: 359.0867.

2.3. General Procedure for Acetylenic Phenyl Iodides 7

A solution of cuprous iodide (10 mmol) in aqueous ammoniacal (20 mL) was poured into a solution of terminal alkyne (10 mmol) in ethanol (40 mL). The reaction mixture was allowed to stir at room temperature for 2 h. The bright chartreuse precipitate was filtered off and washed three times with water, ethanol, and ethyl acetate. The bright canary yellow solid was dried at 50 $^{\circ}$ C under reduced pressure with oil pump. The crude copper(I) reagent **S3** was used without further purification.

To a 25 mL two necked flask were added copper(I) reagent **S3** (2 mmol), 2,2'-diiodo-1,1'-biphenyl (2 mmol) and pyridine (15 mL). After degassing 30 min with argon, the mixture was refluxed for 30 h under argon atmosphere. The solvent was removed under reduced pressure. Purification by silica gel chromatography afforded the corresponding acetylenic phenyl iodide.

7a and 7b were prepared following the reported literature protocols.¹⁶

2-((4-butylphenyl)ethynyl)-2'-iodo-1,1'-biphenyl (7c): 348 mg; Yield 40%. Yellow oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CD_2Cl_2) $\delta = 8.01$ (d, J = 8.0 Hz, 1H), 7.66-7.60 (m, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.42 (t, J = 4.4 Hz, 2H), 7.37 (dd, J = 7.5, 1.1 Hz, 1H), 7.31-7.27 (m, 1H), 7.14-7.10 (m, 1H), 7.10-7.06 (m, 4H), 2.58 (t, J = 7.7, 2H), 1.60-1.52 (m, 2H), 1.38-1.29 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H) ppm. ¹³C NMR (126 MHz, CD_2Cl_2) $\delta = 147.3$, 146.4, 144.2, 139.4, 132.1, 131.7, 131.0, 130.0, 129.6, 129.0, 128.5, 128.4, 128.4, 123.5, 120.7, 99.9, 93.8, 88.2, 36.0, 34.0, 22.8, 14.2 ppm. HRMS *m/z* (APCI) calcd. for $C_{24}H_{22}I$ [M+H]⁺: 437.0761; found: 437.0764.

2-((4-fluorophenyl)ethynyl)-2'-iodo-1,1'-biphenyl (7d): 360 mg; Yield 45%. Yellow solid. Purified by column chromatography using hexane. ¹H NMR (400 MHz, CD_2Cl_2) $\delta = 8.02$ (d, J = 8.0 Hz, 1H), 7.67-7.61 (m, 1H), 7.49-7.42 (m, 3H), 7.37 (dd, J = 7.6, 1.6 Hz, 1H), 7.32-7.27 (m, 1H), 7.19-7.10 (m, 3H), 6.98 (t, J = 8.8 Hz, 2H) ppm. ¹³C NMR (101 MHz, CD_2Cl_2) $\delta = 163.0$ (d, J = 249.0 Hz), 147.3,

146.3, 139.4, 133.7 (d, J = 8.4 Hz), 132.1, 130.9, 130.1, 129.7, 128.7, 128.5, 128.4, 123.1, 119.8 (d, J = 3.5 Hz), 116.0 (d, J = 22.2 Hz), 99.9, 92.4, 88.6 ppm. ¹⁹F NMR (377 MHz, CD₂Cl₂) $\delta = -111.85$ (tt, J = 8.7, 5.5 Hz) ppm. **HRMS** m/z (APCI) calcd. for C₂₀H₁₃FI [M+H]⁺: 399.0040; found: 399.0040. M.p. 90-92 °C.

2-(hex-1-yn-1-yl)-2'-iodo-1,1'-biphenyl (7e): 270 mg; Yield 38%. Yellow oil. Purified by column chromatography using hexane. ¹H NMR (500 MHz, CD_2Cl_2) $\delta = 7.93$ (d, J = 7.9 Hz, 1H), 7.50-7.43 (m, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.37-7.30 (m, 2H), 7.28 (d, J = 7.5 Hz, 1H), 7.22-7.16 (m, 1H), 7.06 (t, J = 7.6 Hz, 1H), 2.26-2.12 (m, 2H), 1.32-1.25 (m, 2H), 1.18-1.10 (m, 2H), 0.79 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (126 MHz, CD_2Cl_2) $\delta = 147.2$, 146.7, 139.3, 132.3, 130.7, 129.9, 129.4, 128.3, 128.2, 127.7, 124.1, 99.9, 94.8, 79.7, 31.0, 22.1, 19.4, 13.9 ppm. HRMS m/z (APCI) calcd. for $C_{18}H_{18}I$ [M+H]⁺: 361.0448; found: 361.0447.

2.4. Reaction Conditions Optimization

Table S1. Optimization of the Reaction Conditions.^a

	la la	t-BuLi −78 °C to rt 2a		3a		
entry	iron salt	additive	solvent	<i>T</i> (°C)	time (min)	yield $(\%)^{b}$
	(1101 /0)				(mm)	(70)
1	FeCl ₃ (100)	none	THF	rt	60	86
2	FeF ₃ (100)	none	THF	rt	60	56
3	FeBr ₃ (100)	none	THF	rt	60	52
4	Fe(acac) ₃ (100)	none	THF	rt	60	70
5	FeF ₂ (100)	none	THF	rt	60	25
6	FeCl ₂ (100)	none	THF	rt	60	82
7	FeBr ₂ (100)	none	THF	rt	60	38
8	FeCl ₃ (10)	none	THF	rt	60	29
9	FeCl ₃ (10)	O ₂ (balloon)	THF	rt	60	41
10	FeCl ₃ (10)	DCE (1.0 equiv)	THF	rt	60	84
11	FeCl ₃ (10)	DTBP (1.0 equiv)	THF	rt	60	86
12	FeCl ₂ (10)	Et ₃ N (1.0 equiv)	THF	rt	60	33
13	FeCl ₃ (10)	DTBP (1.0 equiv)	toluene	rt	60	80
14	FeCl ₃ (10)	DTBP (1.0 equiv)	Et ₂ O	rt	60	70
15	FeCl ₃ (10)	DTBP (1.0 equiv)	THF	0	60	77
16	FeCl ₃ (10)	DTBP (1.0 equiv)	THF	40	60	81
17	$\operatorname{FeCl}_{3}(5)$	DTBP (1.0 equiv)	THF	rt	30	86
18^c	$\operatorname{FeCl}_{3}(5)$	DTBP (1.0 equiv)	THF	rt	30	94

^{*a*}Reaction condition: a solution of vinyllithium (0.2 mmol) was added to a mixture of iron salt, additive (if applicable) in THF (1.0 mL) at rt. ^{*b*}GC–MS analysis. ^{*c*}To a solution of vinyllithium (0.2 mmol) were added a solution of FeCl₃ in THF (0.1 mL) and additive.

2.5. Optimized Procedure for Butadienes

To a Schlenk tube charged with acetylenic iodide (0.2 mmol), were added 1.2 mL n-pentane and 0.8 mL diethyl ether via argon-flushed syringes, and the resulting solution was cooled to -78 °C in an acetone-dry ice bath. Then t-BuLi (2.0-2.2 equiv) in pentane was added dropwise via an argon-flushed -78syringe, and the mixture was stirred at °C for an additional 8 min. After removing the cooling bath and stirring for a period of time (15 min for substrates 1, 30 min for substrates 4 and 7), a solution of FeCl₃ (0.01 mmol) in THF (0.1 mL) was added via an argon-flushed syringe, followed by adding DTBP (0.2 mmol) via an argon-flushed microsyringe. After stirring for 30 min at rt, the reaction mixture was quenched by MeOH and passed through a short silica pad using DCM as an eluent. After concentration, the residue was purified by column chromatography or preparative thin-layer chromatography.

(1E,3E)-1,4-diphenylbuta-1,3-diene (3a): 18.7 mg; Yield 91%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.45 (d, *J* = 7.5 Hz, 4H), 7.34 (t, *J* = 7.5 Hz, 4H), 7.24 (t, *J* = 6.0 Hz, 2H), 6.99-6.93 (m, 2H), 6.71-6.65 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 137.3, 132.8, 129.2, 128.6, 127.6, 126.4 ppm. Data was in accordance with that reported in the literature.¹⁷

(1E,3E)-1,4-bis(2-fluorophenyl)buta-1,3-diene (3b): 12.3 mg; Yield 51%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.57 (td, *J* = 7.7, 1.6 Hz, 2H), 7.27-7.21 (m, 2H), 7.14 (t, *J* = 7.5 Hz, 2H), 7.16-7.05 (m, 4H), 6.92-6.82 (m, 2H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 161.9, 159.9, 132.3 (d, *J* = 5.2 Hz), 129.5 (d, *J* = 8.4 Hz), 127.7 (d, *J* = 3.6 Hz), 126.1 (d, *J* = 3.4 Hz), 125.6 (d, *J* = 12.0 Hz), 124.8 (d, *J* = 3.5 Hz), 116.4, 116.2 ppm. ¹⁹F NMR (471 MHz, CD₂Cl₂) δ = -116.47 (ddd, *J* = 11.3, 7.7, 5.3 Hz) ppm. Data was in accordance with that reported in the literature.¹⁸

(1E,3E)-1,4-bis(3-fluorophenyl)buta-1,3-diene (3c): 11.9 mg; Yield 49%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CH₂Cl₂) δ = 7.37-7.26 (m, 2H), 7.24 (d, *J* = 7.4 Hz, 2H), 7.17 (dd, *J* = 10.3, 1.3 Hz, 2H), 7.01-6.87 (m, 4H), 6.74-6.61 (m, 2H) ppm. ¹³C NMR (126 MHz, CH₂Cl₂) δ = 164.7, 162.8, 140.2 (d, *J* = 7.7 Hz), 132.9 (d, *J* = 2.7 Hz), 130.8-130.6 (m), 123.0 (d, *J* = 2.6 Hz), 115.0 (d, *J* = 21.4 Hz), 113.1 (d, *J* = 22.0 Hz) ppm. ¹⁹F NMR (471 MHz, CH₂Cl₂) δ = -114.84 - -115.35 (m) ppm. Data was in accordance with that reported in the literature.¹⁹

(1E,3E)-1,4-bis(4-fluorophenyl)buta-1,3-diene (3d): 14.0 mg; Yield 58%. Purified by preparative thin-layer chromatography using hexane. White solid. ¹H NMR (500 MHz, CDCl₃) δ = 7.44-7.36 (m, 4H), 7.02 (t, *J* = 8.7 Hz, 4H), 6.88-6.80 (m, 2H), 6.66-6.57 (m, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 162.3 (d, *J* = 248.2 Hz), 133.5 (d, *J* = 3.4 Hz), 131.5, 128.8 (d, *J* = 1.4 Hz), 127.8 (d, *J* = 8.0 Hz), 115.6 (d, *J* = 21.4 Hz) ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ = -114.92 (dd, *J* = 8.5, 5.6 Hz) ppm. Data was in accordance with that reported in the literature.¹⁷

(1E,3E)-1,4-di-o-tolylbuta-1,3-diene (3e): 16.4 mg; Yield 70%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.57 (d, *J* = 7.5 Hz, 2H), 7.22-7.15 (m, 6H), 6.92 (t, *J* = 7.4 Hz, 4H), 2.40 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 136.2, 135.6, 130.7, 130.5, 130.3, 127.4, 126.1, 125.0, 19.9 ppm. Data was in accordance with that reported in the literature.²⁰

(1E,3E)-1,4-di-m-tolylbuta-1,3-diene (3f): 15.0 mg; Yield 64%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.30–7.20 (m, 6H), 7.07 (d, J = 7.2 Hz, 2H), 7.01-6.93 (m, 2H), 6.70-6.61 (m, 2H), 2.36 (s, 6H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 138.9, 137.9, 133.3, 129.7, 129.1, 128.9, 127.6, 124.0, 21.7 ppm. Data was in accordance with that reported in the literature.¹⁷

(1E,3E)-1,4-bis(2-methoxyphenyl)buta-1,3-diene (3g): 18.6 mg; Yield 70%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.52 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.22 (ddd, *J* = 8.3, 7.5, 1.7 Hz, 2H), 7.07-6.96 (m, 4H), 6.93 (ddd, *J* = 14.6, 10.6, 4.6 Hz, 4H), 3.87 (s, 6H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 157.4, 131.2, 129.0, 127.6, 126.9, 126.8, 121.2, 111.5, 56.0 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₈H₁₉O₂ [M+H]⁺: 267.1380; found: 267.1378. M.p. 80-82 °C.

(1E,3E)-1,4-bis(3-methoxyphenyl)buta-1,3-diene (3h): 19.4 mg; Yield 73%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.27 (s, 1H), 7.24 (d, *J* = 7.9 Hz, 1H), 7.04 (d, *J* = 7.7 Hz, 2H), 7.00-6.90 (m, 4H), 6.83-6.78 (m, 2H), 6.65 (dd, *J* = 11.8, 2.9 Hz, 2H), 3.84 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 159.8, 138.8, 132.9, 129.6, 129.5, 119.2, 113.3, 111.5, 55.2 ppm. MS *m*/*z* (relative intensity): 266.1 (22.1%), 207.0 (31.3%), 193.1 (52.7%), 137.0 (81.9%), 73.1 (100%). M.p. 91-93 °C.

(1E,3E)-1,4-bis(4-butylphenyl)buta-1,3-diene (3i): 20.7 mg; Yield 65%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.36 (d, *J* = 8.1 Hz, 4H), 7.16 (d, *J* = 8.1 Hz, 4H), 6.97-6.89 (m, 2H), 6.68-6.61 (m, 2H), 2.62-2.58 (m, 4H), 1.62-1.56 (m, 4H), 1.36 (dd, *J* = 14.9, 7.4 Hz, 4H), 0.93 (dd, *J* = 9.2, 5.5 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 143.2, 135.4, 132.8, 129.3, 129.0, 126.7, 35.9, 34.2, 22.9, 14.3 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₄H₃₁ [M+H]⁺: 319.2420; found: 319.2416.

(1E,3E)-1,4-bis(3,5-dimethylphenyl)buta-1,3-diene (3j): 20.7 mg; Yield 79%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.08 (s, 4H), 6.94 (dd, *J* = 11.9, 2.8 Hz, 2H), 6.90 (s, 2H), 6.65-6.57 (m, 2H), 2.34 (s, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 138.0, 137.3, 132.7, 129.3, 129.1, 124.2, 21.3 ppm. Data was in accordance with that reported in the literature.²⁰

(1E,3E)-1,4-bis(3,5-di-tert-butylphenyl)buta-1,3-diene (3k): 25.4 mg; Yield 59%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.31 (d, *J* = 13.7 Hz, 6H), 6.96 (dd, *J* = 12.2, 9.7 Hz, 2H), 6.73 (dd, *J* = 16.7, 4.7 Hz, 2H), 1.35 (s, 36H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 150.9, 136.6, 133.4, 128.9, 122.0, 120.6, 34.8, 31.4 ppm. HRMS *m/z* (APCI) calcd. for C₃₂H₄₇ [M+H]⁺: 431.3672; found: 431.3677.

(1E,3E)-1,4-bis(3,5-dimethoxyphenyl)buta-1,3-diene (3l): 25.1 mg; Yield 77%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 6.95-6.87 (m, 2H), 6.61 (t, *J* = 7.7 Hz, 6H), 6.38 (t, *J* = 2.1 Hz, 2H), 3.82 (s, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 160.9, 139.3, 133.1, 129.5, 104.4, 100.0, 55.3 ppm. Data was in accordance with that reported in the literature.¹⁸

(1E,3E)-1,4-bis(2,6-dimethylphenyl)buta-1,3-diene (3m): 16.2 mg; Yield 62%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.07 (s, 6H), 6.67-6.60 (m, 2H), 6.53-6.47 (m, 2H), 2.38 (s, 12H) ppm. ¹³C NMR (126 MHz, CDCl₃) = 136.6, 136.1, 135.0, 130.2, 127.9, 126.6, 21.2 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₀H₂₃ [M+H]⁺: 263.1794; found: 263.1796. M.p. 104-106 °C.

(1E,3E)-1,4-di(thiophen-3-yl)buta-1,3-diene (3n): 14.2 mg; Yield 65%. White solid. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.31 (ddd, *J* = 6.3, 5.1, 2.1 Hz, 4H), 7.22 (dd, *J* = 2.8, 1.2 Hz, 2H), 6.81-6.73 (m, 2H), 6.71-6.64 (m, 2H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 140.8, 129.8, 126.9, 126.8, 125.4, 122.6 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₂H₁₁S₂ [M+H]⁺: 219.0297; found: 219.0295. M.p. 123-125 °C.

(8E,10E)-octadeca-8,10-diene (3o): 24.5 mg; Yield 98%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) $\delta = 6.03$ -5.95 (m, 2H), 5.61-5.52 (m, 2H), 2.06 (d, J = 6.9 Hz, 4H), 1.26 (s, 20H), 0.88 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) $\delta = 132.4$, 130.3, 32.6, 31.8, 29.7, 29.4, 29.2, 22.7, 14.1 ppm. HRMS m/z (APCI) calcd. for C₁₈H₃₅ [M+H]⁺: 251.2733; found: 251.2734.

(1E,3E)-1,4-bis(2-phenylcyclopropyl)buta-1,3-diene (3p): 21.7 mg; Yield 76%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.25 (t, *J* = 7.5 Hz, 4H), 7.15 (d, *J* = 7.3 Hz, 2H), 7.06 (d, *J* = 7.7 Hz, 4H), 6.13 (dd, *J* = 11.5, 2.8 Hz, 2H), 1.99-1.88 (m, 2H), 1.73-1.60 (m, 2H), 1.28-1.20 (m, 2H), 1.11 (dt, *J* = 8.9, 5.3 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 143.0, 134.5, 129.0, 128.8, 126.1, 27.6, 26.2 26.2, 17.6 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₂H₂₃ [M+H]⁺: 287.1794; found: 287.1792.

1,1',4,4'-tetraoxa-8,8'-bispiro[4.5]decane-7,7'-diene (**3q**): 13.1 mg; Yield 47%. Colorless oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹H NMR (400 MHz, CDCl₃) δ = 5.68 (s, 2H), 3.97 (s, 8H), 2.43 (t, *J* = 6.1 Hz, 4H), 2.37 (s, 4H), 1.79 (t, *J* = 6.6 Hz, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 135.4, 119.3, 107.9, 64.4, 64.4, 35.9, 31.1, 24.8 ppm. HRMS *m*/z (APCI) calcd. for C₁₆H₂₃O₄ [M+H]⁺: 279.1580; found: 279.1598.

3,3',4,4'-tetrahydro-1,1'-binaphthalene (**3r**): 19.9 mg; Yield 77%. White Solid. Purified by preparative thin-layer chromatography using hexane. ¹**H** NMR (400 MHz, CDCl₃) δ = 7.17 (d, *J* = 7.0 Hz, 2H), 7.10 (td, *J* = 7.3, 1.2 Hz, 2H), 7.02 (t, *J* = 7.5 Hz, 2H), 6.92 (d, *J* = 7.5 Hz, 2H), 6.09 (t, *J* = 4.5 Hz, 2H), 2.91 (t, *J* = 7.8 Hz, 4H), 2.41 (td, *J* = 8.0, 4.6 Hz, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 138.3, 135.8, 134.7, 128.0, 127.4, 126.8, 126.3, 125.1, 28.2, 23.3 ppm. Data was in accordance with that reported in the literature.²¹

[1,1'-bi(cycloheptane)]-1,1'-diene (3s): 12.2 mg; Yield 64%. White Solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 5.77 (t, *J* = 6.8 Hz, 1H), 2.30-2.22 (m, 2H), 2.14 (dd, *J* = 11.2, 6.7 Hz, 2H), 1.78-1.72 (m, 2H), 1.46 (ddd, *J* = 10.8, 8.0, 5.2 Hz,

4H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 148.0, 125.7, 32.8, 30.5, 28.5, 27.0, 26.9 ppm. Data was in accordance with that reported in the literature.²²

Compound (**3t**): 58.1 mg; Yield 75%. White Solid. Purified by column chromatography using a mixture of hexane and EA [20:1 to 10:1(v/v)]. ¹**H NMR** (500 MHz, CDCl₃) δ = 5.68 (s, 2H), 3.60-3.53 (m, 2H), 2.14 (ddd, *J* = 15.2, 6.2, 3.1 Hz, 2H), 2.04 (dd, *J* = 8.7, 2.7 Hz, 2H), 1.90 (s, 2H), 1.74-1.65 (m, 6H), 1.63-1.59 (m, 2H), 1.52-1.41 (m, 6H), 1.41-1.35 (m, 4H), 1.31-1.26 (m, 8H), 1.14-1.06 (m, 2H), 1.03-0.94 (m, 4H), 0.91 (s, 24H), 0.85 (s, 6H), 0.74-0.66 (m, 2H), 0.07 (s, 12H). **13C NMR** (126 MHz, CDCl₃) δ = 149.6, 124.1, 72.2, 56.7, 54.8, 47.5, 45.3, 38.7, 37.0, 35.9, 35.7, 33.9, 32.0, 32.0, 31.6, 28.8, 26.0, 21.4, 18.3, 16.2, 12.4, -4.6 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₅₀H₈₇Si₂O₂ [M+H]⁺: 775.6239; found: 775.6253. M.p. 240-242 °C.

1,2-dicyclopentylidene-1,2-diphenylethane (6a): 24.5 mg; Yield 78%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.32-7.17 (m, 8H), 7.12 (t, *J* = 7.0 Hz, 2H), 2.47 (m, 4H), 2.33 (m, 4H), 1.74-1.64 (m, 8H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 143.6, 142.1, 134.0, 128.9, 128.3, 126.3, 33.5, 32.9, 27.7, 26.6 ppm. HRMS *m*/*z* (ESI) calcd. for C₂₄H₂₆Na [M+Na]⁺: 337.1924; found: 337.1927.

1,2-dicyclobutylidene-1,2-diphenylethane (6b): 21.0 mg; Yield 73%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CD₂Cl₂) δ = 7.31 (d, *J* = 7.5 Hz, 4H), 7.24 (t, *J* = 7.7 Hz, 4H), 7.12 (t, *J* = 7.3 Hz, 2H), 3.13-3.05 (m, 4H), 2.73-2.66 (m, 4H), 2.09-1.99 (m, 4H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ = 142.5, 139.8, 130.2, 128.6, 127.6, 126.4, 33.3, 32.6, 18.0 ppm. HRMS *m*/*z* (ESI) calcd. for C₂₂H₂₂Na [M+Na]⁺: 309.1614; found: 309.1610. M.p. 72-74 °C.

1,2-dicyclohexylidene-1,2-diphenylethane (6c): 13.7 mg; Yield 40%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.18-7.12 (m, 4H), 7.12-7.06 (m, 2H), 6.92 (d, *J* = 7.1 Hz, 4H), 2.58-2.47 (m, 2H), 2.41-2.32 (m, 2H), 2.25-2.16 (m, 2H), 2.11-2.02 (m, 2H), 1.77-1.69 (m, 2H), 1.68-1.59 (m, 6H), 1.59-1.49 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 141.6, 137.0, 133.9, 129.4, 127.5, 125.7, 32.3, 31.3, 28.3, 28.0, 26.9 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₆H₃₁ [M+H]⁺: 343.2420; found: 343.2422.

1,2-dicyclopentylidene-1,2-bis(2-fluorophenyl)ethane (6d): 19.5 mg; Yield 56%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.17-7.08 (m, 2H), 7.02-6.88 (m, 6H), 2.38 (t, *J* = 7.1 Hz, 4H), 2.12 (t, *J* = 7.2 Hz, 4H), 1.78-1.68 (m, 4H), 1.68-1.59 (m, 4H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 159.8 (d, *J* = 245.5 Hz), 145.8, 130.8 (d, *J* = 4.5 Hz), 129.5 (d, *J* = 17.1 Hz), 127.8 (d, *J* = 8.2 Hz), 126.5, 123.4 (d, *J* = 3.5 Hz), 115.3 (d, *J* = 23.3 Hz), 32.3 (d, *J* = 1.6 Hz), 31.6 (d, *J* = 3.3 Hz), 26.6, 26.3 ppm. ¹⁹F NMR (377 MHz, CDCl₃) δ = - 114.58 (m) ppm. HRMS *m*/*z* (APCI) calcd. for C₂₄H₂₅F₂ [M+H]⁺: 351.1919; found: 351.1916.

1,2-dicyclopentylidene-1,2-bis(3-fluorophenyl)ethane (6e): 16.8 mg; Yield 48%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.25-7.18 (m, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 7.01-6.94 (m, 2H), 6.93-6.74 (m, 2H), 2.52-2.45 (m, 4H), 2.36-2.28 (m, 4H), 1.74-1.64 (m, 8H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 163.2 (d, *J* = 243.6 Hz), 145.6, 144.2 (d, *J* = 7.3 Hz), 132.6 (d, *J* = 2.1 Hz), 129.7 (d, *J* = 8.5 Hz), 124.7 (d, *J* = 2.6 Hz), 115.4 (d, *J* = 21.4 Hz), 113.2 (d, *J* = 21.2 Hz), 33.7, 33.1, 27.7, 26.5 ppm. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ = - 115.07 (ddd, *J* = 10.8, 8.7, 6.5 Hz) ppm. HRMS *m*/*z* (APCI) calcd. for C₂₄H₂₅F₂ [M+H]⁺: 351.1919; found: 351.1914.

1,2-dicyclopentylidene-1,2-bis(4-fluorophenyl)ethane (6f): 16.0 mg; Yield 46%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.23-7.16 (m, 4H), 6.98-6.86 (m, 4H), 2.47-2.38 (m, 4H), 2.32-2.25 (m, 4H), 1.72-1.63 (m, 8H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 161.0 (d, *J* = 245.0 Hz), 143.0, 137.4 (d, *J* = 3.2 Hz), 132.5, 129.7 (d,

J = 7.6 Hz), 114.6 (d, J = 21.1 Hz), 32.9, 32.4, 27.1, 26.0 ppm. ¹⁹F NMR (377 MHz, CDCl₃) $\delta = -$ 117.70 (tt, J = 8.7, 5.5 Hz) ppm. Data was in accordance with that reported in the literature.²³

1,2-dicyclopentylidene-1,2-bis(3-(trifluoromethyl)phenyl)ethane (6g): 13.5 mg; Yield 30%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CD_2Cl_2) $\delta = 7.50$ (s, 2H), 7.46-7.33 (m, 6H), 2.51-2.42 (m, 4H), 2.36-2.30 (m, 4H), 1.75-1.65 (m, 8H) ppm. ¹³C NMR (126 MHz, CD_2Cl_2) $\delta = 146.4$, 142.6, 132.3, 132.2, 130.5 (q, J = 31.7 Hz), 129.0, 125.4 (q, J = 3.8 Hz), 125.0 (q, J = 272.2 Hz), 123.2 (q, J = 3.7 Hz), 33.8, 33.0, 27.6, 26.5 ppm. ¹⁹F NMR (471 MHz, CD_2Cl_2) $\delta = -63.20$ (s) ppm. HRMS *m*/*z* (APCI) calcd. for $C_{26}H_{25}F_6$ [M+H]⁺: 451.1855; found: 451.1838.

1,2-dicyclopentylidene-1,2-bis(2-methoxyphenyl)ethane (6h): 16.0 mg; Yield 43%. White solid. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹**H NMR** (500 MHz, CD₂Cl₂) δ = 7.09 (t, *J* = 7.7 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 4H), 6.72 (t, *J* = 7.3 Hz, 2H), 3.60 (s, 6H), 2.35 (t, *J* = 6.9 Hz, 4H), 1.97 (t, *J* = 7.2 Hz, 4H), 1.72-1.65 (m, 4H), 1.61-1.55 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CD₂Cl₂) δ = 157.1, 142.9, 132.0, 130.5, 129.7, 127.0, 119.8, 110.9, 55.3, 32.1, 31.4, 26.9, 26.2 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₂₆H₃₁O₂ [M+H]⁺: 375.2319; found: 375.2325. M.p. 67-69 °C.

1,2-dicyclopentylidene-1,2-bis(3-methoxyphenyl)ethane (6i): 26.6 mg; Yield 71%. Colorless oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.16 (t, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 7.8 Hz, 2H), 6.85-6.80 (m, 2H), 6.70 (dd, *J* = 8.0, 2.2 Hz, 2H), 3.73 (s, 6H), 2.53-2.45 (m, 4H), 2.35-2.25 (t, *J* = 5.9 Hz, 4H), 1.72-1.63 (m, 8H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ = 159.0, 143.2, 143.0, 133.2, 128.6, 121.0, 114.2, 111.0, 55.0, 33.0, 32.6, 27.2, 26.0 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₂₆H₃₁O₂ [M+H]⁺: 375.2319; found: 375.2323.

1,2-dicyclopentylidene-1,2-bis(4-methoxyphenyl)ethane (6j): 27.4 mg; Yield 73%. Colorless oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹H NMR (500 MHz, CDCl₃) δ = 7.21 (d, *J* = 8.7 Hz, 4H), 6.79 (d, *J* = 8.8 Hz, 4H), 3.78 (s, 6H), 2.47 (t, *J* = 6.2 Hz, 4H), 2.27 (t, *J* = 6.4 Hz, 4H), 1.71-1.61 (m, 8H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 157.5, 141.2, 134.2, 133.0, 129.3, 113.1, 55.1, 32.8, 32.5, 27.3, 26.1 ppm. HRMS *m/z* (ESI) calcd. for C₂₆H₃₀O₂Na [M+Na]⁺: 397.2138; found: 397.2136.

1,2-dicyclopentylidene-1,2-di-p-tolylethane (6k): 26.0 mg; Yield 76%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.17 (d, *J* = 8.1 Hz, 4H), 7.04 (d, *J* = 8.0 Hz, 4H), 2.50-2.45 (m, 4H), 2.29 (s, 6H), 2.27 (t, *J* = 6.4 Hz, 4H), 1.69-1.60 (m, 8H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 142.1, 138.7, 135.2, 133.3, 128.4, 128.2, 32.9, 32.6, 27.2, 26.0, 21.1 ppm. Data was in accordance with that reported in the literature.²³

4,4'-(1,2-dicyclopentylideneethane-1,2-diyl)bis(*N*,*N*-dimethylaniline) (61): 24.8 mg; Yield 62%. Brown oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [10:1 (v/v)]. ¹H NMR (400 MHz, CDCl₃) δ = 7.22 (d, *J* = 8.8 Hz, 4H), 6.64 (d, *J* = 8.9 Hz, 4H), 2.91 (s, 12H), 2.53 (t, *J* = 6.6 Hz, 4H), 2.25 (t, *J* = 6.8 Hz, 4H), 1.71-1.59 (m, 8H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 148.5, 139.6, 133.3, 130.3, 129.0, 112.0, 40.6, 32.8, 32.6, 27.4, 26.0 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₈H₃₇N₂ [M+H]⁺: 401.2951; found: 401.2952.

1,2-dicyclopentylidene-1,2-bis(3,5-dimethoxyphenyl)ethane (6m): 26.0 mg; Yield 60%. Colorless oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹**H NMR** (400 MHz, CD₂Cl₂) δ = 6.42 (d, *J* = 2.3 Hz, 4H), 6.27 (t, *J* = 2.3 Hz, 2H), 3.70 (s, 12H),

2.52-2.43 (m, 4H), 2.38-2.29 (m, 4H), 1.73-1.64 (m, 8H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 160.9, 144.1, 143.9, 133.8, 107.2, 98.3, 55.7, 33.5, 33.0, 27.7, 26.5 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₈H₃₅O₄ [M+H]⁺: 435.2530; found: 435.2526.

1,2-bis(4-(tert-butyl)phenyl)-1,2-dicyclopentylideneethane (6n): 30.8 mg; Yield 72%. White solid. Purified by preparative thin-layer chromatography using hexane. ¹**H NMR** (400 MHz, CD₂Cl₂) δ = 7.36-7.17 (m, 8H), 2.53 (t, *J* = 6.6 Hz, 4H), 2.34 (t, *J* = 6.5 Hz, 4H), 1.75-1.64 (m, 8H), 1.29 (s, 18H) ppm. ¹³**C NMR** (101 MHz, CD₂Cl₂) δ = 149.2, 142.9, 138.7, 133.5, 128.4, 125.2, 34.8, 33.6, 33.1, 31.6, 27.8, 26.5 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₃₂H₄₃ [M+H]⁺: 427.3359; found: 427.3365. M.p. 110-112 °C.

1,2-dicyclopentylidene-1,2-bis(6-methoxynaphthalen-2-yl)ethane (60): 30.0 mg; Yield 63%. Colorless oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹H NMR (400 MHz, CD₂Cl₂) δ = 7.69 (s, 2H), 7.64 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.44 (dd, *J* = 8.5, 1.7 Hz, 2H), 7.14-7.02 (m, 4H), 3.88 (s, 6H), 2.59 (br s, 4H), 2.42 (br s, 4H), 1.79-1.66 (m, 8H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 158.0, 143.7, 137.7, 134.1, 133.5, 129.9, 129.3, 128.2, 127.3, 126.4, 118.9, 106.0, 55.8, 33.7, 33.1, 27.8, 26.7 ppm. HRMS *m*/*z* (APCI) calcd. for C₃₄H₃₅O₂ [M+H]⁺: 475.2632; found: 475.2628.

decane-5,6-diylidenedicyclopentane (6p): 12.3 mg; Yield 45%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (400 MHz, CDCl₃) δ = 2.26-2.16 (m, 4H), 2.14 -1.85 (m, 8H), 1.72-1.44 (m, 8H), 1.39-1.29 (m, 4H), 0.97-0.79 (m, 10H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 137.5, 132.3, 32.3, 32.1, 30.3, 29.4, 26.7, 26.4, 23.2, 14.1 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₀H₃₅ [M+H]⁺: 275.2733; found: 275.2733.

1,2-dicyclopentylidene-1,2-dicyclopropylethane (6q): 7.3 mg; Yield 30%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹**H NMR** (400 MHz, CDCl₃) δ = 2.38-2.24 (m, 4H), 2.04-1.86 (m, 4H), 1.73-1.61 (m, 4H), 1.55-1.46 (m, 4H), 1.39-1.31 (m, 2H), 0.59-0.38 (m, 6H), 0.25-0.15 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ = 140.2, 129.2, 32.2, 29.4, 26.7, 26.5, 13.9, 5.0, 4.7 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₁₈H₂₇ [M+H]⁺: 243.2107; found: 243.2106.

1,2-dicyclopentylidene-1,2-bis(**trimethylsilyl**)**ethane** (**6r**): 9.2 mg; Yield 30%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 2.29 (td, *J* = 7.1, 1.4 Hz, 4H), 2.06-1.95 (m, 4H), 1.68-1.62 (m, 4H), 1.57-1.51 (m, 4H), 0.07 (s, 18H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 150.9, 135.8, 33.3, 32.4, 27.3, 25.8, 0.3 ppm. HRMS *m*/*z* (APCI) calcd. for C₁₈H₃₅Si₂ [M+H]⁺: 307.2272; found: 307.2276.

1,2-di(cyclohex-1-en-1-yl)-1,2-dicyclopentylideneethane (6s): 10.0 mg; Yield 31%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 5.50-5.37 (m, 2H), 2.29 (t, *J* = 6.7 Hz, 4H), 2.10 (t, *J* = 6.6 Hz, 4H), 2.05-2.01 (m, 4H), 2.00-1.94 (m, 4H), 1.63-1.56 (m, 10H), 1.55-1.50 (m, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 138.6, 138.2, 135.7, 124.1, 32.0, 31.4, 27.7, 26.8, 26.2, 25.6, 23.3, 22.6 ppm. HRMS *m*/*z* (APCI) calcd. for C₂₄H₃₅ [M+H]⁺: 323.2733; found: 323.2738.

1,2-dicyclobutylidene-1,2-bis(6-methoxynaphthalen-2-yl)ethane (6t): 24.5 mg; Yield 55%. Yellow oil. Purified by preparative thin-layer chromatography using a mixture of hexane and EA [20:1 (v/v)]. ¹**H NMR** (500 MHz, CDCl₃) δ = 7.69 (s, 2H), 7.65-7.60 (m, 4H), 7.52 (d, *J* = 8.6 Hz, 2H), 7.10-7.04 (m, 4H), 3.89 (s, 6H), 3.19 (t, *J* = 6.9 Hz, 4H), 2.68 (t, *J* = 7.0 Hz, 4H), 2.09-2.00 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ = 157.3, 141.6, 135.0, 132.9, 130.1, 129.5, 129.0, 126.4, 126.3, 125.4, 118.5, 105.5, 55.3, 33.0, 32.2, 17.6 ppm. **HRMS** *m*/*z* (ESI) calcd. for C₃₂H₃₀O₂Na [M+Na]⁺: 469.2138; found: 469.2138.

1,2-bis(4-butylphenyl)-1,2-dicyclobutylideneethane (6u): 28.0 mg; Yield 70%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹H NMR (500 MHz, CDCl₃) δ = 7.22 (d, *J* = 8.2 Hz, 4H), 7.05 (d, *J* = 8.3 Hz, 4H), 3.12-3.04 (m, 4H), 2.68-2.62 (m, 4H), 2.54 (t, *J* = 7.8 Hz, 4H), 2.05-1.97 (m, 4H), 1.60-1.53 (m, 4H), 1.39-1.30 (m, 4H), 0.91 (t, *J* = 7.3 Hz, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ = 140.6, 140.3, 136.7, 129.7, 128.1, 126.9, 35.3, 33.5, 32.8, 32.0, 22.4, 17.5, 14.0 ppm. HRMS *m*/z (APCI) calcd. for C₃₀H₃₉ [M+H]⁺: 399.3046; found: 399.3048.

1,2-di(*9H*-fluoren-9-ylidene)-1,2-diphenylethane (8a): 40.5 mg; Yield 80%. Yellow solid. Purified by column chromatography using a mixture of hexane and DCM [10:1 to 3:1(v/v)]. ¹H NMR (500 MHz, CD₂Cl₂) $\delta = 8.20$ (d, J = 8.0 Hz, 2H), 7.71 (t, J = 6.9 Hz, 4H), 7.65 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.33 (dd, J = 11.8, 4.3 Hz, 2H), 7.29 (td, J = 7.5, 0.7 Hz, 2H), 7.25 (td, J = 7.5, 0.7 Hz, 2H), 7.19-7.14 (m, 2H), 7.00-6.93 (m, 6H), 6.74 (d, J = 7.9 Hz, 2H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) $\delta = 144.2$, 141.4, 141.1, 140.1, 139.0, 138.3, 136.1, 132.3, 129.5, 129.0, 129.0, 128.9, 128.1, 127.9, 127.1, 126.0, 124.4, 120.0, 119.9 ppm. M.p. 292-294 °C. Data was in accordance with that reported in the literature.²⁴

1,2-di(*9H*-fluoren-9-ylidene)-1,2-bis(4-methoxyphenyl)ethane (8b): 48.1 mg; Yield 85%. Yellow solid. Purified by column chromatography using a mixture of hexane and DCM [10:1 to 3:1(v/v)]. ¹H NMR (400 MHz, CDCl₃) δ = 8.16 (d, *J* = 7.9 Hz, 2H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.67 (d, *J* = 7.5 Hz, 2H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.30-7.26 (m, 2H), 7.21 (t, *J* = 7.3 Hz, 2H), 7.04-6.99 (m, 2H), 6.99-6.91 (m, 6H), 6.86 (d, *J* = 8.3 Hz, 2H), 6.70 (d, *J* = 8.2 Hz, 2H), 3.80 (s, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ = 159.6, 144.0, 140.8, 140.3, 138.6, 138.0, 135.1, 133.3, 131.7, 129.1, 128.0, 127.4, 126.4, 125.4, 124.0, 119.3, 114.0, 55.1 ppm. M.p. 298-300 °C. Data was in accordance with that reported in the literature.²⁵

1,2-bis(4-butylphenyl)-1,2-di(9*H***-fluoren-9-ylidene)ethane (8c):** 44.5 mg; Yield 72%. Yellow solid. Purified by column chromatography using a mixture of hexane and DCM [10:1 to 3:1(v/v)]. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.22$ (d, J = 7.9 Hz, 2H), 7.69 (t, J = 8.4 Hz, 4H), 7.51 (d, J = 7.1 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.4 Hz, 2H), 7.15 (d, J = 7.7 Hz, 2H), 6.99-6.92 (m, 6H), 6.83 (d, J = 7.7 Hz, 2H), 6.78 (d, J = 7.9 Hz, 2H), 2.60 (t, J = 7.6 Hz, 4H), 1.64-1.55 (m, 4H), 1.38-1.27 (m, 4H), 0.93 (t, J = 7.3 Hz, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) $\delta = 144.1$, 143.0, 140.8, 140.4, 138.5, 138.0, 136.8, 134.8, 131.6, 128.7, 128.4, 128.1, 128.0, 127.4, 127.3, 126.3, 125.5, 124.1, 119.2, 35.4, 33.3, 22.1, 14.0 ppm. M.p. 206-208 °C. Data was in accordance with that reported in the literature.²⁵

1,2-di(*9H*-fluoren-9-ylidene)-1,2-bis(4-fluorophenyl)ethane (8d): 27.0 mg; Yield 50%. Yellow solid. Purified by column chromatography using a mixture of hexane and DCM [50:1 to 5:1(v/v)]. ¹H NMR (400 MHz, CD₂Cl₂) δ = 8.15 (d, *J* = 8.0 Hz, 2H), 7.71 (t, *J* = 7.3 Hz, 4H), 7.60 (t, *J* = 6.0 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.10 (td, *J* = 8.6, 2.3 Hz, 2H), 7.05-6.94 (m, 6H), 6.90 (td, *J* = 8.6, 2.3 Hz, 2H), 6.79 (d, *J* = 7.9 Hz, 2H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) δ = 163.4 (d, *J* = 247.7 Hz), 142.7, 141.4 (d, *J* = 27.4 Hz), 138.8, 138.1, 136.6, 136.0 (d, *J* = 3.5 Hz), 134.2 (d, *J* = 8.0 Hz), 130.0 (d, *J* = 8.3 Hz), 129.2, 129.1, 128.0, 127.2, 126.0, 124.3, 120.1 (d, *J* = 4.7 Hz), 116.5 (d, *J* = 21.8 Hz), 116.2 (d, *J* = 21.3 Hz) ppm. ¹⁹F NMR (377 MHz, CD₂Cl₂) δ = -113.65 (tt, *J* = 8.7, 5.6 Hz) ppm. HRMS *m*/z (APCI) calcd. for C₄₀H₂₅F₂ [M+H]⁺: 543.1919; found: 543.1918. M.p. 296-298 °C.

9,9'-(decane-5,6-diylidene)bis(9*H***-fluorene) (8e):** 28.0 mg; Yield 60%. Yellow solid. Purified by column chromatography using a mixture of hexane and DCM [50:1 to 10:1(v/v)]. ¹H NMR (400 MHz, CD₂Cl₂) $\delta = 8.05$ -7.95 (m, 2H), 7.88-7.80 (m, 2H), 7.69 (dd, J = 12.8, 7.7 Hz, 4H), 7.50-7.40 (m, 4H), 7.20 (td, J = 7.5, 0.7 Hz, 2H), 7.01-6.91 (m, 2H), 3.35-3.08 (m, 4H), 1.86-1.72 (m, 4H), 1.55-1.44 (m, 4H), 0.96 (t, J = 7.4 Hz, 6H) ppm. ¹³C NMR (101 MHz, CD₂Cl₂) $\delta = 148.7, 141.1, 140.1, 138.7, 138.3, 128.5$

132.7, 128.1, 127.8, 127.7, 127.6, 126.2, 124.9, 120.2, 119.6, 37.6, 30.1, 24.0, 14.2 ppm. **HRMS** *m/z* (APCI) calcd. for C₃₆H₃₅ [M+H]⁺: 467.2733; found: 467.2732. M.p. 156-158 °C.

2.6. Scale-up Syntheses of Butadienes 3a and 6a

To a Schlenk tube charged with acetylenic iodide **1a** (5 mmol, 1.15 g), were added 30 mL *n*-pentane and 20 mL diethyl ether via argon-flushed syringes, and the resulting solution was cooled to -78 °C in an acetone-dry ice bath. Then *t*-BuLi (8.5 mL, 1.3M) in pentane was added dropwise via an argon-flushed syringe, and the mixture was stirred at -78 °C for an additional 8 min. After removing the cooling bath and stirring for 15 min, a solution of FeCl₃ (40.5 mg, 0.25 mmol) in THF (2.5 mL) was added via an argon-flushed syringe, followed by adding DTBP (0.91 mL, 5.0 mmol) via an argon-flushed microsyringe. After stirring for 30 min at rt, the reaction mixture was quenched by MeOH and passed through a short silica pad using DCM as an eluent. After concentration, the residue was purified by column chromatography to get 412 mg **butadiene 3a** (yield 80%).

To a Schlenk tube charged with acetylenic iodide **4a** (5 mmol, 1.42 g), were added 30 mL *n*-pentane and 20 mL diethyl ether via argon-flushed syringes, and the resulting solution was cooled to -78 °C in an acetone-dry ice bath. Then *t*-BuLi (8.5 mL, 1.3M) in pentane was added dropwise via an argon-flushed syringe, and the mixture was stirred at -78 °C for an additional 8 min. After removing the cooling bath and stirring for 30 min, a solution of FeCl₃ (40.5 mg, 0.25 mmol) in THF (2.5 mL) was added via an argon-flushed syringe, followed by adding DTBP (0.91 mL, 5.0 mmol) via an argon-flushed microsyringe. After stirring for 30 min at rt, the reaction mixture was quenched by MeOH and passed through a short silica pad using DCM as an eluent. After concentration, the residue was purified by column chromatography to get 502 mg butadiene **6a** (yield 64%).

2.7. Procedure for Indene 9a

To a solution of 1,3-butadiene **6a** (0.1 mmol) in CH_2Cl_2 (2 mL) was added BF_3 ·OEt₂ (0.1 mmol) under an argon atmosphere. The reaction mixture was heated to 40 °C. After the reaction solution was stirred for 9 h under an argon atmosphere, the reaction mixture was quenched by the addition of 1 mL of water and then extracted with CH_2Cl_2 . The combined organic phase was washed with brine, dried over anhydrous Na_2SO_4 and then concentrated. Purification by silica gel chromatography afforded the indene **9a**.²⁶

3'-cyclopentyl-2'-phenylspiro[cyclopentane-1,1'-indene] (**9a):** 18.8 mg; Yield 60%. Colorless oil. Purified by preparative thin-layer chromatography using hexane. ¹**H NMR** (500 MHz, CD₂Cl₂) δ = 7.45-7.36 (m, 4H), 7.36-7.31 (m, 1H), 7.23-7.14 (m, 4H), 2.82-2.71 (m, 1H), 2.05-1.98 (m, 2H), 1.96-1.84 (m, 4H), 1.82-1.74 (m, 4H), 1.74-1.67 (m, 2H), 1.63-1.56 (m, 4H) ppm. ¹³**C NMR** (126 MHz, CD₂Cl₂) δ = 156.1, 150.8, 142.3, 140.1, 138.5, 130.6, 128.5, 127.3, 126.1, 125.3, 122.3, 121.0, 61.8, 39.3, 35.5, 31.6, 27.1, 26.9 ppm. **HRMS** *m*/*z* (APCI) calcd. for C₂₄H₂₇ [M+H]⁺: 315.2107; found: 315.2104.

3. X-ray Structure Determination

X-ray data of **6b** (CCDC 1860059), **6n** (1860060) and **8b** (1866387) were collected at 293 K on a Bruker SMART 1000 CCD diffractometer using Mo-K α radiation. CCDC 1860059 (**6b**), 1860060 (**6n**) and 1866387 (**8b**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Figure S1: X-ray crystallographic structure of compound **6b** (CCDC 1860059). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are omitted for clarity.

Figure S2: X-ray crystallographic structure of compound **6n** (CCDC 1860060). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are omitted for clarity.

Figure S3: X-ray crystallographic structure of compound **8b** (CCDC 1866387). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are omitted for clarity.

4. Computational Results

The ω B97X-D²⁷ functional was used for all calculations, which were carried out with the Gaussian 09 program.²⁸ Two different basis sets were used. Basis set I was used for geometry optimizations and frequency calculations. The effective core potentials (ECPs) of Hay and Wadt with a double- ζ valence basis set (LANL2DZ) were employed for Fe,²⁹⁻³² supplemented with polarization shells with the following exponents: Fe (f = 2.462), $^{33-34}$ and the all-electron 6-31G(d) basis set was used in describing all other atoms.³⁵⁻³⁷ All stationary points were confirmed as minima (no imaginary frequency) or transition state structures (only one imaginary frequency). The latter were confirmed to connect appropriate intermediates, reactants, or products by intrinsic reaction coordinate (IRC) calculations.³⁸⁻³⁹ All the iron species were optimized along the sexlet-state and the geometric structures of all species in this paper were optimized in the gas phase. Based on the gas phase optimized geometries, the solvation effect of THF was simulated by the SMD solvent model with a larger basis set II, which consisted of LANL2DZ for Fe and 6-311++G(d,p) for other atoms. The solution phase Gibbs free energies are calculated by adding solvation energies on the gas phase relative Gibbs free energies. The same methodology has been widely used in many recent theoretical works.⁴⁰⁻⁴⁶ Our calculations show that the formation of the exocyclic vinyllithium 5a (eq. S1) and the Fe(III) active species I1 (eq. S2) are all facile with exothermic free energy of -40.2 and -140.6 kcal/mol. Fe(III) active species I1 then undergoes reductive elimination process to give the homo-coupling product 6a and Fe(I) intermediate 12, the free energy barrier for this step is 19.7 kcal/mol (Figure S4) and this is the rate determining step for the whole reaction. Subsequently, the oxidation of I2 by DTBP occurs fluently to give a very stable Fe(III) intermediate I4. At last, active species I1 is regenerated very quickly with two more molecules of exocyclic vinyllithium 5a (Figure S4), thus finishing the catalytic cycle (Scheme 5). The theoretical calculated results are consistent with our experimental observation.

Figure S4: The free energy profile for Fe(III) catalyzed oxidative homo-coupling reaction.

5. EPR Experiments

To a Schlenk tube charged with acetylenic iodide **4a** (0.2 mmol, 56.8 mg), were added 1.2 mL n-pentane and 0.8 mL diethyl ether via argon-flushed syringes, and the resulting solution was cooled to -78 °C in an acetone-dry ice bath. Then *t*-BuLi (0.34 mL, 1.3M) in pentane was added dropwise via an argon-flushed syringe, and the mixture was stirred at -78 °C for an additional 8 min. After removing the cooling bath, the mixture was stirred for 30 min to generate vinyllithium **5a**. Then a solution of FeCl₃ (1.6 mg, 0.01 mmol) in THF (0.1 mL) was added via an argon-flushed syringe. After stirring for 5 min at rt, an aliquot of 0.2 mL of the solution was transferred to an EPR tube with an argon-flushed syringe under argon flow. The sample solution was immediately frozen in liquid nitrogen. X-Band EPR spectra were recorded with a Bruker EMX EPR spectrometer equipped with a variable-temperature helium flow cryostat system (Oxford Instruments). Instrument settings: microwave frequency, 9.390 GHz; microwave power, 1 mW; modulation amplitude, 3 G; modulation frequency, 100 kHz; time constant, 2.56 ms; conversion time, 40.96 ms. Resonance signal due to the presence of FeCl₃ or other high-spin Fe(III) species was observed in the lower field region (500-2000 Gauss) of the spectrum (Figure S6).

Figure S5: X-Band EPR spectrum of a solution containing 5a and FeCl₃ in pentane/Et₂O/THF at 10K.

Figure S6: A full EPR spectrum (0-4000 Gauss) of the solution containing **5a** and FeCl₃ at 10K. No resonance signal due to the presence of FeCl₃ or other high-spin Fe(III) species was observed in the lower field region of 500-2000 Gauss.

6. References

- (1) Bull, J. A.; Mousseau, J. J.; Charette, A. B. Org. Lett. 2008, 10, 5485-5488.
- (2) Liu, Q.; Wang, Z.-Y.; Peng, X.-S.; Wong, H. N. C. J. Org. Chem. 2018, 83, 6325-6333.
- (3) Pawluc, P.; Hreczycho, G.; Szudkowaks, J.; Kubicki, M.; Marciniec, B. *Org. Lett.* **2009**, *11*, 3390-3393.
- (4) Kabir, M. S.; Lorenz, M.; Namjoshi, O. A.; Cook, J. M. Org. Lett. 2010, 12, 464-467.
- (5) Zhao, Y.; Snieckus, V. Org. Lett. 2014, 16, 390-393.
- (6) Moreno, M.; Murruzzu, C.; Riera, A. Org. Lett. 2011, 13, 5184-5187.
- Mousseau, J. J.; Bull, J. A.; Ladd, C. L.; Fortier, A.; Roman, D. S.; Charette, A. B. J. Org. Chem. 2011, 76, 8243-8261.
- (8) Cheung, L. L. W.; Yudin, A. K. Org. Lett. 2009, 11, 1281-1284.
- (9) Son, J.; Reidl, T. W.; Kim, K. H.; Wink, D. J.; Anderson, L. L. Angew. Chem. Int. Ed. 2018, 57, 6597-6600.
- (10) DeBerardinis, A. M.; Turlington, M.; Pu, L. Angew. Chem. Int. Ed. 2011, 50, 2368-2370.
- (11) Monks, B. M.; Cook, S. P. J. Am. Chem. Soc. 2012, 134, 15297-15300.
- (12) Barber, D. M.; Sanganee, H. J.; Dixon, D. J. Org. Lett. 2012, 14, 5290-5293.
- (13) Crandall, J. K.; Michaely, W. J. J. Org. Chem. 1984, 49, 4244-4248.
- (14) Shen, Y.; Cornella, J.; Juliá-Hernández, F.; Martin, R. ACS Catal. 2017, 7, 409-412.
- (15) Rodier, F.; Rajzmann, M.; Parrain, J.-L.; Chouraqui, G.; Commeiras, L. *Chem. Eur. J.* **2013**, *19*, 2467-2477.
- (16) Xu, D.; Rios, R.; Ba, F.; Ma, D.; Gu, G.; Ding, A.; Kuang, Y.; Guo, H. Asian Journal of Organic Chemistry 2016, 5, 981-985.
- (17) Zhu, T.; Li, Z.; Xiao, F.; Duan, W.-L. Tetrahedron. Lett. 2018, 59, 3238-3241.
- (18) Thiel, N. O.; Kemper, S.; Teichert, J. F. Tetrahedron. 2017, 73, 5023-5028.
- (19) Ostrowska, S.; Rogalski, S.; Lorkowski, J.; Walkowiak, J.; Pietraszuk, C. Synlett. 2018, 29, 1735-1740.
- (20) Wilklow-Marnell, M.; Li, B.; Zhou, T.; Krogh-Jespersen, K.; Brennesse, W. W.; Emge, T. J.;
 Goldman, A. S.; Jones, W. D. J. Am. Chem. Soc. 2017, 139, 8977-8989.
- (21) Prasan Ojha, D.; Ramaiah Prabhu, K. J. Org. Chem. 2013, 78, 12136-12143.
- (22) Sands, R. D. J. Org. Chem. 1994, 59, 468-471.
- (23) Green, N. J.; Willis, A. C.; Sherburn, M. S. Angew. Chem. Int. Ed. 2016, 55, 9244-9248.
- (24) Zhao, J.; Asao, N.; Yamamoto, Y.; Jin, T. J. Am. Chem. Soc. 2014, 136, 9540-9543.
- (25) Zhao, J.; Xu, Z.; Oniwa, K.; Asao, N.; Yamamoto, Y.; Jin, T. Angew. Chem. Int. Ed. 2016, 55, 259-263.
- (26) Sun, X.; Izumi, K.-J.; Hu, C.-Q.; Lin, G.-Q. Chin. J. Chem. 2006, 24, 430-434.
- (27) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
- (28) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.

Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.
Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.
N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.
Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, D. J. Fox, Gaussian 09, Rev. D.01; Gaussian, Inc.: Wallingford, CT, 2013.

- (29) Hay, P. J.; Wadt, W. R. J. Phys. Chem. 1985, 82, 270-283.
- (30) Wadt, W. R.; Hay, P. J. J. Phys. Chem. 1985, 82, 284-298.
- (31) Hay, P. J.; Wadt, W. R. J. Phys. Chem. 1985, 82, 299-310.
- (32) Check, C. E.; Faust, T. O.; Bailey, J. M.; Wright, B. J.; Gilbert, T. M.; Sunderlin, L. S. The J. Phys. Chem. A 2001, 105, 8111-8116.
- (33) Ehlers, A. W.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* **1993**, 208, 111-114.
- (34) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.s* 1993, 208, 237-240.
- (35) Hariharan, P. C.; Pople, J. A. Theoretica chimica acta 1973, 28, 213-222.
- (36) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163-168.
- (37) Binning, R. C.; Curtiss, L. A. J. Comput. Chem. 1990, 11, 1206-1216.
- (38) Fukui, K. J. Phys. Chem. 1970, 74, 4161-4163.
- (39) Fukui, K. Acc. Chem. Res. 1981, 14, 363-368.
- (40) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc. 2015, 137, 4164-4172.
- (41) Neufeldt, S. R.; Jiménez-Osés, G.; Huckins, J. R.; Thiel, O. R.; Houk, K. N. J. Am. Chem. Soc. 2015, 137, 9843-9854.
- (42) Lu, Q.; Yu, H.; Fu, Y. J. Am. Chem. Soc. 2014, 136, 8252-8260.
- (43) Cheng, G.-J.; Yang, Y.-F.; Liu, P.; Chen, P.; Sun, T.-Y.; Li, G.; Zhang, X.; Houk, K. N.; Yu, J.-Q.;
 Wu, Y.-D. J. Am. Chem. Soc. 2014, 136, 894-897.
- (44) Liu, P.; Sirois, L. E.; Cheong, P. H.-Y.; Yu, Z.-X.; Hartung, I. V.; Rieck, H.; Wender, P. A.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 10127-10135.
- (45) Ni, S.-F.; Yang, T.-L.; Dang, L. Organometallics 2017, 36, 2746-2754.
- (46) Deng, X.; Ni, S.-F.; Han, Z.-Y.; Guan, Y.-Q.; Lv, H.; Dang, L.; Zhang, X.-M. Angew. Chem. Int. Ed. 2016, 55, 6295-6299.
7. Copies of ¹H NMR, ¹³C NMR Spectra

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 1i

 $^1\!H$ NMR (500 MHz, CDCl_3) and $^{13}\!C$ NMR (126 MHz, CDCl_3) Spectra of Compound 1t

1H NMR (500 MHz, CDCl₃) and ^{13}C NMR (126 MHz, CDCl₃) Spectra of Compound 4a

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 4b

$^1\!H$ NMR (400 MHz, CDCl_3) and $^{13}\!C$ NMR (101 MHz, CDCl_3) Spectra of Compound 4c

1H NMR (400 MHz, CD₂Cl₂) and ^{13}C NMR (101 MHz, CD₂Cl₂) Spectra of Compound 4d

1H NMR (400 MHz, CD₂Cl₂) and ^{13}C NMR (101 MHz, CD₂Cl₂) Spectra of Compound 4e

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 4f

1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 4g

1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 4h

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 4i

1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) Spectra of Compound 4k

 1H NMR (500 MHz, CD₂Cl₂) and ^{13}C NMR (126 MHz, CD₂Cl₂) Spectra of Compound 4m

1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) Spectra of Compound 4n

1H NMR (400 MHz, CD₂Cl₂) and ^{13}C NMR (101 MHz, CD₂Cl₂) Spectra of Compound 40

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) Spectra of Compound 4p

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 4t

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 4u

¹H NMR (500 MHz, CD₂Cl₂) and ¹³C NMR (126 MHz, CD₂Cl₂) Spectra of Compound 7c

 1H NMR (400 MHz, CD_2Cl_2) and ^{13}C NMR (101 MHz, CD_2Cl_2) Spectra of Compound 7d

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound **3a**

 1 H NMR (500 MHz, CD₂Cl₂) and 13 C NMR (126 MHz, CD₂Cl₂) Spectra of Compound 3b

1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 3c

 1 H NMR (500 MHz, CDCl₃) and 13 C NMR (126 MHz, CDCl₃) Spectra of Compound 3d

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 3e

 1H NMR (500 MHz, CD₂Cl₂) and ^{13}C NMR (126 MHz, CD₂Cl₂) Spectra of Compound 3f

1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 3g

 1 H NMR (500 MHz, CDCl₃) and 13 C NMR (126 MHz, CDCl₃) Spectra of Compound 3h

$^1\!H$ NMR (500 MHz, CD_2Cl_2) and $^{13}\!C$ NMR (126 MHz, CD_2Cl_2) Spectra of Compound 3i

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 3k

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound **3**l

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 3m

 1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 3n

1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 3p

 1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) Spectra of Compound 3q

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) Spectra of Compound 3r

1H NMR (500 MHz, CDCl_3) and ^{13}C NMR (126 MHz, CDCl_3) Spectra of Compound 3s

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 3t

 1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) Spectra of Compound 6c

 1H NMR (400 MHz, CDCl₃) and ^{13}C NMR (101 MHz, CDCl₃) Spectra of Compound 6d

¹H NMR (400 MHz, CD_2Cl_2) and ¹³C NMR (101 MHz, CD_2Cl_2) Spectra of Compound 6e

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) Spectra of Compound 6f

100 ppm 90 80 70 60 50 40 30 20 10 0

140 130 120 110

200 190 180 170 160 150

1 H NMR (400 MHz, CD₂Cl₂) and 13 C NMR (101 MHz, CD₂Cl₂) Spectra of Compound 6m

1H NMR (400 MHz, CD_2Cl_2) and ^{13}C NMR (101 MHz, CD_2Cl_2) Spectra of Compound 6n

¹H NMR (400 MHz, CD₂Cl₂) and ¹³C NMR (101 MHz, CD₂Cl₂) Spectra of Compound 60

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) Spectra of Compound 6p

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) Spectra of Compound 6q

¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) Spectra of Compound 6r

 1H NMR (500 MHz, CD_2Cl_2) and ^{13}C NMR (126 MHz, CD_2Cl_2) Spectra of Compound 8a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) Spectra of Compound 8b

1H NMR (400 MHz, CDCl_3) and ^{13}C NMR (101 MHz, CDCl_3) Spectra of Compound 8c

¹H NMR (400 MHz, CD_2Cl_2) and ¹³C NMR (101 MHz, CD_2Cl_2) Spectra of Compound 8e

7,7,408 7,7,307 7,7,307 7,7,307 7,7,307 7,7,307 7,7,307 7,7,307 7,7,307 7,7,109 7,7,719 7,7,117 7,7,11

